ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 29, Number 3, Fall 1999

METRIC SINGULARITIES
JENS CHR. LARSEN

ABSTRACT. This paper proves an existence and unique-
ness theorem for geodesics through a metric singular point,
where the dimension of the isotropic subspace at the singular
point may exceed one. The second part of this paper proves
an orbit separation theorem for orbits through the singular
point of a smooth vector field. An approximation to the in-
dividual orbits is defined in terms of the derivatives of the
vector field at the singular point. We prove a theorem that
there exists a unique orbit for the vector field corresponding
to each approximation.

1. Introduction. Let M denote a smooth manifold, and let g
denote a smooth section in the bundle of symmetric two tensors on M.
A point where g, is degenerate is a metric singular point or a metric
singularity.

When the dimension of the isotropic subspace
I(p) =T,M NT,M*

at the metric singularity is one there is an existence and uniqueness
theorem for geodesics through the singular point, see [16]. Section 2
in the present paper is concerned with the case where the dimension of
the isotropic subspace exceeds one. Using the theorem of Section 2, an
existence and uniqueness theorem for geodesics through the metric sin-
gular point is proven, see Theorem 2.6. The existence and uniqueness
is formulated in terms of a new differentiable structure at the metric
singularity.

The second part of this paper proves an existence and uniqueness
theorem for orbits through a singular point of a smooth vector field.
The orbit is approximated by (3.0) where the yP'%* are defined in terms
of a v € R® and the derivatives of the vector field at the origin. Here
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s is the dimension of the stable manifold. We prove a theorem that,
corresponding to each approximation (3.0) there exists a unique orbit
for the vector field, see Theorem 3.2. Theorem 3.2 is needed to prove
the existence and uniqueness of geodesics in the main Theorem 2.6.

If the singular point is a sink we prove that every orbit tending to the
singular point is approximated by a curve (3-0) for a suitable choice of
v € R”.

The main motivation for proving the theorem of Section 3 comes from
the study of metric singularities. These have been studied in the papers
cited in the bibliography.

Metric singularities occur naturally for timelike minimal surfaces, see,
e.g., [4] or [14]. For instance, one can prove that there exist real
analytic type changing minimal surfaces in Minkowski space.

In [14] it is shown how one can parametrize such surfaces near the
metric singularity. In [19] it is proven that every real analytic, zero
mean curvature immersion arises in this way. The main tool in the
proof of this result is to show the existence of isothermal coordinates
for type changing surfaces with everywhere isotropic tangency, meaning
that the isotropic subspace is everywhere tangent to the singular set.

One can also show the existence of isothermal coordinates when
there is isotropic transversality. In [19] we also study type changing
surfaces of constant mean curvature # 0. When there is everywhere
isotropic tangency, one can naturally introduce harmonic functions. It
is then possible to characterize harmonic morphisms as the horizontally
conformal harmonic mappings, see [19]. Questions from extrinsic
geometry such as normal parallel translation in the presence of metric
singularities are also treated here.

Existence and uniqueness of geodesics for type changing metrics have
been studied in [6, 16] and [17].

There are applications of the notion type changing metric in general
relativity, see [7, 13] and [22].

2. Metric singularities. In this section let M denote a smooth n
dimensional manifold with a smooth symmetric two tensor g. Also let
p denote a singular point for g, that is, g, is degenerate. Define the



METRIC SINGULARITIES 911

isotropic space at p,
I(p)=T,M NT,M".
Now let vq,...,v, denote a basis at p with
span {vy,...,vr} = I(p),
1 < I < n. We call this an adapted basis. A frame
Xy,..., X : U —TU
defined on an open neighborhood U of p is adapted to vi,...,v,

provided
Xilp)=wv;, i=1,...,n.

Definition 2.1. (M, g) satisfies the isotropy condition at p with
respect to vy,... ,v, provided

X1(p)g(Xi, X;)] = Xi(p)[9(X1, X;)]

for all 4,5 € {1,...,I} for one and hence any frame adapted to
U1,...,Un. If this holds, v; is called geodesic.

Notice that this condition holds trivially if the dimension of I(p) is
one.

Definition 2.2. (M, g) satisfies the augmented isotropy condition
at p with respect to vy,...,v, provided

Xi(p)lg(Xi, X;)] = Xi(p)[g(Xk, X;)]

for all 4,5,k € {1,...,I} where Xy,...,X, is any frame adapted to
Viy+++ 3Un.

We shall now prove that every isotropic vector at p is geodesic if
(M, g) satisfies the augmented isotropy condition.
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Proposition 2.3. If (M,g) satisfies the augmented isotropy con-
dition at p with respect to an adapted basis, then (M,g) satisfies the
augmented isotropy condition of p with respect to any adapted basis.

Proof. Let (M, g) satisfy the augmented isotropy condition at p with
respect to an adapted basis vy,... ,v,, and let X5,... , X, : U - TU
be a frame adapted to vy,... ,v,. Alsolet Y1,...,Y,, : U — TU be a
frame adapted to some other adapted basis. We can then write

when 1 <i<I, I+1<g¢g<n. Wheni,jke{l,...,I}, we then find
that

and the proposition follows.

Now define
G:H; ={(z1,...,2,) |21 >0} — Hy
(V1 ,0n) — Vi (10,000 5 0p)
and
¢1H+XHi —>H+XHi
(v,y) — (G(’U), (l/yl)(]-’ s 7yn))
where

Hi:{(.l'l,... ,xn)|m1 750}
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® has an inverse O.

Definition 2.4. A smooth curve
X:)0,tT] —-TM
is resolvent differentiable if there exists sT > 0 such that
¢*oX(s)e HL x Hy, s€]0,s7|

and © o ¢* o X is the restriction of a smooth curve through 0 and

™ (%(@ o ¢* oX)(O)) >0
o <%(@ 0 ¢* o X)(0)> £0.

This is independent of the choice of tangent bundle chart ¢*, where
(U, ¢) is a chart around p adapted to vy, ..., vy, i.e., 0;(p) = v;.

Definition 2.5. Two resolvent differentiable curves X; :]0,¢ [—
TM,=1,2, are tangential provided

d . d )
(00670 X1)(0) = 2 (@0 " 0 X2)(0).

Tangentiality is independent of the choice of chart (U, ¢) adapted to
v1,...,U,. Tangential is an equivalence relation. An equivalence class
is called a resolvent tangent vector. The set of equivalence classes is
denoted

T,(E,T, M).

Define an injective mapping
T=¢* : T,(E,TM) — R*

[X] —> %(@ogﬁ* o X)(0).
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Notice that when (U,¢) and (V,v¢) are adapted to the same frame
V1,... ,Upn, then

T=¢* (u) = T=tp* (u), Vu € T,(E,T, M).

Now define
f =% =det{g(8;,0;)}
A\ = iqub
I' ozt (p)

Notice that A? = A¥ = X\. We shall assume A # 0. Let G*™ denote the
complement to g, in the matrix {g;;} and define

I = Z G*"[ij,m]
m=1

1 { 09im , 09jm  0gij }

[ig,m] = 2 dz; oz; Oz
Define 4
1 0~ ~
[ Ik
™ (- 2)! 92 20z, n(0)
2 8]—1 N
k k
Ay = — 775 7 1L 1m(0)
(I — 1)' 63}{ 1

for k,m € {1,...,n}. We shall see later that these constants are
independent of the choice of chart adapted to wvy,...,v,. These
constants give rise to a linear map M with matrix representation

10 0 . 0

0 0 (afyy +(2/3)b70)/A - (an +(2/3)b7)/A

0 0 (ajoy +@/3)0bi)/A - (ag +(2/3)by)/A

0 0 (2/3) . 0

0 0 0 . (2/3)

01 0 . 0

0 0 3(ajyy +(2/3)b7,1)/(20) - 3(ay +(2/3)b7,)/(2))

0 0 3(afyy +(2/3)b141)/(20) - 3(ag, +(2/3)by,)/(2X)

0 0 1 . 0

0 0 0 . 1
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in the standard basis in R?". We can now define the space of initial
velocities for geodesics through p, namely,

G(=
Tp (E,T,M)

= {u € I,(E, TM)|z = T=¢"(u), ; = 2,122, 2 € ImM} .

