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PLANCHEREL THEOREM FOR
VECTOR VALUED FUNCTIONS AND BOEHMIANS

V. KARUNAKARAN AND V. BABY THILAGA

ABSTRACT. The classical Plancherel theorem asserts that
the Fourier-Plancherel transform is an isomorphism between
L2(R) onto L2(R). On the other hand, in the literature the
theory of Fourier transform is extended to the space of L1

Boehmians and also to the space of tempered Boehmians. In
this paper we shall introduce two types of Boehmians, each
of which contains vector valued square integrable functions
on R as a dense subspace and extend the theory of Fourier
transform to this set up. Finally we prove that this extended
Fourier transform is a one-to-one continuous linear map of one
space of Boehmians onto the other.

1. Introduction. The theory of Schwartz distributions, tempered
distributions and their applications are well known in the literature.
The concept of Boehmians which was motivated by Boehme’s regular
operators [1] was defined and systematically developed and their prop-
erties investigated in [2, 4, 5, 7, 12, 13]. Further several integral
transforms were also introduced on various spaces of Boehmians and
their properties studied in [5, 6, 8, 9, 10, 14].

In [19], Zemanian develops the theory of Laplace transform for a
testing function space consisting of Banach space valued functions
defined on Rk. Motivated by the above theory, in this paper we shall
develop a theory of Fourier transform on a certain space of Boehmians
which contains vector valued functions defined on R1. Let us first
consider a separable commutative Banach algebra A with identity e.
It may still be possible to take just a separable Banach space instead
of a Banach algebra but that may lead to more complications, and we
shall return to this problem later. To develop our theory we need
an analogue of the Plancherel theorem on the space L2(A) where
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L2(A) consists of A-valued Borel measurable functions on R such that∫
R
‖f(x)‖2 dx < ∞. Since we are not aware of any such theory in

the literature, we have assumed that A is a complex Hilbert space
and a separable commutative Banach algebra with identity e such that
the norm induced by the inner product and the norm in the Banach
algebra are equivalent and developed a Plancherel theorem for this set
up. The example A = Cn tells us that it is possible to assume such
restrictions on A. On the other hand, if A is a Hilbert space and
also a complex algebra in which the left and right multiplications are
continuous, we can introduce a Banach algebra structure such that the
Banach algebra norm and the Hilbert space norm are equivalent, see
[15]. Thus we strongly believe the existence of such spaces A other
than Cn. However, we are not able to produce any concrete example
for the present. Thus in all discussions in Section 2 and in Section 3
we assume A = Cn for some positive integer n and proceed with our
theory.

We develop a Plancherel theorem for L2(A) and then use it to de-
fine Fourier-Plancherel transform for our space of Boehmians. Un-
like the classical theories where in the Fourier transform of elements
of Boehmians spaces are classical distributions, we shall define the
Fourier-Plancherel transform as a continuous linear map from one space
of Boehmians onto another.

In Section 2 we shall recall several testing function spaces consisting
of Banach space valued functions, Banach space valued distributions
and convolutions of functions which take their values in a Banach
space and merely state their properties citing proper references. A
few modifications which are necessary for our purposes are also worked
out in detail. Since the theory of Fourier transform on Banach algebra
valued functions has already been developed, see [17, 18], we present
the required theory with minimum details in Section 2. In Section 3
we introduce two different vector valued Boehmian spaces. We shall
also exhibit an imbedding of L2(A), the space of all A-valued square
integrable functions on R, in these Boehmian spaces. In Section 4 we
introduce Fourier-Plancherel transform on our space of Boehmians and
obtain its properties. Finally, in Section 5 we shall make a comparative
study of the theory developed here and those that are already available
in the existing literature and known to us.
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2. Preliminaries. In order to make this paper as much self-
contained as possible, we shall briefly recall the basic definitions and
notations of testing function spaces which are Banach space valued.
For further detail we refer to [19].

Let A be a complex Banach space and K a compact subset of R. Let
DK(A) denote the linear space of all functions φ from R to A such that
suppφ ⊆ K and, for every integer k, the kth derivative of φ, namely
φ(k) is continuous. We assign to DK(A) the topology generated by the
collection {γk(φ)/0 ≤ k <∞} of semi-norms where

γk(φ) = sup
t∈K

‖φk(t)‖A.

Let {Kj}∞j=1 be a sequence of compact subsets of R such that K1 ⊂
K2 ⊂ · · · , ∪jKj = R and every compact subset of R is contained in
some Kj . We define D(A) = ∪jDKj

(A) to be the inductive limit of
DKj

(A). When A = C, D(C) = ∪jDKj
= D is the classical space of

test functions.

E(A) is defined as the largest ρ-type test function space containing
D(A), see [19]. When A = C, E(A) = E is the usual space of smooth
functions on R.

