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SPLITTING OF LINEAR SYSTEMS WITH IMPULSES
RAUL NAULIN AND MANUEL PINTO

ABSTRACT. In this paper we study some dichotomic prop-
erties of the impulsive system y' = [A(t) + B(¢)]y, Ay(tx) =
[Ckx + Dgly(tr). We prove that if the nonperturbed system
z' = A(t)z, Ax(ty) = Crx(tr) has an exponential dichotomy
with projection P and PA(t) = A(t)P, PCy = CyP, it is
satisfied for all values of ¢t and k, then there exists a change
of variables y(t) = S(t)z(t), reducing the perturbed system to
the form 2’ = [A(¢t) + B(t)]z, Az(tx) = [Ck + Dg]z(tr), with
the properties PB(t) = B(t)P, PDy = Dy P. From this result
follows a theorem of roughness for exponential dichotomies of
impulsive systems.

1. Introduction. In the following J will denote the interval [tg, co);
V"™ will stand for the space R™ or C"; for a vector z € V", |z| will
be some fixed norm in V™; for an n X n matrix A, |A| will denote the
corresponding matrix norm. In this paper the symbol {¢;} identifies
a strictly increasing sequence, contained in (tg,00), with the property
limg_, o0 tx = 00. The interval (tx_1, tx] will be denoted by Jj. Finally,
let us denote N ={1,2,3,...}.

The theory of equations with impulsive effect is a recent branch
of the theory of differential equations. Beginning with the work of
Mil'man and Myshkis [11], this theory has been developed by the
contribution of many researchers: Halanay and Wexler [8], Bainov
et al. [2], Lakshmikantham et al. [9], etc. The theoretical questions
which arise in this area attract the attention of analysts and applied
mathematicians because of an increasing number of their applications
to semiconductor theory, quantum mechanics, ecology, biomathematics
and control theory [2, 8, 9].
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1068 R. NAULIN AND M. PINTO

In this article we investigate the conditions under which the linear
impulsive system

0 y'(t) = (A(t) + B(t))y, t#t, }
Ay(tk) = (Ck + Dk)y(tk), keN, t, >0 ’

where
Ay(ts) = () — y(tn), y(t)) = lim y(2),
t—t]

can be decoupled, by means of a linear change of variables y(t) =
S(t)z(t) into two systems of lower dimensions. This is an important
task in the theory of differential equations [6, 14, 7, 4, 12, 13].
Although we will touch only theoretical questions of this problem, the
practical importance of this study has been recognized in the applied
analysis, for example in the numerical treatment of boundary value
problems [1]. To define the statement of our problem, let us consider
P to be a given projection matrix (in all of the paper, we keep the
letter P to indicate a constant matrix with the property P2 = P). We
seek an impulsive system,

(2) .

Z(t) = (A(t) + B(t)=(t), t# tw, }
Az(ty) = (Cr + Dp)z(te), ke N ’

kinematically similar to system (1) [4, 5], such that its coefficients
commute with projection P. In our research on impulsive equations,
we have found that this problem has not been solved completely.

We will assume hereafter that system

a'(t) = A(t)z, t# ty, }

(3) Aa:(tk) = Ckl'(tk), keN

where all the matrices I + C} are invertible, satisfies the following
condition (see Section 6 for commentaries of this hypothesis)

(4)  A()P = PA(t), CwP=PCy, YtelJ YkeN.

We will investigate further under which conditions there exists a
function S : J — V™*" with the following properties
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S1. S is a continuously differentiable function on each interval Jy,
S2. For each impulsive time tj, there exists the righthand side limit

S(t) = lim S(t).

T
t—t,

S3. S(t) is invertible for each ¢ € Ji, and S(t]) are invertible for all
k.

S4. The functions S and S~! are bounded.