It will be convenient to have
T(t)=1t3, teR.

If (M, g) satisfies the isotropy condition at p with respect to vy, ... ,v,
where vry1,...,v,, I > 2, are orthonormal we can prove

Theorem 2.6. Given u € TF(E,TM) there exists a geodesic
v :]0,tT[ — M such that v o7 is resolvent differentiable with resolvent
tangent vector u.

If B : 10,87 — M is a geodesic such that 8" o T is resolvent
differentiable with resolvent tangent vector u, then B = 7 on their
common domain of definition.

Proof. Notice that the first I — 2 differentials of ffj vanishes at
¢(p) = 0 where (U, ¢) is a chart adapted to vy, ... ,v,. This means we
can write using Einstein’s summation convention

Bk kgl sir—a ) )
Fij - Qij (x)xh o Tip_g-

Here
11,1 1 o't o
11 = max—{,lrn(o)
_ Z 0925(2) o 0910(1) 19g11
seSto(1)=I 81‘1 6371 2 8$[
0920(2)  O9910(1) 1 0911
—1){+! . i - Gnm
+ ( ) Z (93:1 6£E1 2 (93:1 gI+17I+1 g
o€eSy,
o(1)=I

=\
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Also, for 2<k<I,1<m<I,

2: k,1,...,m,...,1
Q77 HLALS) )
11

1 81—1 _

= ()

(I —2) ozl 20z,, 1)

1 (0911/0xm) --- (0g11/0x1) --- (Ogir/0x1)
:_det . . . . .

2 \(0q1r/0zm) -+ (9gir/0m1) -+ (Dgrr/Owr)

“91+41,1+1 " " Gnn

{0 k#m
S l-A2 k=m,

using the isotropy condition. This constant vanishes when I +1 < k <
n. Similarly

-1
ot A
1d (0g11/0x1) -+ (0g911/0x;) -+ (Og11/0x1)
2 (0g11/0x1) --- (0g1r/0x;) --- (Ogrr/0z1)
*914+1,0+1 " Gnn
0 itk
:{A/2 i—k,

for 2 < k < 1,1 <1< I, while it vanishes for I +1 < k < n. Now
define a vector field

Y : ¢(U) x R® — R" x R"
(I, y) — (fya _f‘?jyiyjek:)a

where eq, ... ,e, is the standard basis in R". It is proportional to the
geodesic spray. It gives rise to the vector field

Z(v,y) =y DO(Y (2(v,y))), (v,y) € Hy x Hy.
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This vector field is the restriction of a smooth vector field also denoted
Z defined on an open neighborhood of the origin. In fact, here
(1/2)vi A + Fi(v)
_Un)\ + yn)\ + Fn(U)
Z(v,y) = viY y1 Q3 0) + Wi, y)
ynQ},ll,...,l(O) - Z:ln=2 lI=_11 Q‘;Lilml(o)vm
=25 205 0)y + i+ Wa(v,)
="V Z(v,y),

where F;(0) = 0, DF;(0) = 0, W;(0,0) = 0, DW;(0,0) = 0. So

A2 0 - 0 0 0 .- 0
0 =X - 0 0 A - 0
0 0 - 0 A2 0 0
L=DZy=| 0 X2 - x 0 =X\2 - =«

0 0 A2 % 0 0 —XA2 =«

0 o -+ 0 O 0 cee o A/2
—) is an eigenvalue of algebraic multiplicity n — I, 0 and —(3/2)\ is
an eigenvalue of algebraic multiplicity I — 1 and \/2 is an eigenvalue
of geometric multiplicity n — I + 2. We can assume A < 0 and then

there is a smooth n — I 4 2-dimensional stable manifold W*(Z,0) for
Z through 0. Define

T RZn Rn71+2

(v,y) — (V1, Y1, Y1415 - -+ > Yn)-

The restriction of 7 to W*(Z,0) is a local diffecomorphism on an open
neighborhood of 0 with inverse

p: W — W?(Z,0).
Now define a vector field

W(z)=mroZop(z), z€W
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which has
DWWy = )\/2id.

We can now use the blowing up construction via the map

n:R™"\{0} — R"

The restriction of this map to the exterior E of the unit sphere is a
diffeomorphism with inverse {. Furthermore,

1

Y= =1

DE(W (n(2)))

is the restriction of a smooth vector field on an open neighborhood of
the unit sphere with flow ®" and

(V(z),z) = \/2, zeS8"T1

Now define
b: St {(W1, Wnt1, Wntgy .o ,Wap) | wy > 0,wpyg >0} =85 —
3
T = I{n_l-i_2 N {Zl > 0, Zn41 > O,ZnJrlZ% = 5}

w— (3/2wn1wd) 3w

with inverse
a:T— S, zv+— z/|z]-

Now suppose we are given a u € Tf (E,TM). Define

w = a(r(Tz¢"(u)))

and a reparametrization function

0= /o Tuir 0 B(s)] 0 G o Bu(s) /(14 (s)]| ~ 1wy o B(s)* ! ds

B(s) = pom oY (s).
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Since

d

25 (M1 0 B8)(0) = mats 0 Dp((A/2)w) = (A/2)wnts

we can write
Tnt1 0 B(s) = ski(s), ki1(0) = (A/2)wpi1.

Doing this for the other functions in the integrand defining 7., we find
that

() = t3k(t)
E(0) = Nw, 4 1wi/12.

So T, is invertible on a small interval from 0. Substituting s = 7, (v) in

t
T_l(t):/ —3_2/3ds,
0 3

we find that 7, ! o 7 is smooth at 0 with
07)(0) = (12/(Nwnsw?)) /2.
Notice that the restriction of

dofBor !

to small positive reals is the tangent vector field of a geodesic « :
10,t7[ — ¢(U) which after reparameterization with 7 has resolvent
tangent

d -
—(Bor om)(0) = Dpo(A/2w) (12/ (Nwn1w]))
= Dpo(b(w)) = Dpo(r(T=6" (u)))
because Dpy = M. So 7 is the local representation of a geodesic also

denoted +y such that 4’ o 7 has resolvent tangent u. We have proven the
existence part of the theorem.
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To prove the uniqueness statement using Theorem 3.2, let § :
10, s7[ — ¢(U) be the local representative for a geodesic which is resol-
vent differentiable with resolvent tangent u. Define

k(t) =m 0008 or(t)! IV ()At/(2rps10© 0 B o r(t)f o Bor(t))

which is the restriction of a smooth function on an open interval I
around 0 with £(0) = 1. Then, for ¢ > 0 in this interval,

d 1
F©°8 o) = (L5208 or(t)k(r)
Let h: 0 € J — I denote a solution to

1 1

R (t) = gh(t)m, t#0,

tel,

which is at least C* at 0 with A/(0) = 1. We find it by applying the
method outlined in the proof of Theorem 2.2.

Define
y(t) =0 o B o1(t)
and
z.(t) =y(h(t), tel, t=0.

