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HYPERNORMAL FORMS FOR EQUILIBRIA OF
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ABSTRACT. The Poincare-Dulac-Birkhoff normal form
theorem determines how much a vector field can be simpli-
fied, depending uniquely on its linear part. Nevertheless, tak-
ing into account the nonlinear terms, it is possible to obtain
further simplifications in the classical normal form. In this pa-
per we define the hypernormal forms, which are the simplest
that we can achieve using C°°-conjugation.

In practice, the computation of a hypernormal form requires
the solution of some nonlinear equations. For this reason, we
define the pseudohypernormal form, which is not as general
as the hypernormal form, but its computation involves only
linear equations.

We characterize the hypernormal forms using the theory
of transformations based on the Lie transforms. As exam-
ples, we work out the two cases of codimension one linear
degeneracies: saddle-node and Hopf singularities, using the
method previously presented. Finally, in both examples, we
consider additional simplifications that can be obtained using
C*°-equivalence.

1. Introduction. The normal form theory is a powerful tool for the
analysis of local bifurcation problems near a nonhyperbolic equilibrium
point. The underlying idea in this theory is to use near-identity
transformations to remove, in the analytic expression of the vector
field, the terms that are inessential in the local dynamical behavior.

The normal form theorem determines how it is possible to simplify
the analytic expression of a vector field, taking uniquely into account
the linear part of the vector field. Our goal is to show how to obtain
further simplifications on the classical normal form, considering the
nonlinear terms of the vector field.

We start with a brief summary of the basic ideas of the normal form
theory. Consider the system

(1.1) i=f(z), zeKn"
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14 A. ALGABA, E. FREIRE AND E. GAMERO

where K = R or C, and f is a C* vector field. Suppose we have an
equilibrium at x = 0. Usually, we deal with Taylor expansions of the
vector field. For this reason, we will introduce the following notation:
J¥* f denotes the k-jet of f. Likewise, fix stands for the homogeneous
part of degree k of f, that is, fr = J*f — J*~1f. We can formally
write the system in the form

(1.2) a'c:A:L‘—i-ij(m),

where A = Df(0) is the Jacobian matrix at the origin and f; € H7, the
space of polynomial homogeneous vector fields of degree j, for j > 2.
Making the near-identity transformation

(1.3) = ¢(y) =y + Pe(y),

where k > 2 is fixed and Py is a homogeneous polynomial of degree £k,
we obtain

§=[Do(y)] " f((y))
= [T+ DyPi(y)] "' Ay + Pr(y))

(1.4) + 3 1+ DyPe(y)] iy + Pe(y))
Jj>2
=g(y) = Ay + Zgj(y)-

It is easy to show, see Guckenheimer and Holmes [14], that we have

Proposition 1.1.
9i(y) = fijly), forj=23,...,k—1,

and

9k(y) = f(y) — {Dy Pr(y)Ay — APy (y)}.

The expression of gp suggests the definition of the following linear
operator, called the homological operator:

L 1R — HP
P — L (P),
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where L{P(z) = D, P(z)Az — AP(z).

We consider a complementary subspace Cor L‘,? to the range Rang L‘,?
of the linear operator L;;‘, that is, H} = Rang L,‘:‘ @ Cor L;;‘. Thus, we
can write fi, = fI + f¢, where f; € Rang L#! and f{ € Cor Li. Then
there exists P, € Hj, such that

(1.5) L Py = ff.

In this way we obtain

(1.6) g = fr — L,?Pk = f € Cor L;?.

Taking £ = 2,3,..., we can achieve g; € Cor Lf for all 7 > 2. Now,

using a version of Borel’s theorem, the normal form theorem is obtained,
see, e.g., Vandervauwhede [18].

Theorem 1.2. There ezists a C*°-diffeomorphism ¢ verifying $(0) =
0, Dp(0) = I, such that the change of variables v = ¢(y) transforms
(1.2) into (1.4) where g; € Cor Lj‘, for all j > 2.

The choice of the complementary subspace Cor Lﬁ is not unique.
In Elphick et al. [10], a method to obtain a possible complementary
subspace is presented, by defining an adequate inner product in H}.

The normal form theorem determines classes of vector fields as simple
as possible, depending upon the linear part, which characterizes the
homological operator. The key of the problem of obtaining the normal
form of order k is to solve the homological equation (1.5). This linear
equation has, in general, a nonunique solution that will depend on
an arbitrary additive term belonging to Ker L;;‘. So, a number of
arbitrary constants will appear in the expression of the solution and,
consequently, in the normal form of order greater than k. These
constants can be used, depending on the form of the nonlinear terms,
to obtain further simplifications in the normal form, leading to the
concept of hypernormal forms.

Note the difference between the procedures of obtaining simplifica-
tions in the vector field; whereas the linear part of f determines the
simplifications expressed by the normal form theorem, in the hyper-
normal form we take into account the nonlinear terms of f in order to
obtain further reductions in the classical normal form.
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The utility of these hypernormal forms is evident when we analyze
bifurcation problems of codimension greater than those expressed by
the linear part; for instance, if we have some degeneracy in the nonlinear
terms.

The near-identity transformations leading to normal forms were in-
troduced by Poincare in the study of differential equations. Afterwards
they were used by Dulac and Lyapunov, and developed by Birkhoff.
At the end of the sixties, several authors, Hori, Garrido, Grobner,
Knapp, ..., presented an approach to the subject using Lie transforms,
although mainly devoted to celestial mechanic and Hamiltonian sys-
tems, see Chow and Hale [5], Lichtenberg and Lieberman [15]. The
improvements brought out by Deprit [8] provided a recursive proce-
dure, suitable to algebraic computation. In Takens [16], Ushiki [17],
Gamero et al. [11, 12, 13], the methods of Lie transforms were used to
obtain hypernormal forms for linear degeneracies of codimension less
than three. In the first two papers, the authors do not use the recur-
sive formulation of Deprit, which is used by the last ones to obtain
algorithms specifically adapted to the symbolic computation.

The advantage of the recursive procedure based on the Lie transforms
is that we have a precise management of the effect of the change (1.3)
in the terms of order greater than k. Moreover, the method of the Lie
transforms is not only useful to perform changes of variables, it will also
be of great interest in the theoretical analysis of hypernormal forms.

