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THE LATTICE OF SEMILATTICE-MATRIX
DECOMPOSITIONS OF A SEMIGROUP

MIROSLAV CIRIC AND STOJAN BOGDANOVIC

ABSTRACT. In this paper we investigate some general,
lattice theoretical properties of semilattice-matrix decomposi-
tions of semigroups. We prove that the poset of all semilattice-
matrix equivalences on an arbitrary semigroup is a complete
lattice. For a fixed semilattice congruence o on a semigroup S
we prove that the set of all semilattice-matrix equivalences on
S carried by o is a complete sublattice of the lattice of equiv-
alence relations on S, and that it is a direct product of the
lattices of semilattice-left and semilattice-right equivalences
on S carried by o.

Semilattice-matrix decompositions of semigroups, including here
semilattice-left and semilattice-right decompositions, form a very im-
portant type of decompositions studied in many papers. We can say
that the first known example of such decompositions was the charac-
terization of unions of groups (completely regular semigroups) as semi-
lattices of completely simple semigroups, given by A.H. Clifford in [7],
1941, since by the well-known Rees-Sushkevich matrix representation
theorem, completely simple semigroups can be characterized as ma-
trices (rectangular bands) of groups, left zero bands of right groups
and right zero bands of left groups. A similar property was proved
by Bogdanovi¢ and Cirié in [5] for left regular semigroups, which were
characterized as semigroups having a semilattice-right decomposition
whose components are left simple semigroups. Semilattice-right de-
compositions whose components are left Archimedean semigroups and
nil-extensions of left groups were studied by Bogdanovi¢ and Ciri¢ in
[4], 1995, and Shevrin in [15], 1994, respectively. Also, some other
kinds of semilattice-matrix decompositions were studied by Chu, Guo
and Ren in [6], 1989.

It is important to note that semilattice-matrix decompositions are
more general than many other significant kinds of decompositions of
semigroups. For example, it is evident that semilattice and matrix
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decompositions, including here left zero band and right zero band
decompositions, are special cases of semilattice-matrix decompositions.
More generally, all band decompositions are special cases of semilattice-
matrix decompositions. This was noted by Clifford in [8], 1954, and
it is an immediate consequence of the result of Clifford from the same
paper and McLean from [11], 1954, by which bands are characterized
as semilattices of rectangular bands. Furthermore, in many papers,
semilattice-matrix decompositions have been used as the first step in
band decompositions of semigroups.

In this paper we investigate some general, lattice theoretical prop-
erties of semilattice-matrix decompositions of semigroups. We prove
that the poset of all semilattice-matrix equivalences on an arbitrary
semigroup is a complete lattice. For a fixed semilattice congruence
o on a semigroup S we prove that the set of all semilattice-matrix
equivalences on S carried by ¢ is a complete sublattice of the lattice of
equivalence relations on S, and that it is a direct product of the lattices
of semilattice-left and semilattice-right equivalences on S carried by o.

A nonempty subset of K of a complete lattice L is called a complete
meet (join) subsemilattice of L if it contains the meet (join) of any of
its nonempty subsets. If K is both a complete meet-subsemilattice and
complete joint-subsemilattice of L, then it is called a complete sublattice
of L. For a set X, by £(X) we denote the lattice of all equivalence
relations on X, and for a semigroup S, by Con (S) we denote the lattice
of all congruence relations on S. For undefined notions and notations
we refer to [1, 2, 3, 9, 10] and [13].

Let a semigroup S be a semilattice Y of semigroups S,, a € Y, and
for any a € Y, let S, be a matrix (left zero band, right zero band) I, of
semigroups S;, ¢ € I,. The partition of S whose components are semi-
groups S;, ¢ € I, where I = U,cy I, will be called a semilattice matriz
(semilattice-left, semilattice-right) decomposition of S, or shortly an s-
m (s-1, s-r)-decomposition of S. Let us denote by 6 the corresponding
equivalence relation on S, and by o the semilattice congruence corre-
sponding to the above considered semilattice decomposition of S. Then
we will say that 6 is carried by o as an s-m (s-l, s-r)-equivalence and
that o is a carrier of 6. In other words, an equivalence relation 6 on
a semigroup S contained in a semilattice congruence o on S is an s-m
(s-1, s-r)-equivalence carried by o if the restriction of 6 to any o-class
T of S is a matrix (left zero band, right zero band) congruence on 7'
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For a semigroup S, SM(S), SL(S) and SR(S) will denote the sets
of all semilattice-matrix, semilattice-left and semilattice-right equiva-
lences on S, respectively, and S(.9) will denote the set of all semilattice
congruences on S. For a o € §(5), SM(o), SL(o) and SR(o) will de-
note the sets of all semilattice-matrix, semilattice-left and semilattice-
right equivalences on S carried by o, respectively.

