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ASYMPTOTIC THEORY FOR A
GENERAL THIRD-ORDER
DIFFERENTIAL EQUATION OF EULER TYPE

A.A. AL-HAMMADI

1. Introduction. In this paper we investigate the asymptotic form
of three linearly independent solutions of the third-order differential
equation

(1'1) {Q(w)(Q(a:)y'(a:))’}' + {((h (w)y(w))' +q1 x)y'(x)}/Q
+ (po(x)y'(z))' + p1(2)y(z) = 0

as ¢ — oo. The functions g, qi,po and p; are defined on the interval
[a, 00) with ¢ nowhere zero. We do not need to restrict ourselves to real-
valued coefficients nor to powers of . Our aims are to identify relations
between g, q1,po and p; corresponding to an Euler case for (1.1) and
to obtain the asymptotic forms of the solutions in these cases. The
various conditions imposed on the coefficients will be introduced when
they are required in the development of the method. Al-Hammadi
[2] considers (1.1) in the case where the solutions all have a similar
exponential factor. A third-order equation similar to (1.1) has been
considered previously by Al-Hammadi [1], Unsworth [7] and Pfeiffer
[6].

Eastham [4] considered an Euler case for a fourth-order differential
equation and showed that this case represents a borderline between
situations where all solutions have a certain exponential character as
x — oo and where only two solutions have this character. The Euler
cases for (1.1) we referred to, are given by

Case A.

!
(1.2) A const. x p—g,
T q
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and

(1.3) %022), ~ const. X z—g,
0

as & — 0o.

Case B.
(1.4) 9% ~ const. x &,
0 U5

and

(1.5) %022), ~ const. X %,
0

as & — 0o.

These cases will appear in the method in Sections 4-6, where we use
the recent asymptotic theorem of Eastham [3, Section 2] to obtain the
solutions of (1.1). Two examples are considered at the end of the paper
in Section 6 with general remarks.

2. The first transformation. This section is heavily based on [2].
We write (1.1) in a standard way as a first-order system

(2.1) Y' = AY,

where
Y = (y,q¢,(1/2)q1y + poy’ + q(qy’)’)?!

and
0 g ! 0
(2.2) A= | -3qq! —lpoq‘2 gt
—p1 —sugt 0.

We also express A in its diagonal form

(2.3) T 'AT = A
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using the eigenvalues A; and the eigenvectors v;, 1 < j < 3, of A.
Writing

(2.4) 7 = q,

the characteristic equation of A is given by

(2.5) qoA* + poA? + @A +p1 = 0.

An eigenvector v; of A corresponding to JA; is

(2.6) vi = (Lay* A5, (1/2)a1 + pod; +00X3)",

where the superscript ¢ denotes the transpose. We assume at this stage
that the \; are distinct, and we define the matrix 7" in (2.3) by

(2.7) T=(vy vy v3).

Hence, by [2, Section 2],

1

my Ty
(2.8) "= |my'ry
mglrg
where
(2.9) mj = 3qoA; +2poX; + @1, 1<5 <3,
and
(2.10) rj=(Bv)', 1<j<3,
with
0 01
(2.11) E=[0 1 0
1 00

By (2.3), the transformation

(2.12) Y =TZ
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takes (2.1) into

(2.13) 7' =(A-T7'T"zZ,
where
(2.14) A= dg()\l,)\z,)\g).

Again, by [1], the matrix 77" = (t;;) is given by

!
_1my

2.15 tii = =——= 1<5<3
( ) Ji 2mj’ S)>9,

and, for j £k, 1 <j, k<3,
(2.16) 5 = (A —Ak) "ty H{(OA G +A) (g0 A e +41)/2+ (Po A As+p1) }-

We now have to work out the last expression in some detail in terms
of go,q1,po and p; in order to determine the form of (2.13) and then
make progress towards (1.1).

3. The matrices A and T !'T’. At this stage we require the
following conditions in the coefficients qg, ¢1,po and p; as x — oo.

Condition 1. qg,po and ¢;,p; are nowhere zero in some interval
[a, 00), and

(3.1) qoq1 = o(pg), T — 00,
pop1 = 0(q;), T — oo,

and we write

(3.3) €1 = q;# =0(1), z— oo,
0

(3.4) €g = p?f;l =0(1), z— oo,
1

and

(3.5) e3 = PPL _5(1), 2 — oo

q1Po
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Condition 2.