If B is any other complex Banach space, we define [D(A) : B] as
the space of all continuous linear mappings from D(A) to B also called
[A,B]-valued distributions. Let τt denote the usual translation operator
given by (τtφ)(x) = φ(x − t). Then, for y ∈ [D(A) : B], v ∈ [E : A],
their convolution denoted by y ∗ v is defined as a B-valued mapping on
D by (y ∗ v)(φ) = y(ψ) where ψ(t) = v(τ−tφ) for all φ ∈ D. It can be
shown that ψ ∈ D(A), see [19, pp. 99 100]. Thus y ∗ v is well defined
and the mapping v → y ∗ v is a continuous linear mapping of [E : A]
into [D : B]. It can also be shown that D(A) can be identified as a
subspace of [E : A] and, in particular, if y ∈ [D(A) : B] and v ∈ D(A),
y ∗ v is well defined and, further, it can be identified with a smooth
B-valued function u ∈ E(B) in the sense that

(y ∗ v)(φ) =
∫
R

u(x)φ(x) dx, ∀φ ∈ D.

In fact, u can be explicitly defined by

u(x) = y(τxṽ) where ṽ(t) = v(−t),
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see [19, p. 106].

Now we shall recall the theory of Bochner integrable functions as
found in [3, 11].

Let R,C denote the usual real and complex spaces. We shall assume
that A is a separable complex Banach space. R is considered as
a measure space equipped with the σ-algebra of Borel subsets and
the usual Lebesgue measure. We shall use the concept of Bochner
measurability as available in [3].

Lemma 2.1. Let (T,Σ, µ) be a finite measure space where T is a
nonvoid set, Σ is a σ-algebra of subsets of T , µ is a positive measure
on Σ. A Bochner measurable mapping f from T to a Banach space X
is Bochner integrable if and only if

∫
T
‖f‖ dµ <∞.

Proof. See [11].

Lemma 2.2. If f : R → A is Borel measurable, then f is Bochner
measurable. The same is true for f : R × R → A.

Proof. See [3, pp. 73 77].

Definition 2.3. Let A be a separable, commutative complex Banach
algebra. Let R be the measure space described above. For 1 ≤ p <∞,

Lp(A) =

⎧⎨
⎩

[f ]|f : R → A is Borel measurable and∫
R
‖f(x)‖p dm(x) <∞

where dm(x) = dx/
√

2π

where [f ] denotes the equivalence class containing f with respect
to the equivalence relation f ∼ g if and only if f = g almost
everywhere on R with respect to the Lebesgue measure. We denote
‖f‖p = {∫

R
‖f(x)‖p dm(x)}1/p.

Lemma 2.4. Lp(A) is a Banach space under this norm ‖ ‖p.

Proof. See [19, p. 220].
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Lemma 2.5. Let A be a separable Banach algebra over C. If f
and g are A-valued Borel measurable functions on R, then so is their
product.

Lemma 2.6. Let A be a separable Banach algebra over C. If f
and g are A-valued Borel measurable functions on R, then F (x, y) =
f(x− y)g(y) for all x, y ∈ R is Borel measurable on R × R.

The proofs of Lemmas 2.5 and 2.6 follow their analogues in the
classical case wherein A = C. The details are omitted.

Theorem 2.7. If f ∈ Lp(A), g ∈ D(A), then (f ∗ g)(x) =∫
R
f(x− y)g(y) dm(y) exists as a Bochner integral.

Proof. In fact, by Lemma 2.2 and Lemma 2.6, f(x − y)g(y) as a
function of y is Bochner measurable. If K = supp g and ‖g‖0 =
supx∈K ‖g(x)‖, then

∫
R
f(x − y)g(y) dm(y) =

∫
K
f(x − y)g(y) dm(y).

Now
∫

K
‖f(x−y)g(y)‖ dm(y) ≤ ‖g‖0

∫
K
‖f(x−y)‖ dm(y) ≤ c‖g‖0 <∞

where c = ‖f‖1 if p = 1 and c = ‖f‖pm(K)1/q with 1/p + 1/q = 1 if
p > 1. Thus, by Lemma 2.1,

∫
K
f(x − y)g(y) dm(y) exists for each

x ∈ R as a Bochner integral.

Theorem 2.8. Let 1 ≤ p < ∞. If f ∈ Lp(A), g ∈ D(A), then
f ∗ g ∈ Lp(A) and ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Proof. Let K = supp g and ‖g‖0 = supx∈K ‖g(x)‖.

‖f ∗ g‖p
p =

∫
R

‖f ∗ g(x)‖p dm(x)

≤
∫
R

( ∫
K

‖f(x− y)g(y)‖ dm(y)
)p

dm(x)

≤
∫
R

( ∫
K

‖f(x− y)‖‖g(y)‖ dm(y)
)p

dm(x).(1)

Let λ =
∫

K
‖g(y)‖ dm(y) and dµ(y) = (1/λ)‖g(y)‖ dm(y). Then µ is a
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positive Borel measure with
∫

K
dµ(y) = 1 and

λ

∫
K

‖f(x− y)‖ dµ(y) =
∫

K

‖f(x− y)‖‖g(y)‖ dm(y)

≤ ‖g‖0

∫
K

‖f(x− y)‖ dm(y) <∞.