Let L denote a linear isomorphism such that
Z*=LoZoL™ !

has its differential at 0 in Jordan canonical form. By construction Loz,
is an integral curve for

1
tA/2

Since y is smooth and h is C%, we can write

*

z(t) = Loz, (t) = wt + ct? + dt® + 27 f (1),

where w = L o T=¢*(u)c, d € R?>" and f is a continuous function
with f(0) = 0. By Theorem 2.2, there is a continuous function
fx [0,b.] — R?" such that f.(0) = 0 and

2(t) = Hy(t) + 7 fu(t)
= wt + cot® + dot> + 3£ (8)
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is an integral curve for 1/(tA/2)Z*.
We claim that ¢, = c and d, = d. To see this, differentiate

%tm'(t) = Z*(z(t))
twice to obtain
(D25 — Xid)z"(0) = —D?*Z; (2'(0),2'(0))
and three times to obtain
(ng; - gx id> 2" (0) = —3D?Z;(2'(0),2"(0))
- D3Z;(2'(0),2'(0),2'(0)).
It is logically equivalent that
(DZ; — Xid)2"(0) = —D*Z;('(0), 2'(0))
(2.1) (ng - %A id) 2"(0) = —3D?Z;(2'(0), 2" (0))
- D*Z;(2'(0),2(0),2'(0)).

By definition of H,,(t), we have

_%z”(o) = —D?Z5(2'(0),2'(0))
(2:2) —\2""(0) = —3D? 2 (< (0), 2" (0))
— D3Z;(2(0), 2/(0), 2/(0)).
Now write
2"(0) = by + by
D*25(2'(0),2'(0)) = c1 + ¢2
where

bl, c1 € ker (DZS — %1(1)
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and bs and ¢y belong to the direct sum A of the generalized eigenspaces
corresponding to 0, —A and —(3/2)A. By (2.1) and (2.2)

A
(DZS - A ld)(bg) = —Cg = 751)2;
hence \
<ng - Eid) (bs) = 0.

Since A/2 is not an eigenvalue of the restriction of DZ§ to A, we
conclude that by, = 0, hence c; = 0. Now

2'(0) =by = (D25 — Xid) " (—c1)
= (Dz5 — A id)"H(=D?Z5(2'(0), 2(0)))
= (DZ; — X id) 1 (=D?Z;(2'(0),2'(0)))
=2"(0).

Thus ¢ = ¢,. The proof that d = d. is completely similar. Hence z = z
is unique by Theorem 3.2.

Now define

¢
T«(t) = / 2pi1 0 2%(8)f 0 Gozi(s)/m 02" ()2 Vs ds
0

2*=L1oz.

Hence 7 o h = 7, which is defined in terms of the unique z*. So
©0 8 oroh(t) = a.(1).

Hence,
B=®oz or !
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is unique. The theorem follows.

Example 2.7. Let M = R? equipped with the symmetric two tensor
field
g = (az1 + bmg)dxf + 2bzydwydey + caodrs

where a,c € R, b # 0. The origin is a singular point and 9;(0), 02(0)
an adapted frame.

Then 0;(0) is geodesic and
A<O.
Theorem 2.6 applies to show existence and uniqueness of geodesics at
the origin.
3. Orbit separation theorem. Let
A:U—-R"

denote a smooth vector field defined on an open neighborhood U of the
origin in R™ with A(0) = 0. We can assume that L = DA, is in Jordan
canonical form

diag(Al,... ,AklaAlirl;--- ,AkQ,Ak2+1,... ,Ak3,Ak3+1,... ,Ak)

where
i 0 0 O 0
— s )\i 0 0 0 0
6 0 0 0 O 0
A; = 0 1) 0 0 O 0
0 0 0 0 A
0 0 0 & —p; N

and § > 0, pu; # 0, \; < 0 when ¢ = 1,... ,k and \; > 0,
i:k2+l,...,k3and
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where \; < Owheni=k;+1,... ,kyand \; > 0 wheni = k3+1,...,k.
We shall assume that DAj has at least one eigenvalue with negative
real part.

The aim of the present section is to prove the orbit separation Theo-
rem 3.2. This theorem relies on definition (3.0), which defines a curve
through the origin in R™. The coeflicients in the definition depend on
v € R¥2, Theorem 3.2 says that v is a very good approximation to an
orbit of the vector field A. Moreover, v approximates a unique integral
curve of A. It is this uniqueness statement that is used to prove the
uniqueness statement of Theorem 2.6.

Now define

A =  max \;
ie{l,... ,ka}

p= (pla"' 7pk2)7 pi € NO
r=(ry,...,T,), T EZL

s=(p,¢71)
Oéi:Ai/A*, ’LE{l,,k}
,Bi:/,ti/A*, iE{l,...,kl}U{k2+1,...,k3}.

‘We shall also need

a— (al,... ,O[k,2)

b= (B1,...,0Bk)
and
o = max{{|es|}ieq,.. kp Ulail + 1Bl tieqr, .. kayulkat1,.. s} }-
If p; > [au /o] +1,0€{1,...,ko}, then
Pa=piag + - Py Oy > Q.
Consider then the nonempty finite set
{pa>ai|pi <[as/ai]+1,Ipl=p1+ -+ Dk, > 1}
It has a minimum «. Take ¢ € ]0, 1] with

2t €0, — [
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and choose p € N subject to
p<ar+2<p+1.
Consider also
B:U — R", B(z)=A(zx)— L(z).

By repeated use of the standard trick from singularity theory, we can
write using the summation convention

B(z) = Bi(z) + B ()
p
Bu(x) =Y _Bj, .. jTj Ty,
k=2

B**(x) = th--- Jp+1 (m)xh L e
for suitable real constants Bj, . j, and smooth functions Bj, ;. .,
defined on a possibly smaller open set U henceforth also denoted U.

We can assume with an appropriate choice of § > 0 that
(as +0/|Al)/ (o +€) < 1.
Now define a continuous curve through the origin in R"”,

v : [0, +o0[ — R"
np.«

() = Z Z Z tP2In? ¢ (Re® cos(brlnt)

(3.0) 9=0 |p|>1 |r|<p
pa<a.

+ Im~®sin(brint))
73€C, j=1,...,n, p. = 22PF3,
We shall now embark on a definition of the v°. We shall define them
inductively using induction on |p|.
Given (v1, ... ,vk,) € R*2 we shall first define v® for |p| = 1. To this
end, let
m, = dim A,

Is:{m1+-.-+ms_1+1,... ,m1+...+ms}
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and take 2j +1 € I, s € {1,... ,ki1}. So I is the set of row indices,
(r,0) = es; where

corresponding to the Jordan block As;. Let p =
, €k, is the canonical basis in R*? and define

€1y
04 . .
s 3 (V2i+1-2¢ T 002j12-2)  0S2¢<2j—(ma + -+ 1)
V2j+1 = TN+
0 2g > 2j—(ma+ - +m,s_1)
d? . :
s oo (V2422 ~T02j11-2)  0S2¢ <25~ (ma+ - +ms)
V2j+2 =g T
0 2¢>2j—(my+---+ms_1).
Forjel,,se{ki+1,...,ks}, let p=es; and r = 0 and define
5 .
yE = q!—)\ivj*q 0<g<j—(mi+---+my1)—1
g>j—(my+--+ms_1).