/ / / ! / / / /
q q q q p p p p

(36) _0515 _052) _1515 _152) _051) _0527 _1827 _1837
do0 do0 q1 g1 Po Po 1 p1

are all L(a, 00).

As in [1, 2], we can solve (2.5) subject to (3.1) and (3.2). Then (2.5)
gives distinct eigenvalues A, 1 < j < 3, as ¢ — oo, such that

(3.7) M= —2(1+44),
q1

(3.8) Ao = —L(144,),
Do

and

(3.9) As = 2014 45),
q0

where

(3.10) 61 = O(e2)

(3.11) 62 = O(e1) + O(e2),

and

(3.12) d3 = O(e1).

Hence, by (3.1) and (3.2),
(3.13) Aj=0(Aj+1), T o0, 1<j<2

In (2.15), we investigate the behavior of m; and mj as x — oco. First,
by (3.1)~(3.5) and (3.7)(3.12),

(3.14) m1 = qi{1 + O(e2)},
(3.15) mo = —q1{1+O(e1) + O(e2)},
and
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Also, by substituting (3.7)—(3.9) into (2.9) and differentiating, we
obtain

(3.17)

my = g1 {1+ O(e2)} + a1{0(e3) + O(e26) + O(e2e})},
(3.18)

my = —qi {1+ O(e1) + O(e2)} + a1{O(e1) + O(83)},
and

e [P0 4 P
(3.19) my = 2 [2—0 — —0] {14 0(e1)} + 22{0(%) + O())}.
Q0| Po 4o o

Further, by (3.3)—(3.5),

/ / !
(3.20) gl = O<q—061> + O(q—151> + O(&61>,

/ / !
(3.21) eh = O<@82> + O<&62> + O<q—152>,
Do D1 q1
and
/ / ! /
(3.22) gy = O<p—0€3) + O<ﬁ€3> + O<q—153) + O<p—0€3).
Dbo D1 q1 Dbo

Then, for reference shortly, we note that upon substituting (3.7)—(3.9)
into (2.5) and differentiating, we obtain:

(3.23) 85 = O(gh) + O(e2¢e),
(3.24) dy = O(eh) + O(e3),
and

(3.25) 85 = O(g}) + O(g1eh).

Hence, by (3.20)—(3.25), and (3.6),

(3.26) e; and &} are L(a,00), 1<j<3.
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Hence, for the diagonal elements ¢;;, 1 < j < 3, we can now substitute
the estimates (3.14)—(3.19) into (2.15). We obtain

(3.27)
1
tn =28 0(8e,) 4 0(e)) + 0(e2t)) + O(ensh),
2q Q1
(3.28)
i ro{d) ro(fe) oot
toy = +O + O =&z | + O(d5) + O(e7),
22 2(]1 q T 2 ( 2) ( 1)
(3.29)

/ / / /
t33 = 2@ _% + O<@61> + O<q—081> + O(5g) + O(E’l)
Po Qo Po do0

Now, for the nondiagonal elements ¢, j # k, 1 < j, k < 3, we consider
(2.16). Now by (3.7), (3.9), (3.10), (3.12) and (3.14),

(3:30) (1/2)(\1 — Ag) " 'mit (A + As) (oM Xs + q7)

q/ q/ qr /
—(1/2)—1+O<—082> +O<—161> +O( > +O<—83>,
q1 q0 q1 Q1 q1

/ /
(331)  (\ = Ao)~lmi  (phAuks + L) — o(g—g ) +o(—e3)

D1

and

Thus, by (3.30) and (3.31), (2.16) gives for j =1 and k = 3,
(3.32)

_ ) 0 il il i
t13—7(1/2)—+0 —&9 +O —€1 +O +O —63
q1 q90 q1 Q1 q1
/
+ 0 <—62> + 0 (—63>
Do p1
Again, by (3.7), (3.8), (3.10), (3.11) and (3.14),

(3.33)  (1/2)(\1 = A2)'my (AL + A2)(gpAahe + qf)

I

(1/2) 05’3{1 + O(El) + O(Ez)}

- (1/2)3—1{1 +0(e1) + O(e2)},
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and

!
(A = A2) "'y H(ph A + 1)) = 2—252{1 +0(e1) + O(e2)}
(3.34) ,
4 i—i@{l +0(e1) + O(e2) ).