Hence, by Jensen’s inequality (1) becomes

‖f ∗ g‖p
p ≤ λp

∫
R

( ∫
K

‖f(x− y)‖p dµ(y)
)
dm(x)

= λp−1

∫
R

∫
K

‖f(x− y)‖p‖g(y)‖ dm(y) dm(x)

= λp−1

∫
K

‖g(y)‖
( ∫

R

‖f(x− y)‖p dm(x)
)
dm(y)

= λp−1λ‖f‖p
p

= λp‖f‖p
p

= ‖f‖p
p‖g‖p

1.

Thus ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Remark 2.9. If f ∈ L2(A), then f is locally integrable since∫
K
‖f(x)‖ dx ≤ (

∫
K
‖f(x)‖2 dx)1/2(m(k))1/2 for any compact subset

K of R and m denotes the Lebesgue measure. Hence f can be con-
sidered as an [A : A] valued distribution, i.e., a map from D(A) to
A, given by Λf (φ) =

∫
R
f(t)φ(t) dt, for all φ ∈ D(A). The righthand

side as a Bochner integral exists since fφ is Bochner measurable and,
if K = suppφ,∫

K

‖f(t)‖‖φ(t)‖ dt ≤ ‖φ‖0

∫
K

‖f(t)‖ dt <∞.

Λf is clearly linear and Λf is continuous as ‖Λf (φ)‖ ≤ M‖φ‖0 where
M =

∫
K
‖f(t)‖ dt < ∞. So Λf ∈ [D(A) : A]. Let g ∈ D(A). As in [19]

we can define the convolution Λf ∗ g which is regularized by u ∈ E(A)
so that

u(x) = Λf (τxg̃) =
∫
R

f(t)g(x− t) dm(t) = (f ∗ g)(x).
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As f ∈ L2(A), g ∈ D(A) by Theorem 2.8, u = f ∗ g ∈ L2(A). In effect
we have Λf ∗ g = Λf∗g. Thus the convolution production f ∗ g with
f ∈ L2(A), g ∈ D(A) coincides with the convolution Λf ∗ g as defined
in [19].

Lemma 2.10. Let f ∈ L1(A), g ∈ D(A). For compact subsets
K1,K2 of R, we have∫

K1

∫
K2

f(t)g(x− t) dt =
∫

K2

∫
K1

f(t)g(x− t) dt.

Proof. Let A′ denote the dual of A. Since A′ is a normed space, it is
sufficient to prove that for all Λ ∈ A′,

(2) Λ
( ∫

K1

∫
K2

f(t)g(x− t) dx dt
)

= Λ
( ∫

K2

∫
K1

f(t)g(x− t) dt dx
)
.

Now

Λ
( ∫

K1

∫
K2

f(t)g(x− t) dx dt
)

=
∫

K1

Λ
( ∫

K2

f(t)g(x− t) dx
)
dt

=
∫

K1

∫
K2

Λ(f(t)g(x− t)) dx dt.

A quick calculation shows that Fubini’s theorem is applicable, and so
we have (2).

Definition 2.11. If f ∈ L1(A), we define

(3) f̂(t) = lim
n→∞

∫ n

−n

f(x)e−itx dm(x).

Remark 2.12. It is easily seen that this limit exists in the Banach
space A.

Lemma 2.13. If f ∈ L1(A) ∩ L2(A), then (Λ ◦ f)∧ = Λ ◦ f̂ for any
arbitrary linear functional Λ on A.
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Proof. Can be easily obtained using the definitions.

Lemma 2.14. If f ∈ L1(A) ∩ L2(A), φ ∈ D(A),then (f ∗ φ)∧ = f̂ φ̂.

Proof. Let K = suppφ.

(f ∗ φ)∧(t) = lim
n→∞

∫ n

−n

(f ∗ φ)(x)e−itx dm(x)

= lim
n→∞

∫ n

−n

( ∫
K

f(x− y)φ(y) dm(y)
)
e−itx dm(x)

= lim
n→∞

∫
K

{( ∫ n

−n

f(x−y)e−it(x−y) dm(x)
)
φ(y)e−ity

}
dm(y)

by Lemma 2.10.

Since the integrands within parentheses are pointwise convergent to
f̂(t)φ(y)e−ity as n → ∞ and bounded by ‖f‖1‖φ(y)‖0 which is in
L1(R), by dominated convergence theorem we get

(f ∗ φ)∧(t) =
∫

K

f̂(t)φ(y)e−ity dm(y)

= f̂(t)φ̂(t) = (f̂ φ̂)(t).

In the following we take A = Cn for some positive integer n.

We shall denote the Banach algebra norm in A by ‖ ‖A, the innerprod-
uct of z and w by 〈z, w〉 and the norm in A induced by the innerproduct
by ‖ ‖H , i.e., for z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn) ∈ Cn,

‖z‖H =
( n∑

i=1

|zi|2
)1/2

〈z, w〉 =
n∑

i=1

ziw̄i

‖z‖A = max
1≤i≤n

(|zi|).