Ushiki [17] was the first author to obtain explicitly hypernormal
forms. Nevertheless, the method used in the quoted work (revised
with more details in Chua and Kokubu [6]) requires the resolution of
a number of linear ordinary differential equations and does not seem
to be computationally effective. In fact, the hypernormal forms were
obtained only up to lower degree. Using a different approach, Baider
and Sanders [4] have obtained hypernormal forms up to an arbitrary
order for the Takens-Bogdanov bifurcation in some particular cases.

Using the procedure presented in the present paper, we have obtained
hypernormal forms up to an arbitrary order in the cases of saddle-node
and Hopf singularities, considered in Sections 3 and 4, and also for
Takens-Bogdanov and Hopf-zero singularities, see [1, 2].

Now we review the basic ideas of the transformation theory based
upon Lie transforms. Let us consider the system (1.1) and a vector
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field U(z) such that f,U € C* in a neighborhood of the origin and
f(0) =U(0) = 0. We will perform the change of variables z = u(y, ),
where u is the unique solution of the problem

(1.7 () = Ulu(ye)), w0 =y,

that is, u is the flow of the autonomous system generated by U.

The transformed vector field of f depends on the generator U in the
following form, see Chow and Hale [5],

(19) o0:2) = 1)+ S TN

n>1

where Ty (f) = [f,U] = Df -U — DU - f is the Lie product of f and U,
and T} (f) =Ty o .o Ty (f). This vector field verifies

%9 (4. ¢) = [g(w,¢), U )] = Tu(g(y,)),

(1.9) Oe
9(y,0) = f(y).

This characterization of the transformed vector field is the one used by
Ushiki [17]. Here we will use (1.8) in our analysis, taking ¢ = 1. The
transformed vector field corresponding to this value of ¢ is denoted by
g = U % xf. This procedure of doing changes of variables is general,
ie., given £k € N, £ > 1, and a local diffeomorphism ¢ such that
#(0) = 0, there exists a generator U such that J¥g = J*(U * *f),
where g = ¢ * f denotes the transformed vector field of f by ¢. In the
orientation preserving case, this statement is contained in Lemma 4.2
of Ashkenazi and Chow [3]. In the orientation reversing case, it is easily
obtained in a similar way but takes into account the complex domain.

This paper is organized as follows. In Section 2 we define the hyper-
normal form of order k for a given vector field by induction. To obtain
a hypernormal form, it is necessary to solve some nonlinear equations.
For this reason, we introduce the concept of pseudohypernormal form,
which does not contain all the possible simplifications but is applicable
in practice because it only involves linear equations.

In Theorem 2.3 we characterize the pseudohypernormal form of order
k, by defining an adequate subspace on Cor L‘,;‘.
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We also consider in Section 2 the possibilities of obtaining further
simplifications in the pseudohypernormal form, which is done making
a linear transformation that commutes with the matrix of the linear
part of the vector field. We finish this section with Proposition 2.4,
useful to remove the terms of order greater than k that remain in the
vector field, when we achieve the hypernormal form of order k&, e.g., the
flat terms.

In Section 3 we analyze, as an application, the saddle-node singular-
ity. We obtain the same result as Takens [16] using C*°-conjugation,
and we show the improvements achieved by means of the use of C*°-
equivalence, that is, using, besides the near-identity transformation, a
reparametrization of the time depending on the state variables.

Finally, in Section 4, we present the simplest normal form, under
C>-conjugacy and C*°-equivalence, for a germ whose linear part has
a pair of pure imaginary eigenvalues +i. The hypernormal forms are
determined by the first nonzero coefficient in the radial and azimuthal
components. Several particular cases are considered, where we also give
the expressions of the hypernormal form coefficients.

2. Hypernormal form theory. As mentioned before, to give the
formal definition of hypernormal form up to a given order k for the
system (1.2), we will proceed by induction in k. We say that (1.2) is a
hypernormal form up to first order if A is put in Jordan normal form.

For k > 2, consider the set

k
X = {UE@H?:JI(U**J‘) =A,(Ux*xf); ECorLf,

(2.1) i=1
i=2,... k}

that corresponds to the generators of the changes of variables that
transforms (1.2) in normal form up to order k.

Let B; = {ujl, e ,u{j} be a basis of Cor Lj‘ for 2 < j < k. Then, for
each U € X, we can write the k-jet of the vector field transformed of
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f by U in the form
ko1

(2.2) THU 5f)(z) = Az + D> " hji(U)ud,

j=2i=1
where hj; : &y = K, 2 <j <k, 1 <<

Define My : Xy — N by

(2.3) My (U) = card {(j,i) € N*: hj;(U) = 0,2 < j < k,1 <4 <[5},
that is, My (U) is the number of vanishing coefficients in the k-degree
normal form corresponding to U.

As the range of the map My, is a finite set, there exists U € X, such
that

2.4 7) = .
(2.4) M (U) = max M;.(U)
If U verifies (2.4), we say that J*(U % xf) is a hypernormal form up to
order k. In other words, a hypernormal form is a normal form having
the maximum number of vanishing coefficients.

Notice that, if J k(f] * #f) is a hypernormal form up to order k, it
is not true that, for 2 < j < k, jj(U % xf) is a hypernormal form up
to order j, because M;(J7(U)) # maxyex; M;(U) in general. For
instance, in the normal form in cylindrical coordinates for the Hopf-
zero singularity, see [2], the simplifications in the higher order terms
are more convenient that those achieved in the azimuthal component.
Thus, in this particular case, a truncated hypernormal form cannot
contain the maximum number of simplifications. A similar comment
holds in the case of the Hopf-Hopf singularity.

In the following, we present a recursive procedure to obtain hyper-
normal forms, with the following feature: if we truncate a hypernormal
form of order k to an order j < k, we will obtain a hypernormal form
up to order j.

Assume that the system (1.2) has been put in hypernormal form up

to order k — 1. Using (1.8), we can write the transformed vector field
of f by means of U in the form

f*(U):U**f:f_FZ(TITJ;ﬁ
(2.5) et !

= F+ LU+ 50101+ 1, UL UL U 4+
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In order to leave unalterated the hypernormal form up to order
k — 1, we require J*~1[f,U] = 0. This assumption has the following
consequences:

Lemma 2.1. Assume that the vector field f and the generator U
satisfy JE1[f,U] = 0, and denote by U, = J'U the linear part of U.
Then

(2.6)
jkflf*(U) _ jkflf,
(2.7)
(f*(U))k:fk+[faU]k+ZWa ZfUli—éOa
= (n+1)!
(2.8)

f* Ok = fe+[f,Ulx, ifUL=0.