0
Let 4§ = 0 for all other choicesof i € {1,... ,k} and p, ¢, r with |p| =1
Assuming 4® has been defined when |p| <, pa < ay, ! > 1 and
7°=0

for |r| > |p| + 1 and g > n(2/Pl 4 2IPI*1 _ 2) define for these values of
P, ;7" = 0if [+3| = 0 and otherwise (}'** € [0, 27| by

cos (7' —isin (FY =3 /|3

This leads us to the next definition for p, ¢,r with |p| =1+ 1, namely,

Pk7(Ikyl'k|

P1,q1,T
Z Z "leh v 1|"'|’ij

l
s _
F=> X
k=2 qi+--+qr=q P1+--+Pr=p r1t--dry=r
Pk 9k Tk

(cos(¢Pr ™ £ ... 4 (P )
- isin((ﬁl’ql’rl 4+ ...+ ]Pkmq/c,rk))‘

i
J1Jk 2k—1

Proposition 3.1. FP¢" =0 for |r| > |p|+1 or g > n(2/Pl +2/PI+1 _

4).
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Proof. We shall prove this by induction on |p| > 2. If |p| = 2, then
there exists no pi,..., Pk such that

P=P1+ - +Pr [Pil>1
for k > 3. Take p1, p2 such that p; + p2 = p. Then
Ip1| = [p2| = 1;

hence,
,Ypi,ql',l‘i — 0, q; > n.

If ¢1 + g2 = ¢ > 2n, then one of the g; > n; hence,
F* =0, ¢>2n.
Ifry £ ro =r and |r| > 3, then
lr;| > 2

for ¢ =1 or 2, hence P9 = (), so

This proves the proposition for |p| = 2. Assuming the validity of the
proposition for |p| <1 —1,1 > 3, consider s with |p| = [. Then there
exists no pi,...,Px such that

Pi+- - +Pr=P
for £ > 1+ 1. Consider then p1,...,p;, 2 < i <[ such that
Pi1+--+Pi=P
Ifqg=q+---+q >n(2/Pl+2PIT1 _4) then there exists j € {1,...,i}
such that
q > n(QIPjHl +aolpil _ 2);

hence, yPi%°"i = () and this implies that

F*=0, ¢> n(g\Pl +olpl+1 _ 4).
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Ifry+---+r; =r and |r| > [+ 1, then there exists a j € {1,...,i}
such that

Iril > |pjl;
hence, yP7:95-*i = 0. We deduce that

F°=0, |r|>1l+1=|p|+1.

The proposition follows.
By definition, F* = 0 when |p| = 1.
We shall now define v* when |p| =1+ 1, pa < a,. Consider initially

j=mi+---+me_1+1
86{1,...,]{,‘1}U{k2+1,...,kg}.

We are thus considering a Jordan block A, with nonzero imaginary
part of the eigenvalue. j is the row number in A corresponding to the
first row of the Jordan block of A;. We shall now define 75,5, ;. There
are two cases (i) and (ii) below to consider.

(i) a = pa — ibr # a5 + ifs. Define

§Tq — aq77‘+1
and
NP B s
> (vt rariarey (%5 B (20
5q) B as )\
+ S (1 rartiag (5
+ -1 "g!/(rl(a®T T < J ):—( J )
P Fia 511

Due to assumption (i) and Proposition 3.1, the linear system

(3‘2) (aS/ETﬂ“ -1 /Bs/'fr,r > < ,st > _ < Sj >

_/88/67‘,7‘ as/é.r,r -1 7j+1 a']'+1
can be solved for 73,77, when ¢ = np, and by descending induction on
q. For the subsequent rows j = m;+---+ms_1+2i+1 < my+---+ms,
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1 > 1, define
np« s
> Currarar ey (0 B ()
g=r+1 7’85 Qs Vi+1

(3.3) +§(_1)4—Tq!/(r!aq—rﬂ ) (( FFJ >+ g @_f))

Jj+1
S
= < ¥ > .
@541

Now define 77,77 ; by increasing induction on j from m+---+ms_1+3
and decreasing induction on ¢ from np, using (3.2).

(i) fa=as+iBs, j =m1 + -+ +ms_1 + 1, define

- ( )—%(—1)“q!/(r!w+u*) (Fif )

Jj+1 q=r j+1

and consider the linear system

(3.4)
as/a—1 Bs/a 0 0 0
—Bs/a as/a—1 0 0 0
7np*a3/a2 7np*ﬂ3/a2 as/a—1 Bs/a 0
np«Bs/a’ —npsas/a® —Bs/a  as/a—1 0
(=)=t (np, 1B /a™P*HL  (C1)™P* (npy)las/a™P*T1 . . - as/a—1
’y;‘),np*,l‘ aP>"P+oT
PynP«,T P,nps,r
Vit @it
p,npx—1,r p,np«—1,r
Vi _ ar
J = J
p,np.—1,r p,nps«—1,r
Y+ a1
p,0,7 p,0,r
Vi1 Gjt1
... . 0
By Proposition 3.1, a>"™"" = afP*" = 0. Letting 757" = 0, we

obtain a linear system where the rank of the total matrix is equal to
the rank of the coefficient matrix and the number of variables. The
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system then has a unique solution which defines the 77,75,,. For
j=mi+--4+ms 1 +2i+1<my+---4+mg, i > 1 define

a‘.””) w: ( < F? ) .
(Y ) =Y () gl (et T, i) 4o Y2
(5o ) = -0 ar (4 )+a (2

q=r

and proceed as above to define 77,77, by increasing induction on j
from my + -+ -+ ms_1 + 3 using (3.4). Consider then

j:m1+"'ms—1+la
86{k1+1,...,kg}U{k‘g,—i—l,...,k‘}.

So now we are looking at a Jordan block eigenvalue, a real number.
Again j is the row number in A corresponding to the first row of the
Jordan block A;. We shall define 7;. Once again there will be two
cases (i) and (ii) to consider.

(i) a # as. Define

np.
—a?’r’r = Z (—1)q_’"asq!/(r!aq_r+1)'yjs-
g=r+1
np.

+Z )97 gl (r A et L) FE,

(3.5)

Due to assumption (i),

(3.6) (as/a—1)7; = a

can be solved for 7; when ¢ = np, and by descending induction on g.
Forj=mi+--4+ms_1+i<mg+- -+ mg, 7> 2, define

NP«
—a§= ) (-7 "qlay/(rla? " )S
g=r+1

np«

+Z )17 "q!/(rla?” T, )(Fjs—t—év]s;l).

(3.7)

Now define 7§ by decreasing induction on ¢ from np, and increasing
induction on j from my + - -+ + ms_1 + 2 using (2.6).
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(ii) f as =a, j =m1 + - +ms_1 + 1, define for r = np, —

(3.8) ,y;)errl,r — a2/((1" 4 l)as)a?mr,

and by descending induction in r. Here

NP«

A= (1) Tagg!/(rla? ")
q=r+2
NP«

£ 3T (TN (F + 697 )
q=r

L

931

with § = 0. Finally, let 42°" = 0. For j = mq + -+ + ms_1 +1i <

J

mi+---+mg, i > 2, define ’yf’“’“ by decreasing induction on r from
np, — 1 and increasing induction in j from my + -+ + ms_1; = 2 from
(3.8). Finally let 'y;-”o’r = 0. This defines v® for p with |p| = [ + 1.

Tracing back definitions, we see that

7" =0

for |r| > |p|+1 or ¢ > n(2/Pl - 2/PI+1 — 2) using Proposition 3.1. Since

the v®* depend only on v we shall also use the notation
V(t) = Hv(t)a t>0.
There are no resonances in the stable part if

a=pa—ibr #a,+iB;, se€{l,...,k}
a=pa—ibr#as;, se{ki+1,...,k}

for all p,r with pa < a, and |r| < p.

Theorem 3.2. (1) Given v € R*2, then there exists a unique

continuous map
f:00,0[ —R", f(0)=0

such that t — z(exp(A«t)), t € (1/A,) In(]0, b[)

z(t) = Hy(t) + t* = f(t)
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is an integral curve for A.

