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THE DUAL OF BERGMAN METRIC VMO

DANIEL H. LUECKING

ABSTRACT. The space BMO,, denotes the variant of BMO
based on balls of constant size in the Bergman metric on
a strongly pseudoconvex domain, with the mean oscillation
measured in an LP sense. It is closely connected to the study
of Hankel operators on the Bergman space which are bounded
in the LP norm. This paper presents a correct proof that the
dual of the Bergman metric VMOy, is the space H; consisting

of I'-sums of Bergman metric g-atoms, 1/p + 1/q = 1; and
that the second dual is BMOy. In the course of the proof, it
is shown that the linear functional corresponding to a sum of
atoms is independent of this decomposition into atoms, and
an intrinsic formula for the duality pairing (independent of
the decomposition) is derived.

1. Introduction. [ am writing this paper mainly to correct
an oversight of mine in the paper, “BMO on strongly pseudoconvex
domains: Hankel operators, duality and O-estimates,” [3], by Huiping
Li and me. In that paper, in Theorem 4.5, is the claim that the dual of
the space VMO,, p > 1, is the space called H;, where 1/p+1/qg =1,
and that the dual of H, is BMO, (definitions in Section 2). These
statements are indeed true, but the proof presented there (due entirely
to me) is at best incomplete.

The proof presented in [3] makes the claim that the dual of VMO, is
entirely representable as [! sums of g-atoms, citing “standard functional
analysis arguments” without actually exhibiting them. I did in fact
have in mind a standard technique, but unfortunately it was one that
did not apply to that situation! I had incorrectly reversed the roles of
a Banach space and its dual. There were some less serious errors of
omission as well: all essentially the omission of a verification that some
mapping was well-defined. The erroneous proof and these omissions
will be corrected here in Section 3.
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In addition, the association of an element of H, ; to a linear functional
on VMO, has always been somewhat unsatisfying. It goes as follows:
an element h € H; can be written (nonuniquely) as an [* sum > A9
where the g are “g-atoms.” The linear functional associated to h is
defined by Ln(f) = >0, A J fgdA. What is missing is a method of
calculating Ly (f) directly from the values of the function h. Such a
method is presented in Section 4. The obvious attempts: [ fhdA and
lim,_,; f\z\<r fhdA are shown not to work.

It was when attempting to present the proof of Theorem 4.5 of [3] in a
graduate seminar that I realized it was in error. At about the same time
I had occasion to read the paper [1] by Bierstedt and Summers, where it
was shown that certain spaces defined by “big oh” conditions were the
second dual of corresponding spaces defined by “little oh” conditions.
It turns out that a correct proof of the duality can be given which has
the same broad outline as the technique in that paper, but with the
added task of identifying more or less explicitly the intermediate (first
dual) space.

Remark 1.1. I have chosen to identify the dual space of VMO, via
a conjugate linear isomorphism. Thus, the pairings will be in the form
of integrals like [ fh dA, or their sums or limits.

2. The definitions. It will keep things relatively simple if I present
the proof in the unit disk D in the complex plane C. The more general
context in [3] (strongly pseudoconvex domains in C™) would require
only a change of notation and a change in the justifications for some
steps.

The unit disk is endowed with a hyperbolic metric

Bz w) =~ log (M)

2 1 —1/1(z,w)
where
z—w
W) = |2

is the pseudohyperbolic metric. The Bergman metric, used in [3] in the
context of a strongly pseudoconvex domain, coincides, in the case of
the unit disk, with the hyperbolic metric. For z € D and r > 0, the
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disks D(z,r) = {w € D | B(z,w) < r} are called hyperbolic disks, being
balls in the hyperbolic metric as well as Euclidean disks. Fix some
positive radius R once and for all, and let D(z) = D(z,R). Denote
area measure on D by dA and the area of D(z) by |D(z)].

The following definitions are required:

Definition 2.1. For a measurable function f on D and 1 < p < oo,
the p-mean oscillation of f at z € D is denoted by MO,(f,z) and
defined by

1
MO P — inf T~ NI
[MO,(f,2)] ccC [D(z)] /p(z)

\f —cPdA.
We say f belongs to BMO,, if MO,(f, z) is a bounded function on D.
We say f belongs to VMO, if MO,(f, z) — 0 as z tends to 9D.