Remark 1. Equality (2.6) corresponds to Lemma 4.6 of Chua and
Kokubu [6].

Remark 2. In our approach the keys are (2.7) and (2.8) which permit
us to manage algebraically the k-degree terms. In Ushiki [17] and
Chua and Kokubu [6], these terms are characterized by means of linear
ordinary differential equations, see (1.9). Equation (2.8) shows that,
taking U with zero linear part, the k-degree terms of the transformed
vector field can be easily obtained, because we avoid the infinite series
in (2.5).

Proof. Equation (2.6) is easily obtained from (2.5) using that, if
P e My and Q € H}, then [P, Q| € H,; ;. To prove (2.7) and (2.8),

J
we observe that the homogeneous terms of order k in f*(U) are:

(P = fo+ 1,0 + {15, UL Ule + (17,00, 0), Uk + -

= S+ U U+ [, U U]+ 1, Uk U] U]
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In fact,
(2.9)

(f (U k—fk+z Y= fo+ U Z UACLY ))-

n>1 n+1

In the above expression, the generator U appears nonhnearly in the
terms of the last sum. Nevertheless, if we take Uy = 0, that is, taking
U with zero linear part, we have Ty;, = 0 and the quoted sum would
not appear. In this case, the effect of U in (f*(U))j is linear as shown
n (2.8). O

Due to (2.8), we will perform a change of variables corresponding to
the generator U = V + Uy, where
k-1
(210) VeW, = {V e@r: TV = 0} and Uy, € H}.

i=1
Observe that Wj, is a subspace of @F [ HP.

We have J*~1[f,V + U] = 0, and so the change leaves the terms of
order less than k—1 unalterated. Decompose H} = Rang L,‘;‘@Cor L,’;‘,
and consider

(2.11) By ={v1,...,v,} and Bz ={ui,...,u,},
basis of Rang Lﬁ and Cor Lﬁ, respectively. Then we can write
(2.12) (FH Uk = kror + -+ Bpeon + haun + - + By ug,

where the coefficients depend on U and consequently depend on V' and
Ug.

However, the coeflicients hj;, j =1,...,l;, do not depend on Uy.

Lemma 2.2. The projection of f*(U) onto CorL,’;l s independent
Of Uk .

Proof. Using that U = V + Uy, where V € W, we can write (2.7) in
the form

(f Ok = fi + [f, V] + [f1, U]
(2.13) (17, ([f, V1K) + T3, ([f1, Uk]))
+ Z - (n+ 1§J!

)

n>1
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where U1 = JY(U) = JY(V) = V; is the linear part of the generator. It
is enough to show that all the terms containing U belong to Rang LkA.
We have [f1, U] = —L{(Ux) € Rang Li. Using U; = Vi, we obtain
Ty, (f1) = [f1,Vi] = 0 because V' € Wy. Using Jacobi’s identity, we
deduce

Tv, ([f1, Uk]) = [[f1, Uk), U] = —[[Uk, U1}, f1] — [[Us, f1], U]
= —[[Ux, U1], f1] € Rang Lj.

Analogously, it can be proved that T3}, ([f1,Ux]) € Rang L for n > 2.
]

Using this lemma, we can write
(2.14)
(FHO)k = k(U)o + -+« + ki (U)o, + P (V)ur + -+ + by, (V)

where
ki W@ty — K, 1<i<ry,

hj : Wi, — K, 1<j<l.
At this point, we make a near-identity transformation in order to
annihilate the part of f*(U) belonging to Rang L#*. This is done taking

Vi € H}, depending on U € Wy ® H}, adequately. In this way, we
obtain a transformed vector field g = Vj, * x(f*(U)) such that

(2.15) gk =gk (V) =ha(V)uy + -+ + by, (V)
with V e W;.
We define
N W, — N

Ni(V)=card{i e N: h;(V) =0,1 <7 <[}

Using that the range of N is finite, we can conclude that there exists
V' € Wy such that

(2.16) Ni(V) = max Ni(V).

VeWy

If V € W) verifies (2.16), g(V) is a hypernormal form of f up to order
k.
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Note that h;(V), 1 < j < [i, depend nonlinearly on V' € W, but if
we take V with zero linear part, that is, V€ Wy N 691»:217{?, the above
functions depend linearly on V, for 1 < j < I, see (2.8).

In practice, it is difficult to obtain the expressions for the above
scalar functions. Moreover, even in the case that we could obtain these
expressions, it is complicated to compute V that verifies (2.16), due to
the nonlinearity of these expressions.

For this reason, our approach in the applications will not be as general
as the one previously presented. In fact, we will only consider the linear
effect of the generator, and the obtained simplified normal form will be
called pseudohypernormal form. We proceed, as above, by induction.
The pseudohypernormal form of first order agrees with the hypernormal
form of this order.

Consider k > 2, and suppose that (1.2) has been put in pseudohy-
pernormal form of order £ — 1. Define the set V}, by

V, = {0}
and
(217) V={UcHy @ ---@Hr_,: T" ' f, U] =0} fork>3.

Obviously, Vy is a subspace of @f;;?—l?, and it is only determined by
jkflf'

In addition, define the linear operator

Ly : Vi — HE,
Li(0) = [, Ul
The set
(2.18) Cr = {h € Cor LkA . there exists U € Vi

such that Lx(U) +h € Rang L },
is a subspace of Cor L‘,;‘. Consequently, Cor Lf may be decomposed as

(2.19) Cor Ly} = Cy @ Dy,
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where Dy, is a complementary subspace of C, in Cor Lﬁ. Then we can
write

(2.20) H} = Rang Li ® Cy @ Dy

We say that (1.2) is put in pseudohypernormal form of order k if
ft € Di. In the next theorem, we show that it is always possible
to reduce the vector field (1.2) to a pseudohypernormal form of order
k:

Theorem 2.3. There exists a mear-identity transformation that
carries over the vector field (1.2) to (1.4), where

gi:fia fOTlSl'Sk—].,
gk € Dg.

Proof. We consider the generator U = V + Uy, where V € Vj, and
Uy € H}, and denote the transformed vector field of f by g = U * xf.

From Lemma 2.1, using that J*~!([f,U]) = 0 and J'U = 0, we
obtain that g; = f; for 1 < j <k —1, and

(2'21) gk::fk+[va]k:fk+[f17Uk]+[Jk_1f7V]k-

On the other hand, we can write

(2.22) fe=Ffa+ 1 + 1)

where f} € Rang L#, f2 € C; and f € Dy, see (2.20).