S5. The change of variables y(t) = S(t)z(t) reduces System (1) to
System (2) where

(5) PB(t)= B(t)P, = PDy= DyP, Vt, Yk

Sometimes we will refer to the function S with properties S1-S5 as
the splitting function of System (1). In what follows we will use the
following notations:

P.(A)=PAP+(I-P)A(I-P), P,(A)=PA(I-P)+(I—-P)AP.
Let us recall briefly the respective results for the differential system

(6) 2'(t) = A(t)z(t)

having an exponential dichotomy with projection P [6]:

) [2(1)@ 1 (s)P| < Ke ®t7), ¢ >, }

(1)@ (s)(I - P)| < Ke*"9), s>t
where K and « are positive constants and ® is the fundamental matrix
of (6).

Theorem A. If

o
B(t)|:t < -
Sup {B()] £ € J} < ety
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then, there exists a change of variables y(t) = S(t)z(t), transforming
(8) y'(t) = (A(t) + B(t))y(t)

into the form

(9) 2 (t) = (A(t) + Po(B(t)S(t))2(t).

The splitting function S of System (8) has the form S = I + H where
|H(t)| <27 for all t, and H satisfies the integral equation

Ht) = [ Tt9)P( - H(s) B + HE) - P)T(t,5)ds

to

_ /too T(s,t)(I = P)(I — H(s))B(s)(I + H(s))PT(s, ) ds,
where T'(t,s) := ®(t)®~1(s), for all t,s € J.

The corresponding result, for the difference equation, was given by
Papaschinopoulos [15], who considered the equation

(10) Az(n) = [C(n) + D(n)]z(n + 1), Az(n) =z(n+1) — z(n).

In this paper we extend Theorem A to systems with impulsive effect.
We will rely on the proof of Theorem A given by Coppel in [6]. This way
seems not only to be simple if we consider System (1) as a perturbation
of System (6), but natural, since our problem is posed in a finite
dimensional space.

An important feature of our results consists of the following. The
transformation of splitting y(¢) = S(¢)z(t) will be defined in Section 3
by solving a certain integral equation similar to those of the ordinary
and difference equations. This is important for two reasons; first, such
a result unifies the corresponding results for ordinary, difference and
impulsive equations, and, second, by means of this integral equation it
is possible to obtain an estimate of the size of the perturbations B and
{Dy} allowing the splitting, an estimate which is possibly not optimum,
but is adequate in many applications.
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Finally, we would like to emphasize the following result obtained in
our paper. Let us consider the equation

- V0= 40+ BN, ¢4 )
Ay(ty) = Cry(tr), k€N

We would like to perform a change of variables on System (11) in order
to obtain the split system

(12) Z(t) = (A(t) + B(1)=(t), t#t,eV", }
Az(tk) = C’kz(tk), ke N ’

where the discrete equation of Systems (11) and (12) is the same, and
(13) PB(t) = B(t)P, Vt.

We will show that, in this case, the splitting will depend only on the
perturbation B of the ordinary equation (8). A similar problem will be
solved for the equation

(14) a'(t) = At)z(t), t# tx, }

Ax(ty) = (Cy + Dy)a(ty), keN [~

Such problems were not treated by Coppel and Papaschinopoulos, since
they dealt only with one equation. In our case we have to consider
an impulse equation, where the dynamics of an ordinary equation
undergoes the effect of the impulses described by a difference equation.
The results obtained for equations (11) and (14) are new and cannot
be considered as straightforward.

2. Preliminaries. We will assume that functions 4, B : J — V"*"
are uniformly continuous on each interval Ji. The solutions of the
involved impulsive systems are functions uniformly continuous on each
interval Jy,. We will denote by C(J, {t;}) the space of such functions.
BC(J,{tx}) will denote the subspace of C(J,{tr}) which consists of
bounded functions. For a function f defined on J and a sequence of
matrices {Dy}, we define

|[fleo = Sup{|f () : t € J},  [{Di}oo = Sup {|D|: k € N}.
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It is easy to verify that the pair (BC(J,{txt}),| |) defines a Banach
space.

Let us consider System (3) where we assume that all matrices I + Cy,
are invertible. The fundamental matrix of this system is defined by

(15) Ut) = o(t) H Ot (I 4 C)®(t)@ ko), t > to,
[t07t)
where

[T @'t + (),

[to,t)

denotes the ordered product of all matrices ® 1 (¢;)(I + C;)®(t;) such
that ¢; € (to,t), t > to, and we define

I @ ')+ coelt:) =1.

