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BLOW-UP OF SOLUTIONS OF SOME
NONLINEAR HYPERBOLIC SYSTEMS

KENG DENG

ABSTRACT. We consider two hyperbolic systems: wu: =
Au + |v|P, vir = Av + |u|? and uyr = Au + |v|P, v =
Av+|ut|? in R™ X (0, 00) with u(z,0) = f(z), v(z,0) = h(z),
ut(z,0) = g(x), vi(z,0) = k(z). We show that there exists
a bound B(n,p) such that if 1 < pg < B(n,p) all nontrivial
solutions with compact support blow up in finite time.

1. Introduction. In this paper we study two systems of hyperbolic
equations:
wge = Au + |v]?, v = Av + |ul9,
u(z,0) = f(z), v(z,0) = h(x),

uw(z,0) =g(z),  vi(z,0) = k(z),
zeR™ t>0,

(1.1)

and
ug = Au + |vg|?, v = Av + |ugld,
s u(w,0) = f@),  v(e0) = )
w(z,0) = g(), vi(z,0) = k(z),

zeR™ t>0,

where p,q > 1 and pg > 1, and the initial values are compactly
supported. Such systems are special cases of a significant class of
quasilinear second order hyperbolic systems with application in physics
and applied science, cf. [5].

Our main objective here is to establish blow-up theorems for systems
(1.1) and (1.2). As an example of the type of results we wish to obtain,
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let us recall some known results for two related initial value problems
of scalar equations.

uge = Au+ |ul?,
(1.3) u(z,0) = f(z), uy(,0) = g(z),
zeR" t>0,

and

Ut — AU + |Ut|p,
(1.4) w(x,0) = f(z),  w(z,0)=g(z),
zeR™ t>0.

Over the past few years, many authors have worked on (1.3), (1.4) and
partially verified the following conjecture.

Conjecture W. There exists a critical exponent py(n) such that if
1 < p < po(n) every solution blows up in finite time, while there are
nontrivial global small solutions if p > po(n).

Here py(1) = 400 for problem (1.3) with n > 2,

n+1+vn2+10n -7

1. =
(15) po(n) il
and for problem (1.4) with n > 2
n+1
(1.6) po(n) = —7

The blow-up part is almost complete except the critical case for (1.3)
with n > 4, see [3, 7, 12, 14, 17]. Of much greater difficulty is the
global existence part. For problem (1.3) Glassey [4] and John [6] proved
it for n = 2 and n = 3, respectively, Zhou [16] studied it for n = 4 in
the Sobolev class, and Kubo [8] considered it with a radially symmetric
restriction. For problem (1.4), Sideris [13] and Schaeffer [11] proved
it for n = 3 and n = 5, respectively. Some other related results were
obtained in [9, 10], and it is worth mentioning that Carpio [1] proved
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the existence of unbounded global solutions for the initial-boundary
value problem:

Ut = Au + ‘Ut|pilut, T € Q,t > 0,
u=0, x€dt>0,
u(z,0) = f(z), u(z,0) =g(z), z€Q,

where 2 is a bounded domain and p > 1. For further details we refer
the reader to the survey paper by Takamura [15] and the literature
cited therein.

Until recently, nothing was known about systems (1.1) and (1.2) from
the point of view of critical exponents. In [2] we conducted a discussion
for system (1.1) with 1 < n < 3. Our argument strongly relies on the
positivity of the fundamental solution of the wave equation and is quite
different from all previous ones used in the verification of Conjecture W.
We showed that there exists a bound B(n, p), < oo, such that if p,q > 0
and 1 < pg < B(n,p), then all nontrivial solutions of (1.1) blow up in
finite time. In this paper we shall extend similar results to (1.1) with
n >4 and to (1.2) with n > 1. In Section 2 we show the nonexistence
of global solutions of (1.1), and we establish the blow-up result for (1.2)
in Section 3.