As f} € Ck, there exists V € Vg such that Li(V) + fZ = fx, with
fr € Rang L?. Using that f,i + fr € Rang LkA, we can take U € H}}
such that L (Ug) = fi + fr-

In such a manner, we obtain g, = f € D. u]

Remark 1. The (k — 1)-set of f determines the structure of Dy and,
therefore, characterizes the pseudohypernormal form of order k.
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Remark 2. Theorem 1.2 of the normal form affirms that if two vector
fields f, g verify f(0) = g(0) = 0 and J'f = J'g = A, that is, they
have the same linear part, then the vector fields can be transformed
into others f*,g* such that f;,g; € CorL#. On the other hand,
Theorem 2.3 of the pseudohypernormal form affirms that if two vector
fields f, g verify f(0) = g(0) = 0 and J*~1f = J¥~1g, then they can
be transformed into others f*, g* such that f}, g; € Dk.

The proof of Theorem 2.3 provides a method to obtain a pseudohy-
pernormal form for a given vector field that requires only the resolution
of linear equations. In general, the pseudohypernormal form is not the
simplest one. Nevertheless, in some cases, we will be able to obtain fur-
ther simplifications by considering the nonlinear effect of a special kind
of generator that is easily handled. For that, we will use the k-jet of the
vector field f, instead of the (k — 1)-jet, to obtain new simplifications
in the k-degree terms of the pseudohypernormal form.

Consider a generator Uy (z) € HY such that J* 1[f,U;] = 0. In this
way, the terms of order less than k£ — 1 remain unalterated. In other
words, if we denote the transformed vector field by h = Uy * xf =
hi+--+hy+---,then h; = f for 1 <i<k—1.

It is easy to check that, if U;(z) = Bz, then the change of variables
is given by = = ePy, and so hi(y) = e B fir.(ePy).

For our convenience, we assume that the basis By of Cor L;;‘ given
in (2.11) has been chosen such that it contains a basis of Dy
{ul, e ,udk}.

Applying Theorem 2.3, we obtain a pseudohypernormal form g of
order k. So, g; = h; = f; for 1 < ¢ < k — 1. Moreover, g is the
projection of hy onto Dj and can be expressed as:

(2.23) gk = gk,(Ul) = ll(Ul)ul + -+ ldk (Ul)udk € Dy..

Consider the set Up = {U1 € H} : J*'[f,U1] = 0} and the
transformation N : Uy — N, defined by

(2.24) N(Ul):Cal‘d{iEN:li(Ul):O,lSiSdk}.

Obviously, there exists U; € Uy, such that

(2.25) Ni(Uy) = max N (Uy).

Ui €Uy
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The transformed vector field corresponding to the generator U is called
a reduced pseudohypernormal form.

Although several kinds of normal forms defined before (hypernormal,
pseudohypernormal and reduced pseudohypernormal) do not agree in
general, in some specific cases that we have analyzed, corresponding
to saddle-node, Hopf, Takens-Bogdanov, Hopf-zero, the three ones
yield the maximum simplification. The most cumbersome part of the
analysis in these cases is to check that the local expression reached of
a vector field is the simplest one.

In other cases, e.g., the triple-zero linear degeneracy, the reduced
pseudohypernormal form is simpler than the pseudohypernormal form.
The reason is that, in this case, we can use a linear generator that
leaves unalterated the linear part and allow us to simplify some higher
order terms.

So far, we have been concerned about formal hypernormal forms.
We end this section with a proposition, where we obtain a sufficient
condition which enables us to remove those higher order terms that
are not essential in the local behavior. In particular, it will be useful
to annihilate the co-flat terms, to be sure that the hypernormal form
obtained is convergent in some neighborhood of the origin.

Proposition 2.4. Consider the system
(2.26) = f(z,e) = g(z) +eh(z), ze€K" €K,

with g,h € C* in a neighborhood of the origin V. Assume that there
exists a vector field U € C* in V x K such that

(2.27) h(z) + [f(z,e),U(z,e)] =0, ze€V, ecK.
Then the system (2.26) is C*-conjugate to

(2.28) z = g(x).

Proof. We consider the system

(2.29) <5§> = F(z,¢) = (f(%’£)> .
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If we denote the transformation of coordinates corresponding to the
generator V (z,§) = (U(f’5)>, where U (z, §) verifies (2.27), by

(2'30) T = ul(y,C,E), §= Uz(y,C,é‘),
then we have

%(yaﬁ,s) =U(u1(y, ¢, ¢€),u2(y,¢,€))s %(%C,E) —1,

’Ltl(y, Cv 0) =Y u2 (y7 Cv 0) = C
Therefore, £ =us(y, (,e) =(+e, and (Quy /0¢)(y, (,e)=U(u1(y, ¢, €),(+
6))7 Ul(y, Ca 0) =Y.

The transformed vector field of (2.29) by the change of variables
(2.30), G, satisfies the following Cauchy problem

oG

52 W:69) = [G(1:¢.€), V(: O),

G(y,¢,0) = F(y, ().

By hypothesis, U verifies (2.27), hence the vector field F(y,() also
satisfies the previous Cauchy problem. Then G(y,(,¢) = F(y, ().

Therefore, the above change of variables carries the vector field (2.29)
into itself. Consequently, we obtain

(2.31) (Dyui(y, ¢,€)) " flur(y, € €), ¢ +¢) = f(y,€)

for any y and ¢ in a neighborhood of the origin in K™ and K,
respectively, and € € K.

In particular, the transformation z = wuy(y,0,¢) transforms the
system (2.26) into

(2.32) § = (Dyui(y,0,¢)) " f(ur(y,0,¢),6) = g(y). O
3. Saddle-node singularity. In this section we apply the above

ideas and results to the easiest case of nonhyperbolicity: the saddle-
node bifurcation. Theorem 3.1 of the hypernormal form was previously
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obtained by Takens [16]. In Theorem 3.2 we will also consider the
effect of the reparametrization of the time, C*°-equivalence, which will
provide further simplifications.