If f ∈ L2(A) we denote (
∫
R
‖f(x)‖2

H dm(x))1/2 by ‖f‖H and
(
∫
R
‖f(x)‖2

A dm(x))1/2 by ‖f‖A or ‖f‖2.
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Definition 2.15. For f, g ∈ L2(A) we define an innerproduct

(4) 〈f, g〉 =
∫
R

〈f(x), g(x)〉 dm(x).

Theorem 2.16. L2(A) is a Hilbert space under the innerproduct (4).

Proof. The innerproduct is well defined since∫
R

|〈f(x), g(x)〉| dm(x) ≤
∫
R

‖f(x)‖H‖g(x)‖H dm(x)

≤
( ∫

R

‖f(x)‖2
H dm(x)

)1/2

·
( ∫

R

‖g(x)‖2
H dm(x)

)1/2

≤ c2
(∫

R

‖f(x)‖2
A dm(x)

)1/2

·
( ∫

R

‖g(x)‖2
A dm(x)

)1/2

(where ‖a‖H ≤ c‖a‖A for all a ∈ A)

≤ c2‖f‖2‖g‖2

<∞.

It is easy to verify that L2(A) is an innerproduct space with respect
to the innerproduct given by (4). Since L2(A) with ‖ ‖A is complete,
see [19], and since ‖ ‖A and ‖ ‖H are equivalent in A, it is easy to see
that L2(A) is a Hilbert space with respect to the innerproduct given
by (4).

Lemma 2.17. If f ∈ L1(A), then

(i)
∫

E
〈f(x), y〉 dx = 〈∫

E
f(x) dx, y〉 for all y ∈ A

(ii) 〈y, ∫
E
f(x) dx〉 =

∫
E
〈y, f(x)〉 dx for all y ∈ A
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for any Borel set E(⊆ R) of finite measure.

Proof. We can easily prove (i) for any characteristic function of a
measurable subset of finite measure. Since any simple Bochner inte-
grable function is a finite linear combination of characteristic functions,
and, since innerproduct is linear in the first variable, we get (i) for any
simple Bochner integral function. If f is any Bochner integrable func-
tion, then there exists a sequence (fn) of simple Bochner integrable
functions such that

fn −→ f a.e. and
∫

E

fn −→
∫

E

f.

Using the continuity of the innerproduct, we can get (i). Similarly (ii)
can be proved.

Lemma 2.18. If f ∈ L1(A) ∩ L2(A), then ‖f‖H = ‖f̂‖H .

Proof. Let g(x) = 〈f, f−x〉 for all x ∈ R. Then g : R → C and

g(x) =
∫
R

〈f(y), f(x+ y)〉 dm(y) ∀x ∈ R.

We first note that, as in the classical case, x → f−x is uniformly con-
tinuous from R to L2(A) and using the continuity of the innerproduct
we see that g is continuous on R. Now

|g(x)| ≤
∫
R

|〈f(y), f(x+ y)〉| dm(y)

≤
∫
R

‖f(y)‖H‖f(x+ y)‖H dm(y)

≤ c2
∫
R

‖f(y)‖A‖f(x+ y)‖A dm(y)

≤ c2‖f‖2
2,

using Holder’s inequality and the fact that ‖f‖2 = ‖f−x‖2. Thus g is
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bounded. As g is continuous, it is Borel measurable. Moreover,

∫
R

|g(x)| dx =
∫
R

∣∣∣∣
∫
R

〈f(y), f(x+ y)〉 dm(y)
∣∣∣∣ dm(x)

≤
∫
R

∫
R

|〈f(y), f(x+ y)〉| dm(y) dm(x)

≤
∫
R

∫
R

‖f(y)‖H‖f(x+ y)‖H dm(y) dm(x)

≤ c2‖f‖2
1,

by Fubini’s theorem.

So we get g ∈ L1(R). Using the classical techniques [16] we can get

lim
λ→0

(g ∗ hλ)(0) = g(0)(5)

and

lim
λ→0

(g ∗ hλ)(0) =
∫
R

ĝ(t) dm(t)(6)

where hλ(x) =
∫ ∞
−∞ e−λ|t|eitx dm(t), λ > 0.

Using the definition of g in (5), we get

(7) lim
λ→0

(g ∗ hλ)(0) = 〈f, f〉 = ‖f‖2
H .

Now, using Fubini’s theorem, Lemma 2.17 and dominated convergence
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theorem wherever necessary, we get

ĝ(t) =
∫
R

g(x)e−itx dm(x)

=
∫
R

( ∫
R

〈f(y), f(x+ y)〉 dm(y)
)
e−itx dm(x)

=
∫
R

( ∫
R

〈f(y)eity, f(x+ y)eit(x+y)〉 dm(x)
)
dm(y)

= lim
n→∞

∫ n

−n

lim
k→∞

( ∫ k

−k

〈f(y)eity, f(x+ y)eit(x+y)〉 dm(x)
)
dm(y)

= lim
n→∞

∫ n

−n

lim
k→∞

(
〈f(y)eity,

∫ k

−k

f(x+ y)eit(x+y) dm(x)〉
)
dm(y)

= lim
n→∞

∫ n

−n

(
〈f(y)eity, lim

k→∞

∫ k

−k

f(x+ y)eit(x+y) dm(x)〉
)
dm(y)

= lim
n→∞

∫ n

−n

〈f(y)eity, f̂(−t)〉 dm(y)

= ‖f̂(−t)‖2
H .