2. Blow-up of solutions of system (1.1). In this section we
establish the blow-up result for system (1.1) with n > 4. In such higher
dimensional spaces, due to the fact that the Riemann function R(t)
for the wave equation is no longer a positive operator, the situation
becomes very complicated. To overcome the difficulty, for problem
(1.3) Sideris [14] averaged the Riemann function in time to yield a
useful lower bound for time averages of the solution. In the sequel,
we will first follow his idea to obtain a pair of second order ordinary
differential inequalities. We then demonstrate the nonexistence of
global solutions of these two inequalities via an integral equation
argument. For definiteness, we may assume p < ¢ throughout this
section. And we note that (u,v) needs only to be a weak solution
of (1.1) in the sense that on a time interval 0 < ¢ < T < oo,
u(t) € C([0,T); LL(R™)),v(t) € C([0,T]; LP(R™)), and u,v satisfy the
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following integral equations

u(t) = up(t) + / R(t — ) [o(r)|P dr,

o(t) :vo(t)—i—/o R(t = )+ [u(r)|? dr,

where ug and vy are solutions of wy; = Aw with the same initial data
as u and v, respectively.

We begin by imposing several assumptions on the initial data.

(H1) (i) £, 9,h, k € C5°(R") with supp {f, g, h, k} C {|z| < d};
(ii)
[ Jal @ e >0
Rn
/ e/ h(z) de > 0,
| laPae)do =0,
Rn
/ |z|Pk(x) dz > 0,

where p =0 if n is odd and p = 1/2 if n is even.
As in [14], we also define that, for t > d,

(2.1a) d(t) = /tid(t —T)m / ) u(z, ) dz dr,
(2.1b) U(t) = /tid(t —T)m / ) v(z, ) dz dr,
where m = (n — 5)/2 if n is odd and m = (n —4)/2 if n is even.

We then state the following two lemmas, whose proofs are identical
to those of [14] and hence are omitted.
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Lemma 2.1. There exists a positive constant co such that, fort > d,

(2.2a) " (t)
(2.2b) U (t)

co(t +d) PR,
co(t +d)™™a=D|®(¢)|2.

v v

Lemma 2.2. There exist a to (> d) and a positive constant ¢y such
that

(2.3) ®(t) > er(t + d)"HPD/2 0 for g > ¢,

We now present the main result.

Theorem 2.3. Assume (H1). Forn >4 and 1 < p < po(n), po(n)
of (1.5), if 1 < pg < [(n+3)p+2]/[(n—1)p—2], every solution of (1.1)
blows up in finite time.

Proof. Assume to the contrary that (1.1) has a global solution (u, v).
A combination of (2.2b) and (2.3) yields

(2.4) W (t) > cocd(t + d)" T Pam=1/2 for ¢t > ¢,

Integrating (2.4) from ¢, to ¢, we have

t
(2.5) ' (t) — W' (tg) > coc? / (7 + d)nrarar=1/2 g

to

Since [(n —1)p—2]pg < (n+3)p+2<2(n+1)pforp>1>2/(n—1),
n+q—pg(n—1)/2 > —1. Thus, from (2.5), it follows that ¥’(¢) must
be positive for ¢t > t; > tg, and we find

t
V(1) > coc / (7 4 dyrraPaD/2 g

t1
> Cg(t + d)n+1+q—pq(n—1)/2 for ¢t > to

(2.6)
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for some cp > 0 and ¢2 > t;. Integration of (2.6) over (t2,t) then leads
to

(2.7) () > es(t +d)"T2HaPar=D/2 > oot 4 @)"=D/2 for ¢ > tg

for some t3 > to, since [(n — 1)p — 2]g < n+ 5 for p > 1.
We now combine (2.2a) and (2.7) to obtain

(2.8) ®"(t) > coch(t + d)" " FIP/2 for t > ¢,
Since n—(n+1)p/2 > —1 for p < po(n) < 2, (2.8) implies that ®'(¢) > 0
for t >t > t3. Hence, from (2.2), (2.3) and (2.7), we have that for t > i,

t rn
@(t)zc1+c0(t+d)*"@*1>// WP(7) dr dn
t t

t
(2.9) —crteo(t+d) 0 [(- () ar,
t
t rn
W(t) > c3 + colt +d)~"@7 / / ®9(7)drdn
t t
t
(2.9b) =cs+c(t+d) @Y / (t —7)®(7)dr.
t

Consider two cases.