We begin with the scalar field
(3.1) &= f(x),
where f € C* in a neighborhood of the origin in R. We assume
f(0)=f'(0) =--- = fr=D(0) = 0, and £ (0) # 0. Consequently, for
any N € N, N > r, the system may be written in the form

(32) I':arIT+ar+1$T+1+"'+aNCUN+O(|$|N+1),

with «,. # 0, or equivalently,
N

(3.3) =Y fi(z)+ON +1),
j=r

where f;(z) = a;jz’ for j > r.

Theorem 3.1. The system (3.2), with a,. # 0, is C*-conjugate to

(3.4) & =aiz" + a5, ¥
where o = sig (o).

Proof. Firstly, we will show that
(3.5) & =arz" +ab, ¥+ h(z),

where o = sig(a,) and h(z) = O(|z|N¥+1), is a hypernormal form for
the system (3.2) up to order N.

For that, we consider the generator U(z) = az* with k > 2, which
has null linear part. Since J"T*7[f,U] = 0, using Lemma 2.1 we
deduce that the transformed scalar field f* = U * xf verifies [} = f;
for j <r+k—2, and

(3.6) fliko1 = frano1 +1f, Ulrgr—1 = (g1 + (r — k)apa)a™ 71
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Therefore, in the case k # r, we can choose a such that f} , ; =0.
If we proceed with the change for f with & = 2, subsequently on
the transformed field with the change for & = 3, and so on, until
k= N —r+1, except for £k = r, we get a field C*°-conjugate to
the first one, given by

(3.7) F(@) = ayz” + dor_12? 7+ O(Jz|V ).
Finally, taking a generator U(z) = ax and using (2.5), we obtain

f*(:z:) — area(r—l)mr + dQT_leZa(r—l)l,Qr—l + 0(|I|N+1)

3.8
(38) =sig (a)z" + aj,_12* " + O(Jz| V1),

choosing a adequately.

To finish the proof, we apply Proposition 2.4 to annihilate the term
h(z) that appears in (3.5). Note that h € C* in a neighborhood
of the origin and JVh(z) = 0, with N arbitrarily large. We define
f(z,e) = arz”™ + a3, 12*"~1 + eh(z). We need to prove that the
equation (2.27) has some solution. This equation becomes

(3.9) [a: tap @l s@] 9 yiae)

x| Ox
. — h(x W (x h(x
_ [(r —1ag, _jx" % — Er% + 5%] V(z,e) — % =0,

where U(z,e) = 2"V (x,e). We note that (3.9) agrees with the first
equation of [16, p. 177]. So, taking N > 2r and ¢ in a compact subset
K, we can be sure that there exists a unique solution V(z,¢), defined
for z in a neighborhood of the origin and ¢ € K, of this equation such
that V(0,¢) = 0. O

The hypernormal form under C*°-equivalence, used by Dumortier et
al. [9], is the following:

Theorem 3.2. The scalar field (3.2), with a, # 0, is C* -equivalent
to

(3.10) z' = sig (a,)z".
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Proof. Firstly, we use Theorem 3.1 to transform (3.2) into (3.4).
Next, we reparametrize the time by (d7'/dt) = (1/P(z)), where P(x) =
1 — (a5, ,/sig(a;))z"~! (note that P(z) is locally positive). In this
way, we obtain the system

,  dx

(1) o'=_o=

g(z) = sig (a)z" + bagy_12°" "2 + O(|z|VF1).
Finally, using the procedure carried out in the proof of Theorem 3.1,
we obtain the field

(3.12) 9" (z) = sig (a,)z". O

4. Hopf singularity. In this last section we will use the formula-
tion of the changes of variables in terms of the Lie transforms to obtain
theoretical results about the hypernormal form for the Hopf bifurca-
tion, which is determined by the knowledge of the first nonvanishing
coefficients of the normal form (see Theorem 4.3). Also, in subsection
4.2, we analyze further simplifications that can be achieved not only by
coordinate transformations, but by using additionally a reparametriza-
tion of the time depending on the state variables, that is, by means of
the use of C*°-equivalence.

We start this section with a review of the basic ideas of the normal
form for the Hopf bifurcation. Let us consider a system

(4.1)

where F,G € C®(V,R), V is a neighborhood of the origin in R?,
with an equilibrium point at the origin (F(0,0) = G(0,0) = 0) with
eigenvalues +i. It is usual to introduce complex variables by

(4.2) z =+ 1y, zZ=uz—1y.

The system (4.1) becomes

(4.3)
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where P(z,2) = F(((z + 2)/2), ((z — 2)/2i)) +iG(((z + 2)/2), (= —
z)/2i)) € C*(V*; C) in some neighborhood V* of the origin in C2. It
is easy to show that P(z,%) =iz + O(|z, z|?).

We consider the vector spaces over R (not over C) given by

(4.4) ﬁk_{(igi:%):PeH}c(@)}
. :{ > qu<zpozq>+,4—m<zp0zq>:quec}’

p,gEN:p+g=Fk

N

where H},(C?) is the space of homogeneous polynomials of degree k in
the variables z,z. The Lie product in complex coordinates verifies the
following property:

Lemma 4.1. Assume that (f;) € ﬁj, (%) € Hi. Then
(7): (%)) € v

Proof. It is enough to note that
\ (UN| = (U LU-Uf=Usf
f ’ U N fo"_f’U*sz*sz

= (%) Eﬁj.ﬁ.k_l. O

The structure of the vector fields, vector spaces and Lie product
suggest to define the ones corresponding to the first component. So
we deal with

(4.5)

(4.6) 2= P(z,2),

instead of (4.3), having in mind that the second component is the
complex conjugate of the first one. We define the spaces

(4.7) Hi = { Z Apg2Pzl i Apg € C},

pta=k
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with the following basis:

(4.8) {upg = P28, vpy = 12P2% 1 p+ ¢ = k}.
Finally, the Lie product is given by

(4.9) [f,Ul = £.U + fU ~ U.f - Usf,

and so, if f € H;, U € Hy, then [f,U] € H;ir_1. The homological
operator, which determines the normal form, is

(4.10) Ly : Hy — Hy, Li(U) = [U,iz].
It is easy to check that

(4.11) Li(upg) = (P — 1 = q)vpg, Ly (vpq) = (g +1 = p)upg,

for all p,g € N, p+ ¢ = k. From this, it is obtained that {upq, Upq :
p—1—q+#0,p+ q =k} is a basis of Rang L, the range of the linear
operator Li. Also, Gy = {upq,Vpq : p —1—q¢=0,p+¢g =k} is a
complementary subspace of Rang Ly, in Hy. Note that G, = Ker Ly, is
the orthogonal complementary subspace defined in Elphick et al. [10],
and Gom = {0}, Gams1 = {az(22)™ + Biz(22)™ : o, B € R}.