Now (6) gives

(8) lim
λ→0

g ∗ hλ(0) = ‖f̂‖2
H ,

(7) and (8) together imply ‖f‖2
H = ‖f̂‖2

H .

Lemma 2.19. If f ∈ L1(A)∩L2(A), then ˆ̂
f = f̃ where f̃(x) = f(−x)

for all x ∈ R.

Proof. If f ∈ L1(A)∩L2(A), then for any continuous linear functional
Λ on A, Λ · f ∈ L1(R)∩L2(R) and by classical Plancherel theorem on

L2(R) we get (Λ ◦ f)∼ = (Λ ◦ f)
∧
∧. By repeated application of Lemma

2.13, we get Λ ◦ f̃ = Λ ◦ ˆ̂
f . Since Λ is an arbitrary continuous linear

functional on A, we get f̃ = ˆ̂
f .

Theorem 2.20. To each f ∈ L2(A) we assign f̂ ∈ L2(A) such that
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(i) If f ∈ L1(A) ∩ L2(A) then ‖f‖H = ‖f̂‖H .

(ii) f → f̂ is a Hilbert space isomorphism of L2(A) onto L2(A).

Proof. (i) follows from Lemma 2.18.

Let f ∈ L2(A) and fn = χ[−n,n]f for all n where χ[−n,n] denotes the
characteristic function on [−n, n]. it is clear that (fn) ∈ L1(A)∩L2(A)
and ‖fn − f‖A → 0 as n → ∞. Since the norms are equivalent we
get ‖fn − f‖H → 0 as n → ∞. By (i) ‖f̂n‖H = ‖fn‖H . Since (fn) is
Cauchy with respect to ‖ ‖H we get that (f̂n) is Cauchy with respect
to ‖ ‖H and therefore with respect to ‖ ‖A. Since L2(A) is complete
(f̂n) converges in L2(A), say, to f̂ with respect to ‖ ‖A and therefore
with respect to ‖ ‖H . Moreover,

(9) ‖f̂‖H = lim
n→∞

‖f̂n‖H = lim
n→∞

‖fn‖H = ‖f‖H .

Now using Lemma 2.19 and the continuity of Fourier transform, we
can obtain ˆ̂

f = f̃ for any f ∈ L2(A) and this implies that the mapping
f → f̂ from L2(A) to L2(A) is onto.

3. The Boehmian spaces B(L2(A),∆) and B(L2(A), ∆̂). We
take A = Cn for some n. Let G = L2(A) and S = D(A). For f ∈ G,
g ∈ S, we define f ∗ g as in Theorem 2.7. We now obtain a number of
preliminary results for the construction of our Boehmian spaces.

Lemma 3.1. (i) If g1, g2 ∈ S, then g1 ∗ g2 ∈ S.

(ii) If f, g ∈ G and h ∈ S, then (f + g) ∗ h = f ∗ h+ g ∗ h.
(iii) f ∗ g = g ∗ f for all f, g ∈ S.

(iv) if f ∈ G, g, h ∈ S, then (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. Proofs of (i) (iv) are simple analogues of the classical cases
and so we prefer to omit them.

Definition 3.2. A sequence of A-valued functions (δn) ∈ S is said
to be in ∆ if (i)

∫
R
δn(x) dm(x) = e.
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(ii)
∫
R
‖δn(x)‖ dm(x) ≤M for all n for some M > 0 and

(iii) supp δn → 0 as n→ ∞.

Theorem 3.3. Let f, g ∈ G and (δi) ∈ ∆ be such that f ∗ δi = g ∗ δi
for all i = 1, 2. Then f = g in L2(A).

Proof. We first claim that f ∗ δi → f in L2(A). Let supp δi ⊆ K for
all i. Consider

‖f ∗ δi − f‖2
2 =

∫
R

∥∥∥∥
∫

K

(f(x− y) − f(x))δi(y) dm(y)
∥∥∥∥

2

dm(x)

≤
∫
R

( ∫
K

‖f(x− y) − f(x)‖‖δi(y)‖ dm(y)
)2

dm(x).(10)

Let λ =
∫

K
‖δi(y)‖ dm(y) ≤ M and dµ(y) = (1/λ)‖δi(y)‖ dm(y). By

Jenson’s inequality (10) becomes

‖f ∗ δi − f‖2
2 ≤ λ

∫
R

( ∫
K

‖f(x− y) − f(x)‖2‖δi(y)‖ dm(y)
)
dm(x)

≤M

∫
K

‖δi(y)‖
(∫

R

‖f(x− y) − f(x)‖2dm(x)
)
dm(y).(11)

If f ∈ L2(A), the mapping y → fy where fy(x) = f(x− y) is uniformly
continuous from R → L2(A). Since supp δi → 0 as i → ∞, we choose
η > 0 such that supp δi ⊆ [−η, η] for large i and ‖y‖ < η ⇒ ‖fy − f‖ <
ε/M . So (11) becomes

‖f ∗ δi − f‖2
2 ≤M

∫
|y|<η

‖δi(y)‖‖fy − f‖2
2 dm(y)

≤ ε2/M

∫
|y|<η

‖δi(y)‖ dm(y)

< ε2 for large i.