(2) When all the eigenvalues of L have negative real parts,l there are
no resonances in the stable part and o, + & > trace (L)/A. If y is an
integral curve for A such that y(t) — 0 as t — +oo, then there exists
w € R™ and a continuous map

00,0l — R"™,  f(0)=0
such that

y</\i1nt> = H, @) f(t), te€]o,b[.

*

Remark 3.3. Uniqueness in (1) means that if
fe 10,0, — R", f.(0)=0

is a continuous map such that

t +—— x4 (exp(As, t)),t € )\i In(]0, b.])
() = Hy(t) + 2 f.(t)

is an integral curve for A, then f = f, on their common domain of
definition.

Remark 3.4. (2) means that every integral curve for A with y(¢) — 0
as t — 400 has a tangent vector w that characterizes it.

Proof. Before outlining the strategy of the proof we need some
definitions. For u € N, let E, denote the space of continuous functions

f:1]0,b] x By(v) — B.(0)
f(0,w) =0, VYw e B,(v)

such that f; is C* for all t € [0,b] and for all j € 1,... ,u,

(t,w) — D%f(t,w)
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is continuous with
IDyf(t,w)| < dj, Y (t,w) € [0,b] x Ba(v).

Here B,(v) denotes the open ball of radius a around v in the max norm
| |. We can assume a,b,c > 0 chosen to render

H,(t)+t>TfeU

for all ¢t € [0,b], f € B.(0) and w € B,(v). We shall specify the d;
shortly.

Given f € E,, define for t €]0, ]

S0 = e ( / LA (5) + 57 s 0) s~ Hu(0)

toste Ay S
S(£)(0,w) = 0.
The strategy of the proof is to show that with appropriate choices of
the d;, S maps E, into F, and is in fact a contraction. This implies
the existence of a unique fixed point f, since E, is a complete metric

space. This provides the unique continuous map mentioned in (1) of
the statement of the theorem.

Now
By(Hy(s) + s f)
np«

= Z Z Z sP21n? s(Re F*® cos(brln s) + Im F® sin(brIn s))

g=0 pa<a. |r|<p
+ 512G, (s, f,w)

and
Buu(Ho(s) + 5% f) = 522Gy (s, fw).
Now define

G :[0,b] x B.(0) x B,(v) — R"
G(87 f?w) :G*(s,f,w)—i-G**(s,f,w).

Notice that there exist integers

K} €N, a=(ai,...,a;) € N/
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such that

l
D' Geo(foxid)=)>_ Y K¢

j=lai+--+a;=l
DIG, 0 (D (f, x id),... , D% (f x id)).

By shrinking a,b,c > 0 we can assume that

IDIGL(f,w)| < k;
Gs, fw)| < C
(s, f,w) € [0,b]  Be(0) x Ba(v)

j =1,...,u+ 1. To ensure the contraction property of S, choose
dy,...,d, and b > 0 such that

! Z > Kikj(da, + 1)+ (da; + 1)d;

[ Al (s + 2¢) et
+ (e +0)/INDdi/(en +€) < pudi, i €]0,1]

and

(e + 2¢) a*+2g Z Y Ej(kjpa(dey + 1) (day +1)
j=lai+---+a;=l

ki((day + 1)+ (day + 1) 4+ (day + 1) -+ (da, , +1)))
(e +0)/IMd) /(e +¢) = G €]0,1]
Cb /(A (0 +22)) + (e + (§/IAc]))e/ (o +) < e
kb /(o +26)) + (e + (3/I0D) /(e + ) < € € Jmax{Gi, ), 1.

We shall now compute expressions for the coordinates of S(f)(t) and
show that lots of terms will cancel out, due to our definition of the ~*.
In fact, we shall show that coefficients to tP* with pa < «, vanish. We
are thus able to show that

IS(F @) <e

and afterwards that S is a contraction.
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FOI‘j :m1+---+m,,_1+2i+1, o e {1, ,kl}U{k2+l,... ,k‘g},
i > 1, we find using Proposition 3.1 suppressing evaluation in w,

(S (f) () = / A Hs) + 5% 51 (5)) ds = H(0)

xS
¢
= [ S Bt B L) (T (s) 574 £(5)) ds— (1)

:/t)\i(% Z Zspa_llnqs
0 *

¢=0 pa<a, |r|<p
- (Re F} cos(brlns) + Im F} sin(brIn s))
+ 872G (s, f(5),w) + (Ao /5) Hi (s)
+ (ko /s)HY, (s) + (8/5)HY, ™ (5)
+ A8 (8) + pos™ T i (s)

+ 5Sa*+61fj_2(s)> ds — Hi(t)

np«

LYY Yy

q=0 pala. |br|<pr=0
- (Re F} (cos(brInt)Re, , —sin(brint)Im¢, )
+Im F} (cos(brInt)Im ¢, ; + sin(brInt)Reé;  ))
. (_1)r7qq!/(|a‘2(q7r+1)r!) In" ¢

¢
1 .

[ G s (9 w) + (e f9)HL(S)

0 *
+ (ko /$)HI,T () + (8/5)Hi, % (s)
+ Ao s™ T i (8) + 1os™ T fpa(s)
+ 05T i o(s))ds — Hi (),

which becomes

np.

Y Y e

r=0 pa<a. |r|<p

TP«
1
: <<Z <)\—*(Re FfRe&,q +Im FfIm¢, )

q=r
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+ (@ Re? + B Re v + (0/A)Rens o) Re o
+ 0o} + BTy + (Ao} 5) T

(1)l (e @YY — Re ﬁ) cos(brInt)

np.«
1 . S
+ <Z <)\—*(—ReFj Im¢, ; +1Im F;Re&, )

q=r

- (aﬂRe ’Yj + /BURe 7JS'+1 + (6/>‘*)Re 7;5'72)Im£r,q

+ (aoIm~; + Bolmajf g + (6/A)Im~F_5)Re {T,q>

(=1)T"g!/(r]a|P e ) — Im'yjs-) sin(brlnt)>

¢
+/0 i(so‘*“E*IGj(s, f(s),w) + /\Js“*“*lf]—(s)

+ o8 T fi1(s) + 054 T o (s)) ds.
Similarly,

t
1 _

S () (t) :/0 1 (5T Ga(s, f(s),w)
— pos® T () + Aos® T i (s)

405t LE(s)) ds

np.

+Z Z Z tP2In"

r=0 pa<a. [r|<p

NPs
1
-t (( > (A—* (Re Ffy Re&y g+ ImF}y Imé, )
q=r
+ (—B,Rej+a,Reni 1 +(6/ )Re T )Reé,
+ (=BoIm~j +asIm~5,  +(6/A.)Im~5_; ) Im §T7q>

. (—1)q—’“q!/(r!\a|2(q—r+1)) — Refyjs.+1> cos(brlnt)
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NP
1
+ (Z (A*( Re Ff, Im¢, , + ImF5 Re&, )

q=r

- (_/BaRe 'VJS' + a,Re 7;+1 + (5/>‘*)Re 7;71)Im§r,q

T (=BoTm S + aplma?y, + (6/A)Im 5 Re s)

A (—=1)77"g!/(r!aH e D) - Im’y;_,’_1> sin(brlnt)).
Using the definition of the v* we see that

(3.9)

S0 = [ G o ) w) + Ao ()

(
+ lio sa*+6_1fj+1( )+55a*+5_1fj*2(3))d5
(

FS D0 = [ G 6,10, 0) — s 1
A a,te— lf]—i—l( )+55a*+€71fj_1(8))d5
To see this when j = my + -

+my1+1, 0 € {1,... ,k} and
p = (r,0) = e,, = 0 in the summation above, compute

np.