Hence it is easily obtained that a normal form for (4.6) is

(4.12) z= Z faj+1(2,2) = (0,1)G1 + Z(a2j+17ﬂ2j+1)azj+17
j=0

i=1

where we have denoted
(4.13)
(Oé, /6)G2m+1 = O5'U'm4r1,m + ﬁvarl,m = az(zf)m + BiZ(ZZ)m € G2m+17

for a, 8 € R.

It is usual to express the above normal form in polar coordinates
x=rcosf, y=rsinb:

(414) r = Z a2j+1r2j+1, 0 =1+ Z,sz+1’r‘2j.
j=1

j=1
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Now we present some previous definitions and results. The following
operators are useful to obtain the coefficients of the normal form:

2m—+1 2m+1
H1 : Gam41 — R, defined by H1 (a, B)

2m+1 2m+1
H2 : Gogmy1 — R, defined by H2 (o, B)Gamt1 = B.

Gamy1 — &

In the next lemma we summarize some properties of the Lie product
and the vector subspaces associated with the homological operator.

Lemma 4.2. Let us consider k,l,m € N. Then
(a) [Rang Lk, G2m+1] € Rang Lom vk
(b) [Gat1, Gom+1] € Gargomy1.

(201121f+{ € Goy1 and U € Gapay verifies ?kH(U) = 0, then
(s o) =o.

Proof. To prove (a), we consider gomi1 € Gomi1 = Ker Loy i1,
hi € RangLy. Then hy = [Ug, f1] where U, € Hj. Using Jacobi’s
identity, we obtain

[92m+1, bi] = —[Uk, [f1, g2m+1]] = [f1, [92m+1, Ukl]
= —[f1,[92m+1, Ux]] € Rang Lo 4.

The rest of the proof is based on the following equality:

[(0‘7 /B)GZH»l’ (A’ B)G2m+l] = [aul-&-l,l + Bois1, Aum-i-l,m + B'Um-i-l,m]
= 2(l — m)AaU1+m+1’l+m
(415) + (2[14,8 - 2mBOé)’Ul+m+1’l+m.

From this, we can prove (b) easily, and taking A = 0, we deduce (c).
o

4.1. Hypernormal form under C*°-conjugation. Let us consider
N € N arbitrary. In our analysis we assume that the system (4.6) has
been put in normal form up to order 2N + 1. So this system can be



34 A. ALGABA, E. FREIRE AND E. GAMERO

written as

N
2=f(22) =) fay41+O2N +3)

=0

(4.16) N
= (0, 1), + ) _(a2j41,B2j41)Gs;4, + ON +3).

Jj=1

The principal result of this subsection is the following theorem, which
characterizes a hypernormal form up to order 2N + 1, using C*°-
conjugation, for the system (4.16) (and, therefore, for the system (4.1)).

Theorem 4.3. Let us consider the normal form (4.16) for the system
(4.6), and define r,s € N by

7 = min {j e{1,...,N}: Hjjﬂ(fzjﬂ) = Qgji1 # 0}7
(4.17)

§ = min {j €{1,...,N}: sz+1(f2j+1) = Baj41 # 0},

that is, o, and Bs are the first nonvanishing coefficients of the normal
form (4.16). Then f is C*°-conjugate to

N
(418) f* = (07 1)G1 + Z(a§j+175;j+1)G2j+1 + O(2N + 3))
j=1

where we have the following possibilities:
(i) If s > r, then
(@) a3, =0 forj=1,...,N, j#r2r,
(b) a3, 41 = sig (a2r+1),
(c) B3j+1 =0 forj=1,... ,N.

(ii) If s = r, then
(a) a3;1y =0 forj=1,... ,N, j#r2r,

(b) a3, 1 = sig (@2ry1),
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(c) B3j11=0forj=1,... ,N,j#r.
(ii) If s < r, then

(a) i =0forj=1,...,r -1,
(b) ﬂ;j+1:0f07"j:1,... ,s — 1,
(

¢) Q319541 =0 or B5.15: 1 = 0 (only one of them vanish), for
j=1...,r—s,

(d) a3, 41 = sig (a2r+1),
(e) ajj =0forj=2r—s+1,... N, j #2r,
(f) B3jp1=0for j=r+1,...,N.

Moreover, the above are the maximum number of simplifications that
can be achieved using C* -conjugation.

Proof. First we consider the case s > 7. In this case the vector field
is

(4.19) f=hHh+forr1+-+ fang1 + O@2N +3),

where ag,11 = H?T+1(f2r+1) # 0. Applying item (b) of Lemma 4.2,
we obtain that the transformed vector field of (4.16) by the generator

(420) U= (A, B)G2m+1 € G2m+1, m>1,

is also in normal form up to order 2N + 1, that is, (f*)2j4+1 € G2j41
forall j=1,...,N.

As U € Gams1 = Ker Loyi1, we have [f1,U] = 0. Therefore,
[f,U] = [fars1 + ---,U], and so J**?m[f,U] = 0. Using that
JU =0, from (2.6) and (2.8), we obtain
j2r+2m(f*) — j2T+2mf,

forvomer = (f + [, UD)2rt2m+1 = forsom+1 + [fort1, U).

By (4.15), we get

(4.21)

2r4+2m—+1 "
H1 (f*) = azryomyr + 2(r —m)Aag, 11,

2r4+2m+1 N
H2 (f*) = Bartoms1 + 2rABori1 — 2mBagy 1.

(4.22)
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So, for m # r, it is possible to choose A, B in order to annihilate the
terms of order 2r + 2m + 1 in f*. In the case m = r, we can select B

such that T3 72" (f*) = 0.

In summary, using the generator (4.20), we leave the normal form
up to order 2r + 2m unalterated, and we annihilate the coefficients of
order 2r + 2m + 1. The above procedure holds for all values of m # r.
For m = r we can only annihilate [[2""*"(f*). In this way, making
successive changes of variables over (4.16), we obtain a system (4.18),
whose coefficients verify the conditions expressed in the theorem for

the first two cases.

Finally, to achieve o3, , = sig(a2,41), it is enough to consider a
generator U = (A4,0)g, € Gy. In this case, from (2.7), the transformed
vector field (2.5) is

n!