First we prove the following:

Theorem 1. For any semigroup S, the posets SM(S), SL(S) and
SR(S) are complete lattices.

Proof. The theorem will be proved for SM(S).

Assume an arbitrary family {u;}ic; of semilattice-matrix equiva-
lences on S. For ¢ € I, let o; be a carrier of u;, and let

p:ﬂui and U:ﬂdi.

iel iel

Let us prove that p is a semilattice-matrix congruence on S carried by
.

Clearly, o € §(5), p € £(S) and pu C 0. Let A be an arbitrary o-class

of S. Then
A=) 4,
iel

where, for any ¢ € I, A; is a o;-class of S. By the hypothesis, for
any ¢ € I, the restriction of y; on A; is a matrix congruence on A;,
so the restriction of u; on A is also a matrix congruence on A. By
this it follows that the restriction of x4 on A is an intersection of matrix
congruences on A, so it is also a matrix congruence on A. Therefore, we
proved that p € SM(S). This means that SM(S) is a complete meet-
subsemilattice of £(S), and since it is evident that SM(S) contains the
unity of £(S), then SM(S) is a complete lattice. o

In terms of decompositions, the previous theorem is formulated in
the following way:
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Corollary 1. For any semigroup S, the posets of semilattice-matriz,
semilattice-left and semilattice-right decompositions of S are complete
lattices.

By the proof of Theorem 1 we also obtain the following.

Corollary 2. For any semilattice congruence o on a semigroup S,
the posets SM(o), SL(o) and SR(o) are complete lattices.

By Theorem 1 we proved that SM(S), SL(S) and SR(S) are
complete lattices, but we do not know whether these lattices are
complete sublattices of the lattice £(S). This property will be proved
only for the lattices SM(c), SL(o) and SR(o).

First we prove the following lemma:

Lemma 1. Let o be a semilattice congruence on a semigroup S, and
let 0 be an equivalence relation on S. Then 6 € SL(o) if and only if
0 C o and for any a,b € S, acb implies abba.

Proof. This follows by the definition of a semilattice-left equivalence
and the fact that an equivalence relation 7 on a semigroup 7 is a left
zero band congruence if and only if zyrz for all z,y € T O

For SL(o), and dually for SR(c), we obtain the following:

Theorem 2. For any semilattice congruence o on a semiring S,
SL(0) is a closed interval of £(S).

Proof. Let 7 denote the intersection of all elements from SL(o).
Clearly, 7 C 0. Assume a,b € S such that acb. Then abfa, for any
0 € SL(o), whence abra, so 7 € SL(0). Therefore, 7 is the smallest
element of SL(o).

Assume an arbitrary 6 € £(S). If § € SL(0), then clearly 7 C 8 C 0.
On the other hand, if 7 C 8 C o, then (a,b) € o implies (ab,a) € 7 C 6,
so § € SL(o). Therefore, SL(o) equals the closed interval [r,o]
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of £(S). O

For an equivalence relation # on a semigroup S, let S(6) denote the
set of all semilattice congruences on S containing #. Since S(S) is
a principal dual ideal of Con (S), then S(6) is a principal dual ideal
both of §(S) and Con(S). If A € SL(S), then C()\) will denote
the set of semilattice congruences on S carrying A as a semilattice-left
equivalence. The place of C?()\) inside S(A) and S(S) is explained by
the following theorem:

Theorem 3. Let A be a semilattice-left equivalence on a semigroup

S. Then
(a) CY(\) is an order ideal of S(\);
(b) CsY(N) is a convex subset of S(S) having a smallest element.

Proof. (a) Assume o € C*(\) and 7 € S(\) such that 7 C o.
If (a,b) € m, then clearly (a,b) € o, and thus (ab,a) € X. Hence,
7 € C%Y(\), which proves (a).