Z((aURe 7; + BsRe ;1) Re&r g

q=r

+ (aoIm} + BoImf 1) Im &rg) (=1)77¢!/ (r!fa]* ="+ — Re s

1
| 2 ((aovj + Bovjt1)ae + (aovjr1 — Bov;)(—Bs)) — v; = 0.

The coefficient to sin(brlnt) in ¢t**7<S(f);(t) and the coefficients
to cos(brlnt) and sin(brlnt) in t*7°S(f),4+1(t) give three similar
equations.

In the case that j =my+---+my 1 +2i+1,0€{1,... ,k1},i>1
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andp:(r,O):ea,OSQT‘ijlf(ml—i—---mg_l) we find

np«

(DT e/ (Yl

q=r
- (agRev] + B,Rej1 + (0/A)Re;_2)Reéryq
+ (aJIm’y]S- + BoIm 7JS‘+1 + (5/)\*)Im"yjs-72)1m &rq — Re 'Y]S‘
(G-1=(mit+ms_1))/2

= 2 CORIGI

g=r+1
“(6/A) (vj—2q(acRe &g — BoIm & q)
+ Vj+1-24 (/BaRe rq + aoIm fr,q)
—|af*(vj_2qRe&rg 1 + Vg1 2lmérg 1)) = 0.

We have used that

asRe g?‘,q — BoIm gr,q =Re gr,qfl‘a|2
/BaRe gr,q + aalmgr,q =1Im gr,q71|a‘2-

To verify the first of these equations, observe that

qg—r+1
Re gr,q — Z (q —r+ 1> ag—r+1—2p(_1)p53p

2p=0 2p
e

Imé&, g =— Z < o+ 1 > ag*T72p(_l)PBgP+1‘
2p+1=1

Now for ¢ — r even we find
(ag + ﬂg)Re fr,qfl

q—r
_ § : q—r q—r+2—2p(_1\p32p
- ( 2p ) aa ( 1) /80'

2p=0
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q—r
> ( <q2_pr> B <2(fo_—r2> )ag_r+2_2p(—1)p62"
p=2

— az—r+2 + (_1)(q—r/2)ﬂg—r+2

q—r
g—r+1 g—r+1 —r42—
B ) (5 e
2p=2
=asRe& ¢ — BoIm&, 4.

The verification of the case ¢ —r odd is similar and so is the verification
of the second equation. The coefficient to sin(brlnt) in t***<S(f);(¢)
and the coefficients to cos(brlnt) and sin(brlnt) in t* S (f);11(¢)
give three similar verifications.

Forj=my+---+my+i,1>2,0 € {k1+1,... k2 }U{ks+1,... ,k}
we compute

tTES(f);(t) = /0 )\i*(sa*”E_IGj(sv f(s),w)
+ )\Jsa*+571fj(s) + 58a*+€*1f].71(5)) ds

3% Y e

r=0 pa<a. [r|<p

np.«
1 S S
. <<Z <)\—*(ReFjRe§T,q +Im FjIm¢, 4)
q=r

+ (asRens + (6/X)Revj_1)Reé,q

+ (0T + (/A)mag iy )

A(=1)977q!/(la)?lamH D]y — Re’yj-) cos(brlnt)

np.
1 s s
+ (Z <)\—(—ReFj Im¢, , + Im F7Re &, q)

g=r ¥

— (asRevj + (0/A)Rev; 1) Imé&, 4

+ (@l + (5/A)m o} Regs, )
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. (—l)q_rq!/(|a\2(q_r+1)r!) — Im’y?’”) sin(br 1nt)>.

For j =my + -+ ms_1 + 1, the expression for t**T<S(f);(¢) is given
by the above with § = 0. Using the definition of the v° we see that

b1
£ ES(f);(t) = /0 A_*(SQ*H?IGJ'(S,J"(S)W)
+ )\USa*+671fj(5) + 650‘*+571fj_1(5))d8.

For j =mj + --- 4+ my,_1 the expression for

£ =S (£);(1)

is given by the above with 6 = 0. Introducing the change of variables
5%t =y in (3.9) and (3.10), it follows that

S(f);(t) —0

ast — 0. So S(f) is a continuous map from [0, b X B, (v) to R™. From
(3.9) we deduce

1 t
S ()] < a*+25—10
SE01< e [ 6
+ (] + |ps)s™ 7 e+ 857 1e) ds

< 1 C ta*+25
= teete \ (o + 2¢)| A4
Qx

ay + €

+ t* e+ 8/ (| ] (aw + 8))t°‘*+sc> <e.

Similarly (3.10) produces [S(f);(t)| < c. So
S(f) :[0,b] x Ba(v) — Bc(0).

From the definition of S(f) it is clear that S(f); is C* for all ¢t € [0, b]
and for all j € {1,...,u},

(t, w) — DS(f)(t, w)
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is continuous at (t,w) with ¢ # 0. Introducing the change of variables
s*T¢ = v in (3.9) and (3.10), it follows that this is true for ¢t = 0 too.

From the first equation in (3.9) we compute for ¢ € 0, ],

/Dt_< oet2e— 12 Z

j=lai+-- Haj=I

1
DLS();(tw)] =

- K¢DJG(DS*(f xid),..., Dy (f x id))
+ 5% (DS fio(s, w)

+ )\aDl2fj(37 w) + NaDl2fj+1(57w)) ds

Sta*-'ré‘/ |)\| s IZ Z

j=lai+-+a;=l
K;k‘j (day +1)--- (daj +1)
+ a*+€_1(5/‘)\ |dl + |Otg|dl + |ﬂg| dl) ds

= |)\|a*+2s Z 2

j=lai+---+a;=l
‘K;kj(da1+l)“‘(daj+1)

The second equation in (3.9) and (3.10) also produces
IDSS();(tw)| < mdy, 1=1,...,u.

‘We deduce that
S:E, — E,

is a mapping from a complete metric space to itself. (3.9) gives us for
f1, fo € B, that

S(0);(tw) = S(f2); (w)
t
< g LG o ) 0) G o), )

+ 8 F NS+ Ao |+ o DI (s,w) = f3 (s, w)]) ds
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(R1b /(1A (e + 22)) + (s + (6/|A])) /(s + €))d(f1, f2)
C¢d(f1, f2)
d(fi,f2) = max - sup {|D}fi(t,w) — Djfa(t,w)l}.

7=0,...,u te[0,b]
wE By, (v)

ININA

(3.10) likewise produces

1S(f1);(tw) = S(f2);(t, w)| < Cd(f1, fa)-

(3.9) also gives

|DyS(f ) (t,w) = D3S(f2);(t, w)]

/ ay+2e—
ta +s‘)\ ‘

<Z Z K;‘D%G(Svfl(syw)yw)(Dgl(fl X id)v"' 7D;j(f1 X id)

j=laito;=l

— DiG o,y (s,0),0) (D5 (f2 x id), ..., D3’ (f2 x id)))|

+ s T+ Ao |+ 1o (1, f2)> ds

1t 1<
< g% +2e—1 Z
T otaete /0 | Al

Jj=1

S Ki(kjaad(fi, £2)(day +1) -+ (day + 1)

a1+ +aj=l
+ kjd(f1, f2)((day +1) -+ (dg, +1) + -+
+ (da1 + 1) T (daj_l + 1)))
+8”‘ TG/ I + an)d(fi, f2) ds

= (|)\ |(cvs + 2¢) Z Z K (kjp1(day +1) -+ (da; +1)

j=lai+--+a;=
+k; ((da2 +1)-(da; +1) +
+ (dal + l) o (daj—l + 1)))

(/M) + @) /(as + 6)>d(f1, #2)
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< {d(fr, f2).
Verify by similar computations that (3.10) gives
D38 (f1)(t,w) — D3S(f2);(tw)| < Cd(f1, fo)-

We deduce that
d(S(f1),S(f2)) < ¢d(f1, f2)

so S is a contraction with a unique fixed point f. Define
z(t) = Hy(t) + t* 1 f(t,v), te]0,b].