ﬁ=h+§j§:] hﬂ4+am+m
j=r =n=0

(4.23) N

=fHh+ Zeszf2j+1 + O(2N +3),

j=r

and, selecting A adequately, we obtain Hirﬂ(f*) = sig (2r41)-

Now we consider the case s < r. The system (4.16) is
(424) f=f+foss1+ o F forgr + o+ fongr + O2N +3),

where

241 '
Hl (faj+1) = a2j41 =0, forj=s,...,r—1

(4.25)
2r+1

Hl (fart1) = @ar41 # 0,
H25+1(f25+1) = Bas1 7 0.

2

For our convenience, the procedure will be carried out in two steps.
First we consider a generator

(4.26) U = (4,0)G,,.,, € Gomy1-
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Using the same ideas as in the proof of the first two items, but now
taking B = 0 and s instead of r, we deduce that the transformed
vector field f* remains unalterated up to order 2s + 2m + 1, that is,
JrTIm(f*) = J2st2m f Moreover, from the expressions for the terms
of order 25 +2m + 1 : f5. 0,11 = fost2m+1 + [f2s41,U]; and using
that ass41 = 0, we obtain

2s+2m+1
Hl (f2*5+2m+1) = 0254+2m+1,

2s+2m+1 "
H2 (f3st2m+1) = B2stam+1 + 25ABas1.

With respect to the terms of order greater than 2s 4+ 2m + 1, we note
that kail(f) = a1 = 0 for k < r. Applying item (c) of Lemma 4.2,

we obtain Hik_l(TU(f )=0for k =1,...,r +m. Analogously, it is

obtained that H?k_l(T{}(f)) =0 for any n > 1. From (2.5), we get

(4.27)

2k—1
(4.28) H1 (f*) = agp_y, fork=1,...,r+m.

Using (4.15), we obtain the expressions for the terms of order 2r+2m+
1:

2r4+2m—+1
(4.29) H1 (f") = a2ryomy1r +2(r —m)Aaz, 1.

As ag,q41 # 0, Bas+1 # 0, we deduce that, for m # r, it is possible
to achieve H;SHmH(f*) =0 or fTHmH(f*) = 0 by selecting A
adequately. In the case m = r, there is only one possibility: to select
A such that T2 () = 0.

In this way we make a change corresponding to a generator (4.26)
with m = 1, and we can annihilate a3,.,3 or 85, 3. Next we make
another change corresponding to m = 2, and we get o5, 5 = 0 or
B3s+5 = 0. This last change does not modify the terms annihilated
before. We proceed successively increasing m up to m = N —r, except
for m = r, where only we can annihilate 85, 5,

In the second step, we will use a generator
(4.30) U =(0,B)gy., € Gamy1.
In this case, we have kafl(U) =0fork=1,...,m+1. Applying item
(c) of Lemma 4.2 we obtain ka_l(TU(f)) =0fork=1,...,r+m.
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Also we have ka_l(f) =0 for k = 1,...,r. Using (4.15) with
a = A =0, we deduce that H;kfl([f, U)=0fork=1,...,r+m.

In summary, J>2m~1[f U] = 0. Using (2.6) we obtain that the
transformed vector field remains unalterated up to order 2r + 2m — 1,
ie., Jrrtim-l(f*) = g2rtim=1f With respect to the (2r + 2m + 1)-
order terms, using (4.15) with A = 0, we obtain [[7 7" "' (f*) =
A2r+2m+1-

Moreover, for £ = 1,...,N + 1, we have kafl(U) = 0. Using

item (c) of Lemma 4.2, we conclude that ka_l([f, U]) = 0, and
also fkil(Tg(f)) = 0 for all n > 1. So, from (2.5), we deduce
fkil(f*) =agp 1 fork=1,...,N+1.
On the other hand, using (4.15) with A = 0, we obtain

2r+4+2m+1
(4'31) H2 (f*) = /827'+2m+1 —2mBogyy1,

and it is possible to select B such that [J3>"(f*) = 0. In other
words, this change does not affect the terms o3, _,, nor the terms Ba5_1
with k& < r + m, that we have previously annihilated. Moreover, we
annihilate 33, ,,,,,1. Taking successively m = 1,2,..., we complete
the proof of item (c) of the theorem.

Finally we will show that we have achieved the highest simplification.
For this, it suffices to prove that the elements not used in the generator
U do not produce additional simplifications. The quoted elements are
of three kinds:

(a) Elements belonging to the range of the homological operator.
These elements do not affect the complementary subspaces G211, see
item (a) of Lemma 4.2.

(b) The element (0, B)g,, which does not affect Gapt1, see (4.15)
with A =0, m =0.

c e element (A4,0)g,,.,, which appears multiplie zero, see
(c) The el (4,0)a,,.,, which Itiplied by
(4.22) or (4.29). |

We note that the procedure carried out in the proof involves only the
resolution of linear equations to determine the coefficients of the normal
form that can be annihilated. A priori, these hypernormal forms are not
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necessarily the simplest ones (this kind of simplified normal form was
called pseudohypernormal form). Nevertheless, we have shown that no
further simplifications can be achieved by coordinate transformations.
Therefore, we can assert that we have obtained a hypernormal form
(the simplest that can be obtained via C*°-conjugacy).

From Theorem 4.3, it is easy to obtain the following corollary, where
we present a hypernormal form, based uniquely on the knowledge of
the first nonvanishing coefficient a4 1.

Corollary 4.4. Let us consider the system (4.16), and let r =
min{j € N : agj+1 # 0}. Then (4.16) is C*-conjugate to
r—1
(432) (07 ]‘)Gl + (O‘;r—i-l’ ﬂ;T+1)G2r+1 + Z(O’ ﬂ;j—l)sz-H
j=1
+ (O‘Zr+17 O)G41‘+1 + O(2N + 3)7

where a3, = £1.

4.2. Hypernormal form under C*-equivalence. The use of C*°-
equivalence allows further simplifications. In this case the hypernormal
form is characterized by the first nonvanishing coefficient a1 in the
normal form (4.16).

Theorem 4.5. Let us consider the system (4.16), and let r =
min{j € N : agj11 # 0}. Then (4.16) is C*-equivalent to

(4.33) (0,1), + (@211, B2r41) Garr + (A1, 0)Gapyn + O(2N +3),

where a3, = *1 and o}, ., = 0 or B5..; = 0 (only one of them
vanishes).