Hence, by (3.33) and (3.34), (2.16) gives, forj =1land k=2,
_ a CIO %
t12—_(]—/2)_+0 + 0 —61 + 0 —&'2

q1 CIO q1 q1
/ /
+0 <—52> +0 (—52)
Po p1
Now, by (3.7), (3.8), (3.10), (3.11) and (3.15),

(3.36) (1/2)(A2 = A)"'my (A2 + M) (gpAahe + qf)

0 @
= O<—051€2> — (1/2)q—1{1 + 0(51) + O(Eg)},

(3.35)

and

/ !
(337) ()\2 — Al)_lmgl(p6A1A2 +p'1) = O<2—2€2) + O<—€2>

D1

Hence, by (3.36) and (3.37), (2.16) gives, for j =2 and k =1,
q/ q/ !
to; = —(1/2)—1 + O<81—1> + O(s > + O(—06162>
q1 q1 q1 do
/ /
+ @] <@€2> + 0] (ﬁf-:z) .
Po P

Similar work can be done for the other elements %;, so we obtain

(3.39)
! ! / ! ! 4
tas = (1/2) <q—° + q—1> ~By O(q—051> + o(q—052> + o(q—lsl>
q0 q1 Po q0 q0 q1
/ /
co(te) +0(2e) <o) + o),
q1 Po Po P1
(3.40)

! ! / /
t31 = O(q—063> + O<q—181> + O<@83> + O<&53>7
do0 q1 Po Q1

(3.38)
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and
(3.41)
’ ’ / ’
t3g = <@61> + O(ﬁé'g) + O(q—0€1> + O(q—lz':'l)
Po 4! do q1

Now by (3.27)—(3.29), (3.32), (3.35), (3.38)~(3.41), (3.6) and (3.26), we
can write the system (2.13) as

(3.42) 7' = (A+R+9)Z,
where

-n n n

0 0 0
with

! / / —2\7
(3.44) n=(1/2)8 g=9% _oP0_ (qop%)
2 9  Po qopg

and S is L(a, o).

4. Case A. Now we write (1.2) and (1.3) as
Condition 3.

q Do
4.1 = 92022(1 + ¢),
(4.1) o qo( ?)
—2\/
12) o S _ 2oy,
qoPo qo

where o and w are nonzero constants with w(# 1,# 1 — 20,# 2),

#(z) — 0 and ¥(x) — 0 as © — co. The factor 2 is introduced only for
convenience.

Also at this stage we let
Condition 4.

(4.3) ¢'(r) and ¢'(z) are both L(a,0).
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We note that, by (3.7), (3.8), (3.44), (4.1) and (4.2), the condition of
Eastham theorem [3, Section 2] is not satisfied. Indeed, the matrix A no
longer dominates R. Therefore, we carry out a second diagonalization
of the system (3.42).

First we write

(4.4) A+ R = X\3{S1 + S2},
with
(o —0 —0
(4.5) Si=| -0 o w/2+40
0 0 1w
and
Uy U2 U2
(46) SQ(I) = U2 U3 Ug
0 0 Us
where
Uy = ﬁ u
1 — )\3 2y
Uy = 70'(¢ - (53)(1 + (53)71,
A
(4.7) zw_xifm,
1
Ug = 721145 — U2

us = —w(3 — b3) (14 83) .

It is clear that Sz(z) — 0 as z — co.

Hence we diagonalize the constant matrix S; in (4.4). The distinct
eigenvalues of the matrix S; are given by

(4.8) oa1=0, ar=20, az3=1-w,
using the transformation

(4.9) Z =T\W,
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where T3 diagonalizes the constant matrix S;. We can write (3.42) as

(4.10) W' = (A + M+ T EST)W

where

(411) A1 = )\3Tf151T1 = dlag (1/1, vy, 1/3) = Agdlag (011,042, 063),

(4.12) M = \3Ty ' ST7,
and
(4.13) T, 'ST) € L(a, 00).

Now we can apply the asymptotic theorem of Eastham in [3, Section
2] to (4.10) as in [1, 2], provided only that A; and M satisfy the

conditions of [3, Section 2].