[to,to)

W (t, s) will denote the Cauchy matrix of the impulsive System (3) [2,
9]:
W(t,s) = U(t)U (s).

The following properties of U (t) will frequently be used.
P1. The function U(t) is uniformly continuous on each Jj.
P2. AU(ty) = (I + Cr)7'CU(t)).

P3. AU Y (t) = —U(t{)( + Ck) 1Ck.

Definition 1 [4, 5, 10]. We shall say that System (3) has an
exponential dichotomy with projection matrix P if and only if there
exist positive constants K; > 1 and «;, ¢ = 1,2, such that

U@#)PU(s)| < Kpem =9 ¢ >

(16) S Z th }
U = PYU™ (s)] < Kze®2079), s>t >t '

From this definition, necessarily, it follows

(17) I+Cyl <Ky, |I+Cy)7'|<Ks Vk.
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The following conditions will be used in the writing of our theorems.
C1. System (3) has the exponential dichotomy (16).
C2. Condition (4) is satisfied.

C3. There exist a positive number [ and a positive integer p such
that each interval of J, of length [, contains no more than p points of
the sequence {t}.

Condition C3 is frequently used in the theory of systems with impul-
sive effect [2, 5, 9]. It implies the following estimate

(18) E 6_(a1+a2)‘t_tk‘ S 2(11 +p), r= e—(ll1+0t2)l < 1
-Tr
(to,00)

3. Splitting of the perturbed system. We will modify the form
of System (1) by writing it as a system which difference equation is a
linear equation with advance. We do this in order to use the discrete
Ricatti equation obtained in paper [15].

Lemma 1. Under condition C3, if

1
19 Dy| < 0 —s
(19) Dl <0, 0<0< i

then System (1) can be written in the form

y'(t) = (A(t) + B(t)y(t), t#tx,
UM S b
y(te) = (I + Cr)"'Cr + Dp)y(tf), keN
where Dy, = (I + Cy + D) 1Dy. Moreover,

(21) {Di}oo < 21{Ds}| < 20K,

Proof. From (17) we have

|(I+Ck)_1Dk‘ < |(I+Ck)_1”Dk| < K2|Dk| <oKy<1.
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Therefore, if | D| < o, all matrices I+C}+ Dy, are invertible. Moreover,

a

K.
|(I + Cr + Dy) 'Dy| < ﬁle\ < 2K, {Dy}| < 20K,. O
- 2

We emphasize the equivalence of System (3) and system

o(t) = A@)x(t), t# t,

(22) Az(ty) = (I + Cy) *Crz(tf), keN } '

Each solution of System (3) is a solution of System (22) and, conversely,

the solutions of (22) are solutions of (3). Therefore, these systems have
the same fundamental matrix U.

In the following construction we will use the notations
Hf = H(tf), He=H(t).
Regarding equation (20), let us consider the operators
t
O(H)(t) = / W (t, s)P(I — H(s))B(s)(I + H(s))(I — PYW (s,t) ds
0

- /t Wt $)(I = P)(I— H(s))B(s)(I + H(s))PW (s, 1) ds,

D(H)(t) = > W(t, tx)P(I — Hy)Dy(I + H )(I - PYW (£, )

[to,t)
— N Wit )T — P)(I - Ho)Dy(I + B ) PW(5,1),
[t;00)
and
(23) T=0+D.

We will call O the operator of ordinary splitting; D the operator of dis-
crete splitting; and 7 the splitting operator of impulsive System (20).
From the boundedness of the function B and the sequence {f)k}, the
estimate (16) and the property P1, we obtain

T : BC(J,{t}) — BC(J,{tx})-
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Lemma 2. Let us assume that System (3) satisfies conditions
C1-C3. Then, under conditions (19) and

‘B‘oo (1+p)
+
a1 + as 1—17r

(20)  GK,K|P) IP|< |{Dk}|oo) <1,

there erists a unique, fived point of T in the ball |H|o < 271 of the
space BC(J, {tx}).