In a similar manner, g ∗ δi → g in L2(A) as i→ ∞. The proof of the
theorem now follows by taking L2 limits in the equality f ∗ δi = g ∗ δi.
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Theorem 3.4. Let δ = (δ1, δ2, δ3, . . . ), ε = (ε1, ε2, ε3, . . . ) be in ∆.
Then δ ∗ ε = (δ1 ∗ ε1, δ2 ∗ ε2, δ3 ∗ ε3, . . . ) ∈ ∆.

Proof. we have (i)
∫
R
δi(x) dm(x) =

∫
R
εi(x) dm(x) = e for all i.

(ii)
∫
R
‖δi(x)‖ dm(x) ≤ M1,

∫
R
‖εi(x)‖ dm(x) ≤ M2, for all i for

some M1,M2 > 0.

(iii) supp δi → 0, supp εi → 0 as i→ ∞.

We first prove that
∫
R
δi ∗ εi(x) dm(x) = e for all i.

Let supp δi ⊂ K1 for all i, supp εi ⊂ K2 for all i, Gi = supp δi∗εi so
that Gi ⊂ K1 +K2.∫

R

(δi ∗ εi)(x) dm(x) =
∫

Gi

(δi ∗ εi)(x) dm(x)

=
∫

Gi

( ∫
K1

δi(t)εi(x− t) dm(t)
)
dm(x)

=
∫

K1

( ∫
Gi

δi(t)εi(x− t) dm(x)
)
dm(t)

= e (by Fubini’s theorem).

Further,∫
R

‖δi∗εi(x)‖ dm(x) ≤
∫

Gi

‖δi∗εi(x)‖ dm(x)

≤
∫

Gi

∫
K1

‖δi(t)‖ ‖εi(x− t)‖ dm(t) dm(x)

≤
∫

K1

‖δi(t)‖
(∫

Gi

‖εi(x− t)‖ dm(x)
)
dm(t)

≤
∫

K1

‖δi(t)‖
(∫

K2

‖εi(s)‖ dm(s)
)
dm(t)

≤M1M2 ∀ i.
Since supp (δi∗εi) ⊆ supp δi+supp εi, we get supp (δi∗εi) → 0 as i→ ∞,
completing the proof of our theorem.

In view of Theorems 3.3 and 3.4, the family ∆ can be called as a
family of delta sequences in the sense of [4].
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We now verify that the convergence in L2(A) satisfies the following
conditions.

Theorem 3.5. (i) If limn→∞ fn = f in L2(A), then for δ ∈ S,
limn→∞ fn ∗ δ = f ∗ δ.

(ii) If limn→∞ fn = f in L2(A),then for (δn) ∈ ∆, limn→∞ fn ∗ δn =
f .

Proof. ‖fn ∗ δ − f ∗ δ‖2 = ‖(fn − f) ∗ δ‖2 ≤ ‖fn − f‖2‖δ‖1, by
Theorem 2.8, which tends to zero as n→ ∞. Consider ‖fn ∗δn−f‖2 ≤
‖fn −f‖2‖δn‖1 +‖f ∗ δn −f‖2, the first term on the right side tends to
zero as n→ ∞ by the property (ii) of delta sequences, and the second
term also tends to zero as observed in the proof of Theorem 3.3.

In view of Theorems 3.3, 3.4 and 3.5, we can construct the Boehmian
space in the canonical way using L2(A) and ∆, see [4]. This space
we denote by B(L2(A),∆). Convergence in this space is taken as δ-
convergence.

Theorem 3.6. The mapping f → [f ∗ δi/δi] where (δi) ∈ D(A) is a
continuous imbedding of L2(A) into B(L2(A),∆).

Proof. The mapping is one-to-one since [f ∗ δi/δi] = [g ∗ δi/δi] implies
(f ∗δi)∗δj = (g∗δi)∗δj for all i, j and, in particular, writing δi∗δi = δ2i
we have f ∗ δ2i = g ∗ δ2i . By applying Theorem 3.1, Theorem 3.4 and
Theorem 3.3, successively, we get f = g. We now show that this map
is continuous.

Let fn → 0 in L2(A). We claim that xn = [fn ∗ δi/δi] δ→ 0 in
B(L2(A),∆). We need only observe that xn ∗ δi = fn ∗ δi → 0 in L2(A)
for each i by Theorem 3.5.

Lemma 3.7. If f ∈ L2(A), g ∈ D(A), then (f ∗ g)∧ = f̂ ĝ.