We first require that the v;, 1 < j <3, in (4.11) are distinct and this

holds because the a;, 1 < j < 3 are distinct.

Second, we need to show that

M(z)

(4.14) 7@ — ;@)

— 0, x — o0,

fori# jand 1 <14, j < 3. Now

M

= (Oéi — Oéj)ilTl_ISQTl — 0, T — OQ.
Vi — Vj

Thus, (4.14) holds.
Third, we need to show that

(415)  {n—v) MY € Lia,o0), i#j, 1<, j<3.

Hence, (4.15) holds if

(4.16) S4(z) € L(a,00).
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Thus it suffices to show that
(4.17) uj(z) € L(a,00), 1<i<5.

Now, by (3.7)—(3.9) and (4.7),

uy = O(eh) + O(e387) + O(¢') + O(8%),
uy = O(¢') + O(83),

(4.18) uy = O(e}) + O(e13) + O(¢) + O(83)
uy = O0(Y') +0(33) + O(¢'),
us = O(¥') + O(33).

Thus, by (3.26) and (4.3), (4.17) holds and consequently (4.15).

Now we state our main theorem for equation (1.1).

Theorem 4.1. Let the coefficients qo,q1 and po in (1.1) be C?[a, 00),
and let p1 be Clla, 00). Let (3.1), (3.2), (3.6) and (4.1)—(4.3) hold. Let

(4.19) Re I(z) be of one sign in [a, o),
and
AL+ A /
) Ryl @) )
0 QOpo
be of one sign in [a,o0), where
271/2
(4.21) I(z) = [(/\1 )2 q—l} .
@

Then (1.1) has solutions
(4.22)

yi ~ g7 exp ((1/2) /j{xl et I(t)}dt),
(4.23)

v — o[ql“2 exp ((1/2) /:{Al F e I(t)}dt)]
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and

(4.24) Y3 ~ q0p52 exp (/ As(t) dt).

Proof. Before applying the theorem in [3, Section 2], we show that
the eigenvalues py of Ay + M satisfy the dichotomy condition [7]. As
n [1, 2], the dichotomy condition holds if

(4.25) Re(uj —px)=f+g, j#k 1<k<3,
where f has one sign in [a,00] and g is L(a,o0) [3]. Now, since the

eigenvalues of A; + M are the same as the eigenvalues of A + R, hence
by (3.43) and (2.3),

AL+ A 1, (=R
(126) )= 172 @B e, ko1
q1
and
—2\7
(427) o) = A + 2P0 )
qoPo

Thus, by (4.19) and (4.20), (4.25) holds. Since (4.10) satisfies all the
conditions for the asymptotic result [3, Section 2], it follows that, as
x — 00, (4.10) has three linearly independent solutions

(4.28) Wite) = e+ o) exp ([ meyar)

with e the coordinate vector with kth component unity and other
components zero. Now we transform back to Y by means of (2.12) and
(4.9) where T7 in (4.9) is given by

1 1 o((w/2) —1)
(4.29) =11 -1 o(-Bw/2)+1) - (w/2)(w-1) |,
0 0 (w=1)20+w—-1)
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and using the fact that w # 2, we obtain the formula (4.24) and (4.22)
after an adjustment of a constant multiple in yx, k£ = 1, 3, while for y,
we obtain (4.23).

5. Case B. Now we deal with Case B which is given by (1.4) and
(1.5). We have the following theorem.

Theorem 5.1.  Let the coefficients qo,q1 and po in (1.1) be
CPa,00), and let p; be CVa, 00). Let (3.1), (3.2) and (3.6) hold.

Let

q/1 D1
5.1 51+ ¢y),
(5.1) o 1 q1( #1)
and
(qopy %)’ p1
(5.2) = =w1—(1+ 1),
qoPo q1

where o1 and wy are nonzero constants with ¢1(x) — 0 and Y1(z) — 0
as ¢ — oo. Also let

(5.3) ¢\ (z) and i(z) be L(a, o).
Let (4.19), (4.20) and (4.21) all hold. Then (1.1) has solutions
(5.4)

yk ~ gy % exp <(1/2)/ (M + o + (=1)F+11} dt), k=1,2,
(5.5)

Y3 ~ q0p52 exp (/ As(t) dt>.