Case 1. p=1. Let 1/g < 6 < 1. By (2.3) and (2.9), we find that, for
T <t < 2T with any positive number 7' (> {)

(2.10)

3(t)> e+ 3 /T (n+d) @Dt —p) /T (n - 7)8% ()30 9(r) dr

t n
R W B / (t—n) / (n —7)@"(r) drdn
T T
¢
= ¢ + ! TPI3 D (g, 2)T*A/ (t — 7)°®%(7) dr,
T
where A = n(¢g—1)— (n+3)(1—0)q/2 and B(2,2) is the Beta function.
Thus, by comparison, ®(t) > ¢(¢t) on [T, 2T], where
¢

(2.11) o(t)=rc1 + C4T7>\/ (t —7)30%(r)dr for T <t <2T
T
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with ¢4 = cgcgl_e)q3’”(q’1)B(2, 2). Clearly, ¢(t) satisfies
e (t) = 6, T2p%(t), T <t<2T,
p(T) = c1,¢'(T) = ¢"(T) = " (T) = 0.

For A < 4, if T' is large enough, there exists a T, T<T< 3T/2, such
that ¢(T') = 2¢;. Moreover,

(2.12)

o (8) = Gea T / (t — )% (r) dr

T
2.13 ¢
(2.13) > 6e T ML / (t —7)20% (1) dr
T
> Ty (t)
and
¢
o"'(t) = 6C4T_)‘/ ©%(r) dr
T
(2.14) t

> GeaT Mt 2 / (t — 7)0%(r) dr
T

> (T72/2)¢'(t)-
This equation in (2.12) together with (2.14) leads to
P ()" (1) 2 3eaT~ P2 (1) (8).
Integrating this relation from 7" to t then gives
(2.15) (pm(t) > CT—(A+2)/2(¢9q+1(t) _ c?q-ﬁ-1)1/2

with ¢ = (6c4/(0g + 1))/2. From now on, without causing any confu-
sion, ¢ may be used to denote various positive constants independent
of T. By means of (2.13), one can see

(2.16) " (£)¢" (1) = TPt (1) — T2 (1),

which, upon integration over (T,t) for T <t < 2T, yields
t
(¢ () 2 e O072 [ (tavi(r) - g () dr
T

261
> o~ (A 4)/2 [(Hq + 1)1/2c?q/2 / (0 — 01)1/2 do

C1

#(t)
+cs / o(fa+1)/2 do] ,
201
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where c; = min{(fq + 3)(8q + 1)1/227(9q+3)/2/3’2*(0q+1)/2}_ Hence,
for T <t < 2T,

(pll (t) > T~ (A+4) /4<P(0q+3)/4 (t),

or
¢ (t)¢' () > T~ MDA/ (1) (1),

The above inequality implies that, for 37/2 < t < 2T,

Q' (t) > T~ OFD/8(p0atD/4 () _ HOa+T)/4(F))1/2

(2_17) > CT,(,\+4)/3(<P(eq+7)/4(t) _ (p(aq+7)/4(3T/2))1/2.