The following makes it clear that a reasonable replacement for the
best constant in the infimum that defines MO,(f, z) is the average
f(2) of f over D(z). Let C be the constant achieving the infimum in
the definition of MO,(f, z), then

1

flz)—C|= dA—C
76101~ .,
1
—C|dA
SN Joe, Y
SMOp(faZ)

by Holder’s inequality. Thus,

1
MO,(1,7) < | - e aal " < 2M0, (£, 2)
)

[D(2)| /b

and replacing MO,(f,z) with the expression involving the average
would produce an equivalent version of BMO,,.

The two spaces BMO,, and VMO,, are, modulo the constants, Banach
spaces under the norm

| f[lBMoO,p = sup MO, (f, 2).
zeD
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Definition 2.2. If 1 < ¢ < o0, a locally integrable function g on the
unit disk D is said to be a g-atom if there is a disk D(a) such that

(i) g is supported in D(a).
(ii) The mean of g is zero: [ gdA = 0.

(iii) g satisfies the following size condition:

[ﬁ/ 'qu“‘] - ol

Clearly, a g-atom in this sense is one in the “classical” sense, but an
additional requirement here is that the supporting disk associated to g
must have a fixed radius R in the hyperbolic metric.

Definition 2.3. For 1 < ¢ < oo, the space H; consists of all
measurable functions A that can be written in the form

h = Z )\jg]'
j=1

where each g; is a g-atom and ) |Aj| < co. The space is normed by
[hllmx = inf > |A;], with the infimum taken over all such representa-
tions of h.

By Holder’s inequality, an atom has L!-norm less than 1, so such a
sum will always converge in L'. Moreover, if all the atoms in the sum
are supported in a fixed compact subset of D, then the sum converges
in LY.

If G is the collection of all g-atoms g, and if T is defined on an element
A= (Ay) of IH(G) by T(A) = >_gec Ag9s then T is continuous from 1G)
to L. Its range is H, ; and the norm on H, ; makes the induced map
from I'(G)/kerT to H, an isometry. Thus H, is a Banach space. The
first step of the duality proof will be to show that we can map H, ; into
VMO;,. (This step was correct in [3] but will also be presented here for

completeness.)

Let g be a g-atom and define a linear functional L, on BMO, by
Ly(f) = [ fgdA. Let D be the support disk associated to g in the
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definition of g-atom, and let f € BMO,. Then, for any constant c,

Ly(f)l = ‘/(f - c)gdA‘

1/q 1/p
[fra] | f1s-ad
1/p
Dl/ql[ cp]
<ippt) [ p e
1 pl/P
<|p fur-er]

and an infimum over ¢ gives |Ly(f)| < || fllBMO p; SO Lg is continuous
and its norm is less than 1.

Thus, a sum like )~ \yg, where the g are g-atoms and ) |Ay| < 00, can
be used to define a continuous linear functional on VMO,, with norm
at most ). |A\g|. Unfortunately, this merely associates a continuous
linear functional to a formal sum, for it is not immediately obvious
that the resulting linear functional is independent of the choice of
representation. Thus, it is not clear that the functional Zj\ng
must be the zero functional when the function ) A;g is zero almost
everywhere. In [3] the proof that all linear functionals arise as such
sums was incorrect, but also the proof that the Zj\ng associates a
linear functional to the function ) A\;g was omitted.

3. The proofs. We need the following key lemma. For p = 2, this
appears in several places in the literature. Usually the proof involves
the Bergman kernel, as in, for example, [5]. The proof here for all
1 < p < oo will not involve the Bergman kernel.

Lemma 3.1. (a) The R > 0 used in the definitions of BMO,, and
VMO, is arbitrary. That is, any choice of R will produce the same
space with an equivalent norm. (b) If f € BMO,, then the averages f
defined by

= 1
flz) =
1D(2)] Jp(z)

fdA
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satisfy

/\

} ’ 1/p
72) - Flw)l < LD W ANICEN L
0+ 80w

with a constant C independent of f,z and w.