Proof. Let fn → f in L2(A) where fn ∈ L1(A) ∩ L2(A). Such a se-
quence exists as we saw in the proof of Theorem 2.20. By Theorem 3.5,
fn ∗ g → f ∗ g in L2(A). So by Plancherel theorem (Theorem 2.20)
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(fn ∗ g) → (f ∗ g)∧ in L2(A). Thus, by Lemma 2.14,

(12) f̂nĝ −→ (f ∗ g)∧ in L2(A).

On the other hand, fn → f implies f̂n → f̂ in L2(A). Now, as in the
classical case, ĝ as a function of t is bounded. Hence,

(13) f̂nĝ −→ f̂ ĝ in L2(A).

Now (12) and (13) imply (f ∗ g)∧ = f̂ ĝ.

We shall now describe yet another Boehmian space which contains
L2(A). Let G = L2(A) and S1 = Ŝ = {δ̂/δ ∈ S} where S = D(A). For
f ∈ G, δ̂ ∈ S1, we define (fδ̂)(x) = f(x)δ̂(x) for all x ∈ R.

Lemma 3.8. If f ∈ G and δ̂ ∈ S1, then fδ̂ ∈ G.

Proof. We observe that fδ̂ is Borel measurable and

∫
R

‖fδ̂‖2
A dm(t) =

∫
R

‖f(t)‖2
A‖δ̂(t)‖2

A dm(t)

≤
∫
R

‖f(t)‖2
A‖δ‖2

1 dm(t),

since ∀ t ‖δ̂(t)‖A ≤ ‖δ‖1

= ‖f‖2
2‖δ‖2

1

<∞.

Hence fδ̂ ∈ G.

Lemma 3.9. The mapping (f, δ̂) → fδ̂ from G × S → G satisfies
the following properties.

(i) If δ̂1, δ̂2 ∈ S1, then δ̂1δ̂2 ∈ S1.

(ii) If f, g ∈ G and δ̂ ∈ S1, then (f + g)δ̂ = fδ̂ + gδ̂.

(iii) δ̂1δ̂2 = δ̂2δ̂1 for δ̂1, δ̂2 ∈ S.

(iv) If f ∈ G and δ̂, ε̂ ∈ S1, then (fδ̂)ε̂ = f(δ̂ε̂).
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Proof. Since A is a commutative Banach algebra, the required results
are immediate.

Definition 3.10. The set of all sequences (δ̂i) such that (δi) ∈ ∆ is
denoted by ∆̂.

Lemma 3.11. Let f, g ∈ G and (δ̂i) ∈ ∆̂ such that fδ̂i = gδ̂i for all
i. Then f = g in L2(A).

Proof. Since f ∈ L2(A), ˜̂
f also belongs to L2(A). As in the proof

of Theorem 3.3., ˜̂
f ∗ δi → ˜̂

f in L2(A) as i → ∞. Since the Plancherel

transform is continuous on L2(A), we get
ˆ̂̃
f δ̂i → ˆ̂̃

f . Equivalently, we
get fδ̂i → f . In a similar way, we get gδ̂i → g. The lemma now follows.

We note that, if (δ̂i), (êi) are two delta sequences in ∆̂ then, by
definition, (δi), (ei) are delta sequences in ∆. So, by Theorem 3.4,
(δi ∗ ei) ∈ ∆. Thus, by Lemma 3.7, (δ̂iêi) ∈ ∆̂. In view of the above
lemmas, the elements of ∆̂ can be called as delta sequences (in the
sense of [4]).

Now we shall verify that the convergence in G satisfies the following
conditions.

Lemma 3.12. (i) If fn → f in L2(A) and δ̂ ∈ S1, then fnδ̂ → fδ̂ in
L2(A).

(ii) If fn → f in L2(A) and (δ̂n) ∈ ∆̂, then fnδ̂n → f in L2(A).

Proof. (i) Since δ̂(t) as a function of t is bounded, we get the result.

(ii) follows by Plancherel Theorem 2.20 and Theorem 3.5(ii).

Lemma 3.13. The mapping

(14) ι : f −→
[
fδ̂i

δ̂i

]
, (δ̂i) ∈ ∆̂
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is a continuous imbedding of L2(A) into B(L2(A), ∆̂).

Proof. If f ∈ L2(A), we note that [fδ̂n/δ̂n] is a quotient sequence in
the sense of [4] as fδ̂nδ̂m = fδ̂mδ̂n. So [fδ̂n/δ̂n] belongs to B(L2(A), ∆̂).
This map ι is one-to-one since[

fδ̂n

δ̂n

]
=

[
gδ̂n

δ̂n

]

implies fδ̂nδ̂m = gδ̂mδ̂n, for all n,m. In particular, fδ2n = gδ2n for all
n. As usual, letting n→ ∞, we get f = g in L2(A).

We now claim that the map ι is continuous. Let fn → 0 in L2(A) as
n→ ∞. We claim that

xn =

[
fnδ̂i

δ̂i

]
δ−→ 0.

By Theorem 3.12, fnδ̂i → 0 in L2(A) as n→ ∞. Thus xn
δ−→ 0.

In view of the above lemmas, we see that B(L2(A), ∆̂) can be regarded
as a Boehmian space. We shall equip this with its usual δ-convergence.