Integrating (2.17) from 37°/2 to 21" then gives

»(2T)
TN/ < / (o0a+/4 _ p(0047)/4(37/9Y)=1/2 g
$(3T/2)

< 2(fg +7) 2 0atI/8(37)2)

2(3T/2)
. / (0 — @(37/2)) 12 do
%]

(2.18) (3T/2)

L 9(0atT)/8 / T s gy
20(37/2)

= [4(0q+7)"Y? +16(0g — 1) Y| 1 1/8(31/2)
< [4(6q + 7)Y +16(0q — 1), T8,

Since the constant ¢ depends only on A and fgq, if T is sufficiently large,
(2.18) yields a contradiction. This means that ®(¢), and hence the
solution (u,v) of (1.1) cannot exist globally for A < 4, which leads to
the limitation ¢ < (n+5)/(n — 3), because 6q can be chosen arbitrarily
close to one.

Case 2. p > 1. Let 1/pg < 6 < 1/q. By (2.9a) and the inverse
Hélder’s inequality, we find that for ¢ > #,

t

(2.19)  @%(t) > cgfI(Hd)fn(pflwquufeq)/ (t — 7) WP (r) dr,

t
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which, combined with (2.3) and (2.9b) yields that, for ' < ¢ < 2T with
any positive number T (> £)

(t) > c5 + cgT~@=DF(nt1=(n=1)p/2)(1-0)q

(2.20) / (t —7)@%(r) dr

T
t

>c3+ C7T_;\ / (t— T)3\Ilgpq(7') dr,
T

where A = n(g—1)— (n+1—(n—1)p/2)(1—0)g+n(p—1)8q+2(1—6q).
Thus, by comparison, ¥(t) > 9(t) on [T, 2T, where
gt
»(t) =c3+ C7T7/\/ (t — 7)%%9(r)dr for T <t < 2T.
T

As before, one can see that if T is large enough, (t) and hence ¥(t)
cannot exist globally for A < 4, which is equivalent to the following
inequality

(2.21) [(n = 1)p = 2]pq + [(n + 1)p — 2]6pg < 2(n + 2)p.

Since fpg can be chosen arbitrarily close to one, (2.21) leads to the
bound

(n+3)p+2

Remark. The hypothesis p < po(n) is necessary because setting ¢ = p
in (2.22) we obtain

(n—1)p* —2p* —(n+3)p—-2<0,

that is,
(p+1)[(n—1)p° - (n+1)p—2] <0,

which is satisfied if p < po(n).

3. Blow-up of solutions of system (1.2). In this section we
establish the blow-up results for system (1.2) with n > 1. We will first
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follow Zhou'’s idea for problem (1.4) [17] to obtain two coupled integral
inequalities and then show the nonexistence of global solutions of such
inequalities. For that reason, we assume u,v € C*(R" x [0,7]). And,
for definiteness, we may again assume p < q.

We begin with two hypotheses on the initial values.
(H2) (i) f,9,h, k € C5°(R™) with supp {f, g, h, k} C {|z| < d};
(i)
/ g(z)dz >0, / k(x)dz > 0.

As in [17], when n = 1, we define

(3.1a) ®(y) =uly,y+d),  ¥(y)=v(y,y+d)

and, when n > 2, letting z = (y,z) € R x R"~!, we define

®(y) = u(y, z,y + d) dz,
(3.1b) /R"’l

U(y) = / oy, 2,y + d) d=.
Rn—l

We then state the following lemma, whose proof is similar to that of
[17] and hence is omitted.

Lemma 3.1. There exist positive constants co and ¢y such that, for
t>d,
(3.2a)
Yy
B) 2 [ () IO D REp
d
(3.2b)

Y

W(y) = e+ o /d (€ + d)~ (D@ D/2)3(6)[4 d.

We now present the main results.
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Theorem 3.2. Assume (H2). If 1 < pg < oo, for 1 < p < oo when
n=1, forl <p <2 whenn =2, and for p =1 when n = 3, every
solution of (1.2) blows up in finite time.

Theorem 3.3. Assume (H2). If1 < pg < (n+ 1)p/[(n — 1)p — 2],
for 2 < p <3 whenn =2, for 1l < p <2 when n = 3, and for
1<p<(n+1)/(n—1) when n > 4, every solution of (1.2) blows up
in finite time.