Proof. For |H|s < 271, the estimates in (16) yield

3K K>
(25) O(H)leo < 5 [P||I = P|[Blo-

(1 + az)
The estimates (18) and (16) give

3(1+p)
(26) ID(H)|oo < m

From (24)—(26) we obtain |7 (H)|e < 271 if |[H|s < 271, On the other
hand, the identity

K1 K| Pl I = Pl [{Dg}oc-

(I-G)B(I+G)-(I-H)B(I+H)=(H-G)B-B(H-G)
+(H—-G)BH +GB(H - G)

implies
3K 1K,
0(H) = O(G)le < ~ [P||I = P||Bloo|H = Gleo;
1taz
6(1 +p)K1K2
[D(H) = D(G)|ow < “LLIZ2 P P [DyfocH = Gl

From (24), for |H|s < 27! and |G|w < 27!, we obtain
1
[T(H) = T(G)loo < SIH = Gl, [Hloo, |Gloo <270

Thus, the operator 7 acting on the ball |H|, < 27! into itself is a
contraction. Therefore, in this ball, it has a fixed point we will denote
by H. ]
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Lemma 3. Under the conditions of Lemma 2, on each interval Jy
the change of variables y(t) = S(t)z(t), S = I+ H reduces the ordinary
differential System (8) to the form (9).

Proof. The identity H = 7T (H) implies that H is differentiable on
each Ji (at each time t; the derivative of H is understood as the
righthand side derivative). From the definition of @ and D, we obtain

H'(t)=A(t)O(H)(t) — O(H)(t)A(t)
+UPU(t)(I - H(t)B(t)(I + H(t)U(t)PU ()
+UB)I=P)U™H () (T—H(t))B(t)(T+H (1)U () (T-P)U (1)
+A(6)D(H)(t) = D(H) () A(?)-

From condition (4) we have U(t)PU~1(t) = P. Therefore,
H'(t) = A(t)H(t) — H(t)A(t) + Pa((I — H(t))B(t)(I + H(t))).

From the identity H = T (H) we obtain PHP =0, (I-P)H(I-P) =0,
implying

(27) H(t)y=H(({t)P+ PH(t), t¢€ Jg.
This allows us to write, on each interval Ji, the identity
H'(t) = A(t)H(t)~ H(t) A(t)+Pa(B(t) (I +H(t))) - HP(B(t)(I+H(t))).
Since S = I + H, then S satisfies
S"'=AS - SA+ BS - SP.(BS)

which is a necessary and sufficient condition in order that the change
of variables y(t) = S(t)z(t) transforms the equation (8) into the form
(9. o

Now we will examine the effect of the change of variables y(t) =
S(t)z(t) on the second equation in System (1). Accordingly, let us
define the continuous functions

Ji(t) = /0 PUY(s)(I — H(s))B(s)(I + H(s))U(s)(I — P) ds
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and

Jo(t) = /t (1= PYU(s)(I — H(s))B(s)(I + H(s))U(s)P ds.

Lemma 4. At each time ty,, the operator of ordinary splitting satisfies

(28) AO(H)(ty) = (14 Ck)™'CLO(H)(t) — O(H)(t)(I + Ck) "' C.

Proof. Since
O(H)(t) = U(t)Ji(t)U(t) = U(t) (U (1),

then, using P2 and P3, we have

AO(H)(tr) = AU () 1 (t:)U (k) = AU (t) J2(t:)U " ()
= AU () I (tR)U ™ (8) + U (t) T (te) AU (1))
— AU (tg) Jo(te) UL (E))) — AU () J2(tr) AU (t1))
From this decomposition we obtain (28). u]

In order to prove the forthcoming lemma, we introduce the notations:

Ai(t) = Y P(I - Hy)Dy(I + H{)(I - P),

[tht)

and

As(t) = > (I = P)(I = Hg)Di(I + H;})P.