Proof. We assume, without loss of generality, that we have applied
Theorem 4.3, and so, system (4.16) has been put in hypernormal form.
We consider two possibilities:

(a) We suppose that we deal with items (i) or (ii) of Theorem 4.3.
System (4.16) can be written as
2= f(2,2) = (0,1)a, + (Q2r41, B2r+1)Garis

4.34
(4.34) T (Car11,0)0, 1 + O2N +3),
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where ag,41 = £1 and Ba,41 = 0 in item (i) or Bo,41 # 0 in item (ii).
Multiplying the vector field by P(z,Zz) =1+ A(2z)", we get
(4.35)
(0,1)g, + (a2r41,B2r41 + A)Goryy + (Qarg1 + Avoyirs AB2r41) Garin
+ (Aa47"+17 O)G6r+l + O(2N + 3)
As agrq1 #0and Byj41 =0 for j =1,... ,7—1, using Theorem 4.3 we
can annihilate g, ,; and §},.,,. Moreover, the vector field obtained is

(4.36)
(0, 1), +(@2r+1, Bart1+4) 6oy iy Hari1+Aazri1,0)G,,, , TO(2N+3).

Choosing A adequately, it is possible to achieve aj,.,; =0 or 33, ,; = 0.

(b) In case (iii) of Theorem 4.3, the vector field is given by

r—1
(4.37) (0,1)g, + Z(O,ﬂ2j+1)czj+l + (@241, B2r+1) Garys
j=s
2r—s
+ Z (a2j+170)sz+1 + (a4T+170)G4r+1 + O(2N+ 3)7
j=r+1
where ag,42j41 = 0 or Bosyoj41 = 0 for j = 1,...,7 — s and

Qa2r41 = +1.
In particular, we consider the vector field

(438) (0, ].)G1 + (0’1825+1)G25+1

2r—s

+ Z (a2j+1’ 0)G2j+1 + (0447-_1_1, 0)G4r+1 + O(2N + 3)
j=r

We take n = min{j € N : 2(j + 1)s > 2N + 2}, and multiplying the
vector field by

(4.39) P(2,2) = 1—B2s11(22)° + 83511 (22)* —- - -+ (=1)" B3, 1 (22)™.
So we obtain

N
(4.40) (0,1)g, + > _(G2j41,0)Gs;,, + O2N +3).

j=r
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This last system corresponds to item (i) of Theorem 4.3. Applying the
reasoning carried out in case (a) before, we complete the proof. ]

Remark 1. The result given in Takens [16] is obtained when we choose
B;r—i—l =0.

Remark 2. In the case r = +o0o that corresponds to a center at the
origin for system (4.16), a hypernormal form under C*°-equivalence is
f*=(0,1)g, + O(2N +3) for all N € N.

4.3. Some particular cases. In this subsection we present
hypernormal forms up to order oo (using both C*°-conjugation and
C-equivalence) for some particular cases, corresponding to lower
degeneracies.

In these examples we show that our approach is useful not only to
determine the structure of the hypernormal form, but also to compute
its coeflicients.

(a) Let us assume that the coefficients of the normal form (4.16) of
the system (4.1) satisfy oz # 0 (Proposition 2.2 of Chua and Kokubu
[7] corresponds to this particular case). Then

(i) a hypernormal form up to order co under C*°-conjugacy is
(4.41) P = air® + air’, =1+ B3r2,

where
* * *
Qg = (3, g = a5, 63 = 3.

(ii) Two different hypernormal forms up to order co under C*-
equivalence are

(4.42) = air®, 6 =1+p:ir> and 7= oir’+air®, 6=1,

where
* * *x Qs
Qg3 = (3, (671 —045_043ﬂ37 53 _63_04_'
3

In the following cases, there exist several possibilities, but for the sake
of brevity we only present one of them.
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(b) Let us assume that the coefficients of the normal form (4.16) of
system (4.1) satisfy ag =0, a5 # 0. Then

(i) A hypernormal form up to order co under C*°-conjugacy is

(4.43) P = 04;7'5 + 0437'9, =1+ ﬁ§r2 + ﬁgr4,
where
* * Oé% * * 53(17
Qs = Qs, Qg = Qg — —, 63:/837 /85255_ .
Qs a5

(ii) A hypernormal form up to order co under C*°-equivalence is
(4.44) i=air®, =146t

where

2

as — Bzasar — asag
Oé;:Oé5, 18;:/85+ az .
5

(c) Let us assume that the coefficients of the normal form (4.16) of
system (4.1) satisfy ag = a5 =0, ay # 0. Then

(i) A hypernormal form up to order co under C*°-conjugacy is

(4.45) = air’ + afsrt?, =1+ Bir? + Birt 4 BirS,
where
* * Olg' — 20[70[90[11
o7 = ar, ajg =3+ ———5———,
o
7
Bsag
* * _
ﬂ3 - ﬂ37 BS BS 20[7 )

. Bsazayy — Bsog + Bsarag
Br = Br — 5 :
a7
(ii) A hypernormal form up to order oo under C*-equivalence is
(4.46) F=air’, =1+ 8",

where o = a,

2 2 2 2 3
B5oz7a9 + azaiz — 2a7a90i11 — 530170[9 + 63a7a11 + ag

3
az

B7 = Br —
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(d) Let us assume that the coefficients of the normal form (4.16) of
system (4.1) satisfy ag = a5 = a7 =0, ag # 0. Then

(i) A hypernormal form up to order co under C*°-conjugacy is
(4.47) 7= ajr® + alrt, 6=1+ Bir? + Birt 4 Bir® + Bars,
where a§ = ayg,

2 4 2 2.2
—2o05a11015 — a7 + 3gai; a1z — ajars

3 b
Qg

"
ai; = a7 +

* * ﬂ3a11
63 - 537 ﬂS - ﬂ5 30{9 )
B = By — 12Bsa9a11 + 9Bsa9ars — 883,
7 7 180[3 )
Bs = Bo

_ Bsag(agaiz — afy) + Bragann + Ba(agais — 2a9aiions + ofy)

3 .

Qg

(ii) A hypernormal form up to order oo under C*°-equivalence is
(4.48) = agr?, 6=1+6rs,
where af = ayg,

3 2 4 3 2 2 3
By = Bo — (a7 — 28305011013 — afy + B3agais — agags + Bzagay,

2 92 2 3 3 3 4
— Bsagai; + 3agai s + Bsagars + Brogair — 2a5a11005)/ 0.
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