(b) This follows by (a) and the fact that S(A) is a principal dual ideal
of §(9). u]

By the next theorem we establish a connection between semilattice-
matrix, semilattice-left and semilattice-right equivalences.

Theorem 4. Given a semigroup S. If 01,02 € S(S), A € SL(01)
and ¢ € SR(02), then AN p € SM(o1No2).

Conversely, if o € S(S) and p € SM(o), then there exist unique
A€ SL(o) and o € SR(0) such that p= AN p.

Proof. The first statement of the theorem follows by the proof of
Theorem 1 and the fact that SL(S) U SR(S) C SM(S).

To prove the opposite statement, assume an arbitrary o € S(S) and
p € SM(o). Let {Sa}tacy be the set of different o-classes of S, and
for « € Y, let u, denote the restriction of u on S,. By the hypothesis,
for any @ € Y, p, is a matrix congruence on S,, so by [14, Theorem
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I, po = Ao N 0a, where A, is a left zero band congruence and g, is
a right zero band congruence on S,. Let

A= U)‘O‘ and p= U Oc-

acY acY

It is easy to verify that A € SL(0), ¢ € SR(o) and g = AN p, which
was to be proved.

Finally, assume another A’ € SL(o) and ¢’ € SR(o) such that
NNe =XNg=pu. For a €Y, let A, and g/, denote restrictions
of X and o' on S,, respectively. For any o € Y we have that )\ is a
left zero band congruence and g/, is a right zero band congruence on
Se, and A, N o, = o = Aq N Qa, so by [14, Theorem III] we obtain
that A\, = A\, and g/, = g,. Therefore,

N=JN=U =2

a€Y a€cY
and
/= d=Ue=0
a€cY a€cY
which was to be proved. a

Using the previous theorem, we also obtain the following connection

between SM(c), SL(o) and SR(o).

Theorem 5. Let o be a semilattice congruence on a semigroup S.
Then the lattice SM(c) is isomorphic to the direct product of lattices
SL(o) and SR(0).

Proof. Consider the mapping ¢ : SL(0) X SR(0) - SM(o) defined
by
(Ao =2AnNg,

for A € SL(0), 0 € SR(c). By Theorem 4, ¢ is a bijection of SL(c) x
SR(o) onto SM(o). It is evident that ¢ is isotone. Therefore, to
prove that ¢ is an order isomorphism, and hence a lattice isomoprhism,
it remains to prove that ¢~! is an isotone mapping. Indeed, assume
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M A € S8L(0) and g, o' € SR(0) such that ANg C A'Ny’. Let (a,bd) € A
Then (a,b) € 0. Let A denote a o-class of S containing a and b. Since
the restriction of A on A is a congruence on A, a,b € A and (a,b) € },
then (ab,b?) € A, and seeing that (b%,b) € A, then (ab,b) € A. On the
other hand, (a,b) € o implies (ab,b) € p. Hence,
(ab,b) e XN C AN N CN.

By (a,b) € o we also obtain (a,ab) € X' which with (ab,b) € X' gives
(a,b) € X'. Therefore, A C ). Similarly, we prove that ¢ C ¢'. This
completes the proof of the theorem. ]

If in the previous theorem we assume that o is the universal relation
on S, then we obtain the following:

Corollary 3. The lattice of matrixz congruences on a semigroup
S is isomorphic to the direct product of the lattice of left zero band
congruences and the lattice of right zero band congruences on S.

For the results concerning matrix and normal band congruences,
which correspond to the above two theorems, we refer to [12, 13] and
[14].

Another interesting relationship between semilattice-left and semi-
lattice-right equivalences is given by the following theorem:

Theorem 6. Let o be a semilattice congruence on a semigroup S,
neZr, \A,... .\ € SL(0) and 0,01,--- ,0n € SR(c). Then

(a) Ao = oA =o0;
(b) (A1 No1)(A2No2) - (AnNgn) =AA2 - Ay N Q102+ On-

Proof. (a) Since A\ C ¢ and ¢ C o then A\p C 0. To prove the
opposite inclusion, assume an arbitrary (a,b) € 0. Then (a,ab) € A
and (ab,b) € o, whence (a,b) € Apg; hence, Ao = 0. Analogously, we
prove that o)\ = 0.