Proof. As in [2], we apply Eastham theorem [3, Section 2] to the
system (3.42) provided only that A and R satisfy the required condition.
We shall use (3.43), (3.44), (5.1) and (5.2).
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We first require that

/

Do =M\ @Laz,)' =o{(\i = Aj)},

T qoPo
i # j, 1 <4, j <3, this being [3] for our system. By (5.1), (5.2), (3.1),
(3.2), (3.7), (3.8) and (3.9), this requirement holds. We also require
that

{Z_i(xi —)\j)l}, € L(a, 00),
{M(A A } € L(a, ),

qopPo

for ¢ # j, this begin [3] for our system. By (5.1), (5.2), (3.7), (3.8)
and (3.9), this requirement is implied by (3.26) and (5.3). Finally, we
require the eigenvalues of A + R which are given by (4.26) and (4.27) to
satisfy the dichotomy condition (4.25), and this is true by (4.19)—(4.21).
Since (3.42) satisfies all the conditions for the result of [3, Section 2], it
follows that, as © — 00, (3.42) has three linearly independent solutions
Zy(z) such that

(5.6) 240) = {en + oWy exp ([ mulo)a)

We now transform back to Y by means of (2.12), (2.7) and (2.6). B
taking the first component on each side of (2.12) and making use of
(4.26) and (4.27), and carrying out the integration of —(1/2)(q}/q1)
and (gopy %)’ /qopy ), we obtain (5.4) and (5.5) after an adjustment of
a constant multiple in yi, 1 < k£ < 3.

6. Remarks and examples.

Remark 6.1. If (4.1) and (4.2) hold, and if (po,qo) are both real or
pure imaginary, then the dichotomy conditions (4.19) and (4.20) are
satisfied. Moreover, the constants o and w are real.

Remark 6.2. If (5.1) and (5.2) hold, and if (po, go,q1) are all real or
pure imaginary, then (4.19) and (4.20) are satisfied.
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Example 1.
o [e3 [e3 [e3
go =c1z™, g1 =cx"?, po=c3x"?, p1=cax™,

with a; and ¢j, 1 < ¢ < 4, are real constants with ¢; # 0. Then (3.1),
(3.2) and (3.6) hold under the condition

a1 + as — 2a3 < 0,

(6.1)
az + ag — 2a9 < 0.

Also, if we let ag # 0, a1 # 2a3, then Euler case (4.1)—(4.2) is given
by

(62) ] — Qa3 = 1,

and the nonzero numbers ¢ and w are given by

(6.3) o= (1/2)016‘;‘2,
(6.4) w= 2—;(@1 —%a3) = 2—;(1 —a3),

and we require that

01(1 — 043) 7é C3, 01(1 — 013) 7é 203

and

C3 7é (]. + oo — 043)01.
Also, ¢ = 0 and ¢ = 0 for this example. We note that (6.2) and (6.1)
are equivalent to

(6.5) a; —az3=1, ay—az3+1<0, az+as—2a<0.

Example 2. To give a quite different class of coefficients covered by
our analysis, we consider

qo(z) = crz® exp®, qi(z) = 2% exp P,

po(z) = c3z® expa®, pi(z) = caz™ exp —4a?,
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where aj,c¢j, 1 <4 <4, and b are real constants with ¢; # 0 and b > 0
satisfying a; +az—2a3 < 0. Then (3.1), (3.2) and (3.6) are all satisfied.

The Euler case (4.1)—(4.2) is given by
(66) a3 — ] = b—1.
The values of o and w are given by

(6.7) o=—(1/2)bcrcz

(6.8) w=—bcicz' = 20,

and we require that cic3'b # —1, cie3'b # —2 and ¢yc3'b # —(1/2).
Now, in full, (4.1) and (4.2) are

—bzb gzt = b2 (1 + ¢),

and

7b$b71 + (a1 — 20(3)£E71 = *b$b71(1 + w)a
giving
(6.9) #z) = —asb™a™,

Y(z) = —b" oy — 2a3)z".

Then ¢(x) and ¢ (z) tend to zero as x — oo and ¢'(x) with ¢'(z) are
both L(a,00). Similar examples can be given for Theorem 5.1.
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