Since f is a fixed point of S, we have

t
(1) :/0 )\iSA(x(s))ds.
We deduce that

4 (e(exp())) = Alalexp(r.s))),

hence s — z(exp(A«s)), s € (1/X,)1n(]0,d]) is an integral curve for A.
We have proven the existence and uniqueness in (1).

To prove (2) we need some important lemmas, computing the 5.

Lemma 3.4. Whenj eI, se€{ki+1,... ko U{ks+1,... &k}
and a3 # pa — ibr, then

np.

T,r 1 s —r —r
AP = )\_*ZFJ (-1)17"g!/(rl(a — o))
q=r

J=mi+ -+ meg+1

NP«

T,r 1 S s —r —r
AT = S + 5D el (- )1
q=r
j?ém1+"'+m571+1,

where again a = pa — ibr.
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Proof. r = np, and the definition of 77 gives

APIPE 1 P,np.,T
= . ,
J Ae(a —ag)

when j = mj; + .-+ ms_1 + 1. We can then proceed by induction to
compute

p,r,r _ 1 - 1 ES s
G T ) >\ F e
s} g=rt1 *
1
(=17 gl /(rla? ") + ————FPT
(1)) + 5
(a — ay) A
q=r+1
np. NP«
23 e
q =r+lu=q
1

u—r u—q+1_qg-—r p.mr
(=D "ul/(rla — as)* T al )+ij

1 S 1 s q—r q—r
= > SR DT (et

(a—as) q—r+1
npx«
“Y YR
* g=r+1lu=r+1
1
—r —ut+l_u—r porr
(1)l = ) ) T
1 np«

q!
= F$
(a — ay) Z i

q=r+1

(=1 zq: — T
(a _ as)q—u+1au—r ad—"
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‘We have used that

q

> e tm
(a _ as)qfqulaufr al—"

u=r+1

1 K Qs a 1

(a—as) a— )l tguT + (a—as)a?™"  (a—a,)?"

u=r+1 (
and the lemma follows.

Similarly one can prove

Lemma 3.5. When j = my +---+ms_1 +21+1 € I, s €
{1,...,ki} U{ka +1,... ,k3} and pa — ibr # a5 + i3, then

p,r,r NP«
v 1 - —r
(vjf.’vr’r>:_)\ D=1 g (@ = ) 4+ B2
Jj+1 *

q=r

(o) ()
. s s j
—Bs  a—os Fiy

J=mi+--+ms1+1

p,”,r TP«
7 1 —-r —r
(B ) = 5 0 atim(ta—an + g2y

q=r

(a—as B " Frtovi,
—Bs  a—ag FjSH + 57;‘71 ’

We claim that for £ > 0
H,(t) = H,(kt)
3.11
( ) w = exp (Lilnk>v.
A
‘We have

np.

H,(t) = Z Z Z tP2In? t(Re~® cos(br Int)

pa<a. ¢=0|r|<p
+ Im~+®sin(brInt)).
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Compute
np.
= Z Z Z tP21In" t(Re BP"F cos(brlnt)
r=0 pa<a, |r|<p
+ Im BP"" sin(br Int)),
where
g (m+r)!
(3.12) pgP"r = Z kpa'i In™ ky® ™" exp(—ibrInk).
= rlm

Forp=(r,0)=es,2j+1€ I, s€{l,...,k1}, we find

r 2j—(myi+--4mg_1)—2r m
e 1( 1 (5
Ref3;h = <—)\*> > KPe i In k<—)\*>

2m=0
* (V2j4+1-2(mtr) cOS(bBrInk) + vaj o 2(m4r)sin(brink))

= %<i> (exp (Lilnk>v> .
A A As 2j+1—2r

This and three similar computations show that the SP"*, |p| = 1 have
the values 7P that the definition procedure in the beginning of this
chapter would assign them starting from

1
w = exp (L}\— In k>v.

(3.13) PP = P

Assume that

for all p with |p| < I < p. We have shown that this is true for
I =1. Toproveit for [p| < l+1letj=mg+--+msq1+1,
se€{ki+1,... kot U{ks+1,...,k}. Then we find using Lemma 3.4,

ﬁpmr

- S LR SN SED SEN >

g=m+r k=2ri1%--Etry=rpi++pr=pP @1+ +qr=q
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‘ P1,91, "1| .. | ka‘Ikyl'k|
Jl g | Vix Yir
. (005(421,417r1 + ...+ ;’:Hml‘k) o iSin(ijll’q“rl 4+t Cﬂk,qk,rk))
g 1
s . q—(m+r)
ok—1 exp(—ibrlnk) (m +1)! ( 1) (@ — ag)r (mint

Lpa NP+ NPx — q

+
S 35 D SSEN

g=r m=0

DD 2

k=2r1%--Ery=rpi+--+pr=p @1+ -+qp=q+m

51 ]k,yjpllthrl (,-yf]vaIk,l‘k)
! 1
L . PR S
2"771 eXp( Zbr In k') 7"! ( 1) (a _ O{S)q77‘+1 )

where iT is the identity and i~ is conjugation. Now by Lemma 3.4 and
the induction hypothesis

np.
ny = ZZ > > >
*q 7 k=2 q1+-+qr=q P1+--+Pr=P r1t--Erp=r
1 ¢ 1

J P1,91,r1 | Pk,qk Tk q-r —
- B; a1 ( 1k )2k 17“'( ) (@ — oy )i T

Ji ]knJl an

pa "Px 1

S5 S DRIND DRNED SR B

q=r k=2q1++qr=¢ P1+-+Pr=p riL---try=r

npx—q

Z ' (ml + Q1)! P1,m1+4q1,r1 exp(—ibr1 In k)

| | J

my=0 q1-mq.- t

NP« —qk
(Mg + k)1 prmatar, .

Z WZ (’Yjp: Mk ke Tk exp(—zbrk In k))

mi=0

1

|
Mt tmy q_ _1\g—r
In k=(-1) @ a )

r!

Introducing the change of variable my = m — (my + - - -+ my, ) we find
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that 75" = 2" provided

(3.14)
' np.—q1 mi+-mg—1+nps—qk (ml + q1)|
i !
Z le"'jk Z o Z q1'm;!
qa+tae=q m1=0 m=mi+-+mg_1 ) )

m—(ma 4 me) + @k)! pymatane
akl(m = (my+ -+ me_1))t

Pr,m—(my+-+mp_1)+qr,rx
() )

— § : q + m § : Bj P1,q1,r1 | | ( Pk#lk#‘k)
mlql J1-- ]k’y.]l 7]k
g1+ t+qr=gqtm

forallg € {r,... ,np.} and k € {2,...,1}.

To prove this claim we need

Lemma 3.6. Forallk>2, m>1,

(q_qi!m)g: > (ml..ﬁka) (qlf—l:nl)!

Myt tmp_1 <m
_ q!
(g — (m —(my+---+mp_1)))!

where q = q1 + - -+ + qk.-

Proof. For m =1 this is true. Assume the claim is true for all values
< m. For k = 2 we find

q!