Proof. Let us temporarily include the dependence on R in notations
like MO, g. Take any » < R, let f € BMO,, g, and let a € D. It will
be convenient to establish the following estimates for any z such that
D(z,7) C D(a,R) = D(a). Let ¢ denote any constant. Then

1
MO ,r(faz)p YA Y] ‘f,c‘PdA
P |D(Z T‘)| D(z T)
|D(a)| / .
dA.
=Dz 1) | |D )] 1F el

Let C, g = sup |D(a)|/|D(z,7)|, with the supremum taken over all pairs
a,z with a € D and D(z,r) C D(a). Then we get the following, after
taking an infimum over all ¢:

(3.1) MO,,.-(f,2) < C}/EMOy, r(f,a).
In particular, setting z = a we see that the BMO,, g norm dominates

the BMO,, , norm.

Before obtaining the reverse, we will obtain part (b). Fix any
convenient value r < R, say r = R/2, and let f,.(z) denote the average
of f over D(z,r). Again, let D(z,7) C D(a). Then, by a similar
argument,

F(2) — Fla)] = \ﬁ / B dA\

(3.2) 1 N
< C[|D<a)| /m I = f(@)l dA}
<C MOp7R(f,a),
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by Holder’s inequality, the estimate (3.1) and the observation following
the definition of BMO, . Combining this estimate with the same
estimate for some other point w with D(w,r) C D(a), we get the
following:

(3.3) |f+(2) = fr(w)| < C MOy,&(f,a) < CllfBMO,p -

For any pair z,w € D there are finite sequences ay,as,...,ay and
20 = 2,21,22,...,2m = w with M < C(1 + B(z,w)) such that
D(zj_1,r) U D(2j,7) C D(aj). Adding up M inequalities like (3.3)
and two inequalities like (3.2) gives part (b).

Now suppose f belongs to BMO, ,; then (b) is satisfied for the
averages f,(z). Let D(a, R) be given; there are K points z; € D(a, R),
K depending only on R and r, such that the disks D(z;,r) cover
D(a,R). By (b) and the fact that 8(zj,2r) < 2R, we have |f.(z;) —
fr(z)| < Cllfllsmop.r Let ¢ be any constant with [c — f.(z;)] <
CHf”BMo’p’lp for all ] Then

K
1 1
Y7Vl f—cPdA< / f—cPdA
D@ S A= D@ 2 e,

K
1
<oy If — P dA
;|D(ZJ7T)| D(zj,r)
< C”fH%MO,p,T‘
K 1 ~
Ti) PR — f—folz)PdA
2 Bl Sy )

< C”fH%MO,p,r'

This shows that the BMO,, , norm dominates the BMO,, g norm. a
If Lemma 3.1 (b) is applied with w = 0, we get the following corollary.

Corollary 3.2. There is a constant C such that, for any function
f € BMO,, we have

[ - oraa] <ot () 1o
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Since functions in BMO,, are really only defined up to a constant, we
can say that any element of BMO, may be identified with a function
such that the means [fD(Z) |f(2)|P dA/|D(2)|]*/? grow at worst like

log[1/(1 — |2])].

Theorem 3.3. Let 1 < p < 0o, and let q be the conjugate exponent,
satisfying 1/p +1/q = 1. Let G be the collection of q-atoms, L, the
corresponding functionals on VMO, and (X\;) an element of I*(G). If
deG Agg = 0 almost everywhere, then the linear functional 5\ng on
VMO, is zero. Furthermore, all bounded linear functionals on VMO,
arise in this manner from an I' sum of q-atoms.

Remark 3.4. The proof will show that > A\,L, = 0 even when
considered as a linear functional on BMO,,.

Proof. Assume that > A;g = 0 almost everywhere. We need to
show that if f is any function in BMO,, then the sum Y A\, L,(f) is
zero. Since this sum converges absolutely, it suffices to show that some
rearrangement of the terms gives a sum of zero. Let D(aq) denote
the support disk for g and let {¢,} denote the increasing sequence of
nonnegative numbers defined by ¢ty = 0 and B(¢n,tn+1) = R, n > 0.
If we let p = tanh R, then ¢,41 = (¢, + p)/(1 + t,p). From this,
it follows easily that 1 — t,11 = (1 — p)(1 — t,)/(1 + tnp), whence
271 —p)" <1 —t, < (1—p)™

For integers n > 0, let D,, denote the disk |z| < t,, so Dy = &, and
A,, the annulus D,\D,,_1, and let

Sn=>_ AgLe(f).
ag€Dy

The proof will be complete if we show that some subsequence S,
converges to zero, because this corresponds to some rearrangement of
the original sum. I claim that for f € BMO,,

(3.4) Sn:/f< > ng> dA.
ag€Dn

Indeed, it suffices to notice that all the g in the sum have their support

within Dy 1, so the sum converges in L9, while f|p,, , is in LP.
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Thus, the righthand side is unchanged if we multiply through by f
and integrate term by term, which gives S,,.