Proof of Theorem 3.2. Assume to the contrary that (1.2) has a global
solution (u,v). Making use of (3.2) and applying Jensen’s inequality,
we find that, for y > d,

Y q
%)z e aaly + @2 ([ ac)
>+ ctl)“’(y + d)~ (D (a=1)/2=(n-1)(p=1)a/2

(3.3) . ( /d ’ /d “wr(e) dfdc>q

— o1 + ey 4 @)~ (D@D /2 (D) - 1)a/2

([ w-9w@ dg)q.

Then, for any positive number Y (> d), we have

WA(y) > e + c¥ /Y Cy ) a(e)P de

for Y <y <?2Y,

(3.4)

with A = (n+1)(q — 1)/2¢ + (n — 1)(p — 1)/2. Thus, by comparison,
w/4(y) > ¢(y) on [Y,2Y], where

Y
35 v =ctay ™ [G-0uied ory <y <oy
Clearly, ¥(y) satisfies

Y (y) = esY MPPUy), Y <y <2,

(3.6)
$(Y) = 2,0 (Y) = 0.
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Multiplying the equation in (3.6) by %'(y) and integrating from Y to
Yy, we obtain

(8.7) U (y) = e TVEPT () - Pt (V)2
Integration of this relation over (Y,2Y) then leads to

< ¥(2Y)
e Y 2-N/2 / (oPTHY — Pl (y)) =1/ g
YY)
29(Y)
< pa+ ) [ o w2
P(Y

+ 9(pa+1)/2 /Oo o~ (Pat)/2 4.
29(Y)

= 2[(pg + 1)"Y/2 + 2(pg — 1) H]e§ TPV,

(3.8)

For \ < 2, if Y is sufficiently large, (3.8) yields a contradiction, which
means that ¥(y), and hence the solution (u,v) of (1.2), cannot exist
globally. The restriction A < 2 is equivalent to the following inequality

(3.9) [(n—1)p—2]g<n—+1.

In view of the conditions on p for 1 < n < 3, (3.9) is valid, and hence
the proof is completed.

Proof of Theorem 3.3. We again assume to the contrary that (1.2)
has a global solution (u,v). Using ¥(y) > ¢; > 0, from (3.2b), (3.2a)
yields

®(y) > es(y + )~ TVETD2 for y > 2d.

Combining this with (3.2b), it follows that

(3.10)  ¥(y) > cocy /y(g 4 d)(DaD/24a0- (D) (p-1)/2) g
2d

Then ¢ < (n+1)/[(n — 1)p — 2] implies that —(n —1)(g —1)/2 + ¢[1 —
(n—1)(p—1)/2] > —1, and we have

v +d

(€ +d)~td¢ = coctlog (y_) for y > 2d.

(3.11) Y(y) > COCg/ 3d

2d
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Hence, we find that, for Y < y < 2Y with any positive number Y
(> 94%)
(3.12)

Tl/a(y) > 2—(1/Q)—1C(1)/‘165(10g Y)le 4 2(1/q)—13—/_\c(()1/‘1)+1y—/_\

/| "y — )V,

and, by comparison, ¥/9(y) > 1(y) on [Y,2Y], where

$(y) = co(log ¥) /4 + 7Y /Y (y — €)YrI(€) de
for Y <y <2Y.

(3.13)

Proceeding essentially the same as in the proof of Theorem 3.2, we
finally obtain

(3.14)

esY /2 < 2l(pg + 1)V 4+ 2(pg — 1) ey’ T (log ¥) V2,

For A < 2 which is equivalent to pg < (n + 1)p/[(n — 1)p — 2], if Y
is sufficiently large, (3.14) yields a contradiction. This indicates that
¥ (y) and hence the solution (u,v) of (1.2) cannot exist globally.
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