[t,00)
Consequently, we can write the operator D in the form

D(H)(t) = Ut)A(t) U () = U(t)A2(t)U ().
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Lemma 5. At each time t;, the operator of discrete splitting satisfies

AD(H)(t) = (I + Cx) *CkD(H)(t) — D(H)(t)(I + Ci) ' Cy,
(29) + P,((I — Hy)Dy(I + HY).

Proof. Using P2 and P3, we have

AD(H)(tr) = AU (te) A (te)U () + U (i) A1 (b)) AU (ty,)
— AU (tr) Ao (t)U 1 (8F) + U (tr) A2 (tr) AU~ (tx)
+U(te)PU™ (t)(I — Hy)Di(I + Hy )(I - P)
+ U — P)U Y (ts)( — Hy,) Dy (I + H)P

= CRU () (A () — Mo (¢0))U ()

— U () (Ar(t)) — Aa(te)) U~ () Cre
+ P(I — H,)Dy(I + HY)(I - P)
+ (I — P)(I — Hy)Dy(I + H;")P.

This identity implies (29). O

Lemma 6. Let us assume that System (3) satisfies conditions
C1-C3. Moreover, let us assume that conditions (19) and (24) hold.
Then there exists a splitting function of System (20), S = I + H,
|H|oo <271, reducing System (20) to the form

2(t) = (A(t) + Po(B(t)S(1))2(t), t# t, }
Az(ty) = (I + Cx)"*Cx + Po(DpS(t))))2(t)), keN |~

(30)

Proof. Lemma 3 establishes that the change of variables y(t) =
S(t)z(t) reduces the equation (8) into the form (9). Lemmas 4 and
5 imply that

AH(tk) = (I+ Ck)’le,H(tZ') — H(tk,)(_[+ Ck)ilck

(31) + P,((I — Hy)Di(I + HyY)).
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From the property (27) we obtain
HP+ PH; = H.
Plugging this last identity into (31) we obtain
AH(ty) = (I + Cx) "CeH () — H(tk)(I + Cx) ' Cy,
+ Pa(Di(I + H)) = HePo(Di(I + HY)),

which is a necessary and sufficient condition in order to reduce the
difference equation of System (20) to the form

Ay(te) = (I +Cx) " Ch + Pe(Di(S(E))y(t). 0

Theorem 1. Under conditions C1-C3, (19) and (24), the change
of variables y(t) = S(t)z(t) defined in Lemma 6, splits System (1) into
the form

2" = (A(t) + P.(B(t)S(t))z, t# tx,

(52) Az(ty) = (Cy + Dy)z(tf), ke N,

where
Dy = (I = P.(DyS(t]))) (I + Cr)Po(DrS())(I + Cr)

satisfies the estimate .
|D| < 120 K{ K>,

and all the matrices I + Cj, + ﬁk are tnvertible.

Proof. The splitting of System (1), accomplished by function S,
was proven by Lemma 6. Condition (19) implies the estimate (21).
Consequently,

|P.(DyS(t)))] < 2|S|oo|Di| < 60Ky <271,

then all matrices I — P.(DyS(t ")) are invertible. From this estimate
it follows .
|Di| < 120 Ko |T 4 Ci|? < 120 K1 K>.
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From

(I +Cy) Dy < 120K?K2 < 1,

we infer the invertibility of matrices I + Cy + Dy.. a

4. Invariance of impulsive equations. By the definition of
operator D we observe that D = 0 if Dy = 0, for all k. In this case H
will be a solution of the integral equation

H=0(H).

Theorem 2. Under conditions C1-C2, for any continuous function
B satisfying

KK
6——=|P||I - P||B|x <1,
az

there exists a function S : J — V™™ satisfying S1-S4 such that
y(t) = S(¢)z(t) transforms equation (11) to equation (12) with the
property (13).

Regarding equation (14), we observe that B = 0. In this case H is a
solution of the equation
H =D(H).