Note that, for any ay not in D,, the hyperbolic disk D(ag) is
disjoint from D,,_; so, for almost every z € D,_1, 0 = Y Ag9(2) =
ZageD" Agg(2). Moreover, if a, € D,,, then the support of g lies in
Dyy1. Thus, the sum >, . Agg(z) appearing in (3.4) is actually
supported in A, U A;,41. Thus we obtain

Sn:/4nuAn+1f< Z ng> dA = Z Xg/A fgdA.

ag€Dy, ag€ED, nUAn i1
Also, if ag € Dy,_2, then g = 0 on A, U A4, so the sum can be taken
over only those a4 in A,,_; U A,. Therefore,

1/p 1/q
sraal | [ glvaal
) D(ay)
1

1/p
< Al | deA]
2 | g'[w(ag) ey

ageAn_lu n

b [ .

g9

1
<Clflemopr D, |Agllog <1—|a|>
g

ageAn,ﬂJAn

sis X |

(lgeAnfluAn g

1/q
|g|qu]

For a; € A,—1 U A,, we have log[1/(1 — |a,|)] < log[1/(1 —t,)] <
nlog[2/(1 — p)]. This gives

1Sl < CnllfllBmos, >, Al
ageAn,1UAn

< Cnpg,

where p, = ZageAn,luAn |Ag|- Since }°, pun =23 |Ag|, the sequence
pn is summable. It follows therefore that some subsequence n;py,
tends to zero; otherwise we would have p,, > ¢/n for all but finitely
many n.
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We have thus far shown that 3" A\,g — > A, L, is a well-defined linear
map from H, (} to VMO, It is relatively clear that the map is one-to-
one. For, if f € H ; and the corresponding functional Ly is zero, then
fh fdA = 0 for every continuous function h with compact support in
D. Thus, f = 0 almost everywhere.

It remains to show that every continuous linear functional on VMO,
has the form }: . A¢Ly. To this end, we will embed VMO, as a
subspace of a space with a known dual, therefore identifying VMO,
with a quotient space of that dual.

Let {a;} be a sequence of points in D such that the disks D(a;, R/2)
cover D, and such that $(aj,ar) > R/2 whenever j # k. Every
function f € VMO, defines a sequence of functions f; = f|p(a;)- These
functions belong to LP(D(a;),dA/|D(a;)|). Necessary and sufficient
conditions on a sequence { f;} that it arise in this manner, by restriction
of a function from VMO,, are that

1) the distance from f; to the constants in the norm of L?(D(a;),dA/
|D(aj)|) tends to zero as j — oo (as a; tends to 9D) and that

2) f;j = fx on the intersection D(a;) N D(ax).

It is clear that this second condition allows one to construct a function
f whose restriction to each D(a;) is f;, and that the first implies the
sequence MO, (f,a;) tends to zero. In fact, the function f must be in
VMO, For, if z is any point of D, there exists some D(a;, R/2) con-
taining it, whence D(z, R/2) C D(aj, R). By the proof of Lemma 3.1,
this implies that MOy, g/2(f,2) < C MOy, r(f,a;). If a sequence {z,}
tends to 0D, so do the corresponding aj,; thus MOy, g/2(f, 2n) — 0,
and so f € VMO,,.

For each j, let X; denote the Banach space LP(D(a;),dA/|D(a;)|)/C
with the quotient norm. Then the above restriction mapping embeds
VMO, (modulo constants) into the co-direct sum X = @oX; = {(f;); |
I£illx, — 0 as j — oo} with norm ||(f;)|x = sup; ||fj|lx,. This
mapping is obviously bounded, and the argument above shows that it
is bounded below.