4. Fourier transform.

Definition 4.1. Let x = [fn/φn] ∈ B(L2(A),∆). We define the
Fourier transform of x as [f̂n/φ̂n] ∈ B(L2(A), ∆̂) and denote it by x̂.

Remark 4.2. The Fourier transform is well defined. If x has two
representations, x = [fn/φn] = [gn/ξn], where fn, gn ∈ L2(A) and
(φn), (ξn) ∈ ∆, then fn ∗ ξm = gm ∗ φn. Taking the Plancherel
transform on both sides and using Lemma 3.7, we get f̂nξ̂m = ĝmφ̂n.
So [f̂n/φ̂n] = [ĝn/ξ̂n] ∈ B(L2(A), ∆̂).

Theorem 4.3. Let F : B(L2(A),∆) → B(L2(A), ∆̂) be defined by
F (x) = x̂. Then F is a continuous one-to-one map from B(L2(A),∆)
onto B(L2(A), ∆̂).
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Proof. Let (xn) δ→ 0 in B(L2(A),∆), say xn = [fn,i/φi]. (We can
take a common δ-sequence for the denominators of all xn’s, see, for
example, [4]).

We claim that x̂n = [f̂n,i/φ̂i]
δ→ 0 in B(L2(A), ∆̂). By hypothesis for

each fixed i as n → ∞, (fn,i) → 0 in L2(A) with respect to ‖ ‖2. So
for each fixed i as n → ∞, (fn,i) → 0 in L2(A) with respect to ‖ ‖H .
By Theorem 2.20, for each fixed i as n→ ∞, (f̂n,i) → 0 in L2(A) with
respect to ‖ ‖H and so, for each fixed i as n→ ∞, (f̂n,i) → 0 in L2(A)

with respect to ‖ ‖2. Thus x̂n
δ→ 0 in B(L2(A), ∆̂).

We now prove that the map F is one-to-one. Let x̂1 = x̂2. Then
[f̂n/φ̂n] = [ĝn/ξ̂n]. So f̂nξ̂m = ĝmφ̂n. By Lemma 3.7, we get
(fn ∗ ξm)∧ = (gm ∗ φn)∧. Since Plancherel transform is one-to-one,
it follows that fn ∗ξm = gm ∗φn. So we get x1 = x2. We claim that the
map F is onto. Since Plancherel transform is onto by Theorem 2.20
given y = [gn/ξn] in B(L2(A), ∆̂), we take x = [fn/φn] where f̂n = gn

and φ̂n = ξn. It can be easily verified that x ∈ B(L2(A),∆) and x̂ = y.

Lemma 4.4. If x1, x2 ∈ B(L2(A),∆), then

(i) (x̂1 + x̂2) = x̂1 + x̂2.

(ii) (λx)∧ = λx̂, λ ∈ C, where addition and multiplication are defined
as usual for Boehmians.

Proof. Results are immediate from the definitions.

From the above theorems we see that the Plancherel transform
is a one-to-one continuous linear mapping from B(L2(A),∆) onto
B(L2(A), ∆̂).

Remark 4.5. (i) f ∈ L2(A) can be identified with the element
x = [f ∗ δi/δi] ∈ B(L2(A),∆) where (δi) is any delta sequence in ∆. Its
Plancherel transform as a Boehmian is [(f ∗ δi)∧/δ̂i] = [f̂ δ̂i/δ̂i]. This
latter Boehmian is nothing but the identification of f̂ in B(L2(A), ∆̂).
So the Plancherel transform on B(L2(A),∆) is an extension of the
Plancherel transform on L2(A).
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(ii) If x = [fn/φn] ∈ B(L2(A),∆) and y = [gn/ξn], gn ∈ D(A),
ξn ∈ ∆, we can define x∗y = [fn∗gn/φn∗ξn]. In this case (x∗y)∧ = x̂ŷ
holds by Lemma 3.7.

5. As already observed, the Plancherel transform theory on L2(A)
developed here is an extension of the classical Plancherel theorem.
In the literature there are three types of Boehmian spaces, on which
the theory of Fourier transform is developed, viz., L1 Boehmians [6],
tempered Boehmians [5] and more general tempered Boehmians [8].
In all these cases the Fourier transform was defined as a classical
distribution. Since, in an arbitrary separable Banach algebra, division
does not make sense, we have chosen the natural approach to define
our Plancherel transform. However, the space L2(A), the space of
compactly supported [A : A] valued distributions belonging to [D(A) :
A], are all subspaces of B(L2(A),∆). Thus the space B(L2(A),∆) is
larger than L2(A). Moreover, in the classical case where A is replaced
by C, one can identify each element of B(L2(A),∆) as an element of
BT defined in [5] and also verify that the original definition of x̂ for
x ∈ BT coincides with our definition.

However these two definitions are qualitatively different (since there
is no natural way in which D′ can be identified as a subspace of
B(L2(A),∆)). Further, in the case of vector valued functions, the
classical technique in which the Fourier transform can be identified
as a distribution, no longer works.
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