(Q(m+Dﬂ:<@q;My%+@—m)
> (M) (e a

) M (qu —1i)! (Q2q1—q(2 —1) = 1)!>
;<(l—1> <7>>(q1—l)(q:1—q(in+1—l))

NE
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q1! gz!
@m0l (- (mr D)

T (m+1 q1!gy!
- ; < ¢ > (@ —)!(gz — (m+1—1))!

so for k = 2 the lemma is valid. For &k > 3 we find
(3.15)

q! B q!
G e -y ™

= Z <m117.r%.mk_1>Q

mi+--+mp_1<m
m1>0

m
et Z <m1‘”mk_1>Q

mi+--+mp_1<m

(@ —ma)!- (e — (m+1— (my+-- +my_1)))!

We claim that

m
Zm1+...+mk,1:m+1 (ml _1.. ‘mk—1> Q+- -

mo=0V---Vmg_1=0

m
+ =
(3.16) Zm1+ nj:bf;), m <m1 S Mp—1 — 1> @
m1=0V:-Vmp_2=0

B Z ( m+1 >Q
- )
ml ---mk_l
mi+---+mg_1=m+1
—(m1,... ,mk_1>0)

for all £ > 3 and all m > 1. This is certainly true for k¥ = 3. Assume
(3.16) is true for all values < k. For m; +--- 4+ mg = m + 1, we have

S ()@

m1>0
mo=0V---Vm=0

oY (e

mpg >0
m1=0V---Vmy_1=0
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m—+1
s (e
m+1
LD S SRR
+ Z <m1—1 ms"'mk>Q+”'

m1>0
m3z=0V:--Vmr=0

m
+ Z (m1—1 m2...mk_1)Q+”'

my>0
mao=0V---Vmy_1=0

S T

my >0
mo=0V:--Vmy_1=0

m
* Z (ml"'me mk1>Q

m1=0V---Vmy_2=0
my >0

which by the induction hypothesis becomes

m+1
>y mrt Jase

ma,... ,mE >0
m+1
o (et e

my,... ,mi_1>0

m+1
ST G e

—‘(mz,... ,mk>0)

m+1
2 (Wt

—(ma,... ,;mr_1>0)

RN G L

—‘(ml,... ,mk>0)

and (3.16) follows by induction. Similarly one can prove, summing over



METRIC SINGULARITIES

all my + -+ +myp_1 < m,

m
> (ml—l---mk—1>Q+"'
m1>0
m
Y (1)@

mo=0V:-Vmyp_1=0
mp_1>0

m1=0V---Vmy_o=0

Y (e

=(ma,... ,mk—1>0)

m+1
- Y (W )e

—(mi,... ,;mp_1>0)

Now (3.15) is equal to

> ()

mi+-Fmip_1<m
my,... ME_1>0

m m
o) (o M) )0

m
+ Z <m1—1---mk1>Q+'”

my+mg_1=m+1
mi1>0

m
f Y (e )@

mi+mg_1=m+1
mp—1>0

m
LD DR G

my+tmE_1<m
m1>0
mao=0V---Vmy_1=0

)
LD SE (S I

my+-tmi_1<m
mp_1>0
m1=0V---Vmg_o=0

D D A -

mi+-4+mg_1<m
=(m,... ,;mEk—1>0)

Q_|_...

951
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which by (3.16) and (3.17) becomes

Z < m+1 ) 0
my---MEk—1
my+-4mp_y <m+1
mi,.. ,Mp—1>0

m+1
D S (s

mi+-t+mg_1=m+1
—(m1,... ,mp_1>0)

m+1
for (W )e

mi+-tmp_1<m
—(m1,... ,mp_1>0)

m+1
- Y (Wmh)e
my+-4mp_3 <m+1
and the lemma follows.
Using the lemma we can now prove (3.14). By Lemma 3.6, the

righthand side of (3.14) is equal to

npx—4q 1

DD

m=0 mi+---+mg_1<m

> <m1..@mk_1>@1_q—!ml)!'“

g1+ tgr-1<g+m

X (g+m—(g1+ - +qe1)) B pae
(q_(QI+"'+Qk-1)+m1+---+mk_1)! Ji gk o1
. Z'Zt(,ypkanJ'k)

J
npx—q 1

oiD DR DR

m=0 mi+---+mg_1<m

> (s o) ey

g1t Fqe—1<gtmit-t+me_1
q12mi,... Q-1 >Mk—1

. (g+m— (g1 4+ +qr-1))! j e
(q_(ql+"'+Qk71)+m1+---—|—mk71)! JiJk i1
. Z'i(,yik,%,l‘k).
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Substituting g; = ¢1 — m1,...,g5_1 = qk-1 — Mk—1 and renaming
qiy---+q5_1 t0 q1,... ,qr—1, this becomes
npx—q

> X yoo lerm)t

Iy !
m=0 my+--+mr_1<m q1++qr_1<q q1-my:
(g+tm—(mi+-+mea)—(a+--+q-1)) v
(@— (g1 + -+ qr_1))(m — (myg + -+ +my_y))! I1dx 10

Z-:t( Pk7Q+m*(Q1+"'+Qk71)7(m1+'"+mk—1)yrk)
Jk

)

which becomes the lefthand side of (3.14) with the definition ¢, =
q— (g1 + -+ qx—1). We have shown that

To prove (3.18) for j € I;\{m1+---+ms_1 + 1} use induction on j to
verify that

gpa /"1
p,rr _ NV m
Bj W ( Z rlm! ™k

np« .
Y FRgl(—1)aCrtm)
q=mtr (a — )= (rm)+1
Npx—T nps
(3.19) + Z —lnk Z 73 _14!( —(r4m)
q=m-+r
1 .
(@ ag)r rEm exp(—ibrink).
Also
np«
77] )\ ZFS YT /(! (@ — )T r+1)
(3.20) .

Z o3 1 (=1)7" /(@ — )T,

We have already seen that the first sum in (3.19) matches the first
sum in (3.20). By the induction hypothesis the second sum in (3.20)
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becomes

np. np.—q

)\ Z Z LP2 m‘;? In mk.,yp ,m+q,r

qg=r m=0

-exp(—ibrink)g!(—=1)9""/(r!(a — as)?"" ).

Switching the sums and introducing ¢* = ¢ + m, this term is seen
to equal the last term in (3.19). Similarly one proves (3.18) when
se{l,... ,ki}U{k2+1,...,k3} using Lemmas 3.5 and 3.6. We have
verified (3.11).

Assume a, + & > trace (L)/\.. Now define
w(t,v) = Hy(t) + 1% f(t,0)

and observe
1
det Dyz(t,0) = det { exp (L)\— lnt> +t* D, f(t, 0)}

1
= det exp (L}\— 1nt> + t**Th(t)

1
= exp <trace (L)\— In t>> +t*Teh(t)

1
= exp <trace (L))\— In t) +t*FEh(t)
70,

for sufficiently small t. Let a denote such a small ¢. Then there exists
an open neighborhood U around the origin in R™ such that

veUr— z,(v)

is a diffeomorphism onto its open image V. Since y(t) — 0 as t — —oo,
there exists a ty > 0 such that

y(to c V)

hence
y(to) = z(a,v) = z,(exp(As, b))



METRIC SINGULARITIES 955

for some v € U. Thus

y(t) = zy(exp(A(t — to + b)) = zy(kexp(Ast)), k> 0.

y<)\i*lnt> — 2y (kt)

= H,(kt) + t* Tkt £ (kt)
= H,(t) + t*Tek> e f(kt),

Finally

and the theorem follows.
Corollary 3.7. n® =%, ¢=0,... ,np., pa < ay, |r| <p.
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