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DIFFEOMORPHISMS WITH THE AVERAGE-
SHADOWING PROPERTY ON TWO-DIMENSIONAL

CLOSED MANIFOLDS

KAZUHIRO SAKAI

ABSTRACT. The average pseudo-orbits and the average-
shadowing property of diffeomorphisms on two-dimensional
closed manifolds are considered, and the C1 interior of the set
of all diffeomorphisms satisfying the average-shadowing prop-
erty is characterized as the set of all Anosov diffeomorphisms.

The notion of pseudo-orbits very often appears in several branches of
the modern theory of dynamical systems, and, especially, the pseudo-
orbit shadowing property usually plays an important role in the in-
vestigation of the stability theory. In [1] Blank introduced the notion
of average pseudo-orbits as a certain generalization of the notion of
pseudo-orbits (see also [2, p. 19]) and it was proved there that, for a
certain kind of hyperbolic system f , every average pseudo-orbit of f is
shadowed in average by some true orbit of f (the average-shadowing
property).

Let M be a C∞ closed manifold, that is, M is compact connected
and ∂M = ∅, and let d be the distance induced from a Riemannian
metric ‖ · ‖ on TM . Denote by Diff (M) the set of all diffeomorphisms
on M endowed with C1 topology. For δ > 0, a sequence {xi}∞i=−∞ of
points in M is called a δ-average pseudo-orbit of f ∈ Diff (M) if there
is a number N = N(δ) > 0 such that for all n ≥ N , k ∈ Z,

1
n

n∑
i=1

d(f(xi+k), xi+k+1) < δ.

We say that f has the average-shadowing property if, for every ε > 0,
there is a δ > 0 such that every δ-average pseudo-orbit {xi}∞i=−∞ is
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ε-shadowed in average by some z ∈M , that is,

lim sup
n→∞

1
n

n∑
i=1

d(f i(z), xi) < ε.

Notice that f has the average-shadowing property if and only if fn,
n > 0, has the average-shadowing property. Average pseudo-orbits
arise naturally in the realizations of independent Gaussian random per-
turbations with zero mean and in the investigations of the most proba-
ble orbits of the dynamical system with general Markov perturbations,
etc. ([2, p. 20]). It is proved in [1, Theorem 4] that if Λ is a basic set
of a diffeomorphism f satisfying Axiom A, then f|Λ has the average-
shadowing property. We notice that the topological transitivity of f|Λ
plays an essential role in that proof.

The author has characterized the dynamics of diffeomorphism having
the pseudo-orbit shadowing property under some condition (see [6]).
The purpose of this paper is to analyze the dynamics of diffeomorphisms
satisfying the average-shadowing property on a two-dimensional closed
manifold. We shall denote by AS(M) the C1 interior of the set of all
f ∈ Diff (M) having the average-shadowing property.

In the following theorem and corollary, let M be a two-dimensional
closed manifold (recall that M is connected).

Theorem. AS(M) is characterized as the set of all Anosov diffeo-
morphisms.

Our theorem is obtained by showing the hyperbolicity of the periodic
points of f ∈ AS(M). To do this we need to control the global behavior
of the average-shadowing orbit, and we can do that when M is a two-
dimensional closed manifold. The theorem may be true