The dual of X is easily determined to be the ! sum ®1X7, and
each X7 can be identified with the subset of L¢(D(a;),|D(a;)|?~" dA)

of functions with mean zero. The unusual multiple of dA in the
measure on this space is so that we may use the duality pairing
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((fi) - (97)) = X2 [p(a,) i9i dA for f; € X; and g; € X7.

Now, given a continuous linear functional L on VMO,,, we may extend
it to a linear functional on ®¢X; and therefore identify it with a
sequence in ©;X; which may be written (\;g;) where the \; satisfy
> |Aj| < oo and the g; are elements of X7 with unit norm. This
identification satisfies, for every f € VMO,, L(f) = >_; Aj fD(aj) fi3
where f; is the restriction of f to D(a;). The condition that g; have unit
norm in X7 is equivalent to g; being a g-atom. Thus, the continuous
linear functional L on VMO, gives rise to an element A = ) \;g; in
H ;. Its identification with a linear functional L, on VMO, is the one
defined by L(f) = 3 A fD(a_) fgjdA, and, therefore, L, = L. This

J
completes the identification of VMO with H ;. a

Remark 3.5. Since it has already been shown that | [ fgdA| <
| fllBMoO,p for any g-atom g, it follows that any function f in BMO,, de-
fines a continuous linear functional ®; on Hy via ®(h) = @£ (3 Agg) =

> A [ 9fdA. (This also equals Y A\yLy(f), which has already been
shown to be independent of the representation of h = Y A;g.) The
remainder of the argument in [3] is correct and now shows that any
continuous linear functional on H ; arises in this manner from some
function in BMO,,.

Remark 3.6. The continuous functions on DUOD are dense in VMO,,.
A proof that h — Ly is well defined could have been based on this
fact. This would not, however, have been enough to prove that it is
well defined as a map from H; to linear functionals on BMO,. We
needed this stronger result for the previous remark. Moreover, the
main result of the next section might not have been discovered using
such an approach.

Remark 3.7. In [4, 2] and [3] it was shown that a function f in
LP, p > 1, defines a bounded Hankel operator Hy on the Bergman
space AP if and only if there is an analytic function ¢ € A, such that
f—¢ € BMO,. If f € BMO,, h; is a polynomial and hy € (AP)+ C L9,
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then we have the estimate

[ sk dA\ < E - o el
D
< Ol fllBmo,pllh1 |l ar || A2l La-

This implies that hihy defines a continuous linear functional on VMO,,
a fact that extends to any h; € AP by taking limits of polynomials
(though it need not always be given by the above integral unless f is
bounded). That linear functional must be Ly (f) for some h € H,. If we
apply this to f varying over the set of compactly supported continuous
functions (where the integrals do give the correct values), we deduce
that h and hyhs differ by a constant. Since both have mean zero, they
are equal. Thus hihs belongs to H, ;. A similar argument shows that
any function in Ag belongs to H,. In fact, the argument in [3] can now
correctly be invoked to show that H(} is precisely the collection of all
sums

ho —I—Z}_ij‘j
j=1
with hg € A(lJ, h; € AP, k; € (AP)J‘ and > ||hj||Lp||k‘j||Lq < 0.

Remark 3.8. In [3], the following intrinsic characterization of H,
was obtained: A function A belongs to H; if and only if h, Ph and
Th all belong to Lé, where P is the Bergman projection, having kernel
(1—w2)~2, and T is the integral operator with kernel [(1—wz)(w—z)] " .
The space L is the subset of g € L' such that [fD(Z) lgl9dA/|D(z)|]*2
belongs to L'. Since this result relied on the duality between VMO,

and H ;, its proof is only now complete.

Remark 3.9. If there is given a sequence a; in D, and numbers r < R
such that the disks D(aj,r) cover D, then the proof of Theorem 3.3
could be slightly generalized to show that elements of H; can be
represented by sums of atoms, each having its support in some disk
of the specified sequence D(a;, R).