(b) Assume (a,b) € (A1 Ne1)(A2Ng2) -+ (AN ep)- Then there exist
T1y... ,Tp_1 € S such that

(a,z1) € MiNo1, (1, 22) € A2 N2, ..., (Tn—1,b) € Ay N 0p,
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and clearly (a,b) € A\jA2---\, and (a,b) € 0102 - 0n- This means
that

(ArtNe)(A2No2) - (AnNon) S A2 Ay NO102 -+ On-

To prove the opposite inclusion, assume (a,b) € AAg---A, N
0102 -+ On- Then there exists x1,... ,Tp-1,Y1,--- ,Yn—1 € S such that

(a,21) € A1, (z1,22) € Aoy -+ (Tn—1,b) € Ay,
(a,91) € 01, (Y1,92) € 02, (Yn—1,b) € 0n.

(1)

It is clear that a,b,z1,... ,Zn—1,%1,... ,Yn—1 belong to the same o-
class of S. By this, it follows that

(x1,2131) € M and  (y1,2191) € 01,
which with (1) gives (a,z1y1) € A1 N g1. Similarly we prove that
(n-1Yn—1,b) € Ay N 0n. Moreover, for an arbitrary i, 1 < i < n—2,

we have that

(@iys, ), (T, Tig1), (Tig1, Tiy1¥it1) € Aig1
(wiyia yi)a (yi, yi+1), (yi+1, $i+1yi+1) € 0i+1,

whence it follows that (;y;, Zi11¥i+1) € Ni+1 N 0iy1. Therefore
(a,z1y1) € M Neor, (T1y1, T2y2) € A2 N @2, 5 (Tn—1Yn-—1,0) € An N oy,
so (a,b) € (A1 Ne1)(A2Ng2) -+ (An Noy). Hence,

AtAz - An Ne1o2---0n © (ArNo1)(A2Nez2) - (An Non),

which completes the proof of (b). O

As a consequence of the previously obtained result we obtain the
following:

Corollary 4. A semilattice-left equivalence A and a semilattice-right
equivalence ¢ on a semigroup S can have at most one common carrier.
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Proof. If X\ and p have a common carrier, then by Theorem 6 it follows
that Ap = pA, and it is the unique common carrier of A and p. ]

Finally, using Theorem 6, we prove that SM (o) is also a complete
sublattice of £(S).

Theorem 7. For any semilattice congruence o on a semigroup S,
SM(0o) is a complete sublattice of £(S).

Proof. By the proof of Theorem 1, SM(o) is a complete meet-
subsemilattice of £(S), so it remains to prove that it is a complete
join-subsemilattice of £(S5).

Assume an arbitrary nonempty subset {u;}ier of SM(c). By The-
orem 4, for any ¢ € I, there exist unique \; € SL(o) and p; € SR(0)
such that p; = A\; N ;. Let

p=\n, A=\ A and o=\/o
icl i€l i€l
in £(S). Let us prove that
(2) n=ANo.
Assume (a,b) € p. Then (a,b) € pi, iy - - - pi,, for some iy,142,... ,i, €
1, so by Theorem 6 we have that
(a,b) € piy priy -+ - pri, = (Aiy N 03y )(Ai N g3y) -+ (A, Nosy,)
=Xy Aiy o A, N 04y 00y -+ 06, S AN 0.

Therefore, we proved that up C AN p.

To prove the opposite inclusion, assume (a,b) € ANg. Then (a,b) € A
and (a,b) € g, whence

(a,0) € AiyAiy -+ Xi,, and  (a,b) € 05,1 0iniy """ Oipyres

n

for some il,ig, e ,in, in+1,in+2, e ,in—l—k € I. Since )‘iu)‘iz? e ,Ain,
Qip 13 Qiniar- - s 0iy,, are reflexive relations, then
)‘i1)‘i2 T )‘in - )‘il)‘iz T )‘in)‘in+1)‘in+2 T )‘in+k7

Qini1 OQinyn " " Qinygy © QiyQin """ 0iy Qi1 Oinyn " Qi
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so by Theorem 6 we have that

(@,0) € Aig Aiy = Nipyr N 04, 0ig * " iy
= ()‘il n Qil)()‘iz n Qiz) T ()‘in+k n Qin+k)
= iy Pzt iy © e

Hence we proved that ANg C p, which completes the proof of (2). Since
by Theorem 2 and its dual we have that A\ € SL(0) and ¢ € SR(0),
then by Theorem 4 we obtain p € SM(o), which was to be proved.
O
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