Theorem 3. Under conditions C1, C2, C3 and (19), for any bounded
sequence {Dy} satisfying

12(1 + p)

1 K| P = PI{Di}le < 1

there ewists a function S : J — V™*" satisfying S1-S4 such that the
change of variables x(t) = S(t)y(t) converts equation (14) to the form

2'(t) = A(t)=(t),
Az(tk) - (Ck + Dk)z(t:)a

where, for each integer k, Dy, commutes with the projection matricz P.
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5. Roughness of exponential dichotomies. From Theorem 1, a
proof of the roughness of the exponential dichotomy (16) follows. Let
us consider System (3). Denoting

A(t) = diag {44 (£), A1)},
P.(B(t)S(t)) = diag {B1(t), B2(1)},

and

Cy, = diag {Cy (1), CF (1)},
Dy = diag { Dy (t), Di(1)},

we may decompose System (30) into

5 Azi(t)z(Ai(t)flél(t»zl(t), L# b, }
w(te) = (CL+Da(ty), keN

51 Az;of):(Az(t)ZEZ(t))zZ(t), L# b, }
2(te) = (C2+ D o(ty), keN

We will denote by U;, i = 1,2, the fundamental matrices of the linear
systems
zi(t) = A ()i (), t# ty, }
Ami(tk) = C’,iwi(tz), ke N '
Matrices U; satisfy

U (U ()] < Kpem @ =) ¢ >,
[Ua (1)U (s)] < Kpe®2=3) s>t

Using the estimate of Dy given in Theorem 1, we obtain that the
fundamental matrices X; and Xs of Systems (33) and (34) have the
following estimates

(35) X1 (8) Xy ()] < Kyem(amm=a) g >,

where »
=7 In(1+ 120K} K3) + 3K |B|oos
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and
(36) | Xa(t) X5 ' ()] < Kael®2™ 20070 5 > g,

where »
72 =7 In(1+ 120 K{ K3) + 3K2|B|oo.

The above estimates can be obtained by standard arguments of the

Gronwall inequality for piecewise continuous functions [5, 3]. These
estimates prove the following

Theorem 4. Under conditions C1-C3, (19) and (24), if
a; > ?111(1 +120K;K2K2) + 3K;|Bloe, i=1,2,
then System (1) has the exponential dichotorny

71(8) < klef(alffyl)(tfs)’ t>
1

U(t)P | < s > to, }
“H(s)| < Kaelo2m12)(t=9) 1 5 > ¢ > ¢ ,

U
U@ - P)U

where K;, i = 1,2, are constants.

6. Commentaries. In [4, 5], the notion of the Riesz integral is
used to establish the following result.

Theorem B. Let us assume that U(t), the fundamental matriz of
the linear impulsive system (3) [2] satisfies

Ut)PU ()| < M < o0, V.

Under these circumstances, there exists a kinematically similar system
to (3)

(37) Z'(t) = A()z(t), t+#ty, }

Ax(ty) = Cra(ty), ke N

such that the matrices A(t) and Cy, commute with projection P.
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This theorem justifies the assumption (4).

The proof of the roughness of an exponential dichotomy displayed in
[5] is complicated because it relies on techniques closer to problems in
spaces of infinite dimensions. Consequently, the roughness Theorem 4,
obtained by splitting System (1) is simpler. It is worth noticing
that Theorem 4 gives concrete bounds for coefficients B and {Dy} of
equation (1) allowing an exponential dichotomy. Theorem 11.1 in [5]
states the existence of an exponential dichotomy for System (1) “for
sufficiently small §; and J; (where |Blo < 61, |[{Di}| < 62).” The
proof of Theorem 11.1 does not allow one to find concrete bounds for
(51 and 52.

Another feature distinguishing Theorem 11.1 of [5] and Theorem 4 of
our text concerns the condition of boundedness of the upper and lower
general exponents of the space of solutions of equation (3) imposed in
Theorem 11.1. According to Theorem 4 this condition is superfluous.

Finally, we emphasize the invariance of equations (11) and (14) under
the splitting y(t) = S(t)z(t) proven in our paper. It is not clear how
these results can be deduced from the theory of exponential dichotomies
exposed in the monography [5].
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