4. An intrinsic duality pairing. If h € H;, h =3 Agg, then the
corresponding linear functional Lj; cannot necessarily be represented in
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the form Ly (f) = fD fhdA for all f € VMO,, since the product |fh|
need not be integrable. Certainly the integral on any proper subdisk
of D is defined, but we will show that the limit

lim fhdA

r—1— |z|<r
need not exist, although we will see that these integrals converge to the
“correct” value for some sequence r, — 0. In the sum h = dea Ag9,
let G’ denote the collection of g-atoms whose supporting disk lies in
|z] < 7, and let G” denote those with supporting disk that meets |z| < r
but is not contained in it. Then

(4.1) / PRLZZEDSPRAVED Dp¥ / 19

geq’ geG! r'<|z|<r

where 0 < r’ < r satisfies S(’,7) = 2R. The first sum tends, as
r — 1—, to the appropriate value, but it is relatively simple to construct
examples where the second sum does not tend to zero. For example,
choose a sequence t,, as in Section 3 and choose atoms with their centers
on |z| = t,, having a single positive value on the portion of their
supports lying in |z| < t, and a negative value on |z| > t,. Taking
r =t in (4.1) and f = log[1/(1 — |z|)] in BMO,, the second sum is on

the order of
Cn Z | Agl

lagl=tn

and it is trivial to construct an ' sequence A, so that this does not
tend to zero. (An example with f € VMO,, is then easily obtained on
multiplying log[1/(1—|z|)] by a suitable function tending slowly to zero
at the boundary.) This situation is analogous to the situation described
in the previous section where nu,, does not tend to zero. The argument
there shows that some subsequence (corresponding to some 7; = t,,
tending to 1) can be chosen that tends to zero.

In order to get an intrinsic formula for the functional Lj, independent
of the representation of h as a sum of g-atoms, it might be expected
that some sort of summability method would be needed. This turns
out to be the case, and we have the following theorem.

Theorem 4.1. Let w, be a sequence of monnegative measurable
functions on D satisfying:
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1. The functions wy(z) log[1/(1—|z|?)] are bounded (but not uniformly
bounded because of the following condition).

2. wp(z) increases to 1 uniformly on compact sets in D.

3. There is a constant C (independent of n and z) such that

1
sup |wn () — wn(2)|log (—> <C.
¢en(z) 1—|z[?
Then if h = Y Agg € H(} and f € BMO,, 1/p+ 1/q = 1, the
corresponding linear functional Ly = 5\ng satisfies

Ly(f) = lim wnfhdA.

n—o0 D

In particular,

. _log(1/(L = [P) 17
(42 L) =Ly z|<r<1 ity )4
and
(4.3) Ly(f) = lim [ (1 —|2/*)*fhdA.

a—0 D

Proof. The two examples correspond respectively to

_(ylos/ )Y
wnle) = (1= g 0t

for sequences r,, increasing to 1 and
wn(2) = (1= [z]*)*"

for sequences a,, decreasing to zero. The first two conditions are trivial
for both, while the third is a routine estimate. The formula (4.2) was
discovered by applying a Cesaro mean to equation (4.1) with r = ¢,
(t,, as in Theorem 3.3). The simpler formula (4.3) came from applying
a Poisson mean.
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Because of condition (1) and the growth estimate on functions f in
BMO,, Corollary 3.2, we can calculate

wnfi_LdA:/ wnf X dA,
Js et 2

integrating term by term to get

wpfhdA = A / wnfgdA
w/D ; I D(ag)
= Zj\gwn(ag)/ fgdA
g D(ag)
+ Zj‘g/ (wn — wn(ag))fgdA
g D(ag)

= Y Rnla) LN+ X% [ (o —wnlag)fada

D(ag)

As n — oo, the first sum converges to Ly (f) by dominated convergence
(the terms of the sum have absolute values less than || - || fllBMmO,p)s
so we need only show that the second sum tends to zero as n — oo.
Using condition (3), Holder’s inequality, and then Corollary 3.2, the
integrals in the last sum are bounded functions of g. Also, for fixed g,
they tend to zero as n — oo by condition (2). Thus, the second sum
above tends to zero, by dominated convergence. ]

The intrinsic representation of the duality pairing from Theorem 4.1
allows one to write the pairing between the result of a Hankel operator
Hih € LP and k € (AP)1, see Remark 3.7, in an explicit form, even if
f is unbounded:

(Hyh,k) = lim [ f()R(FE)L - =) dA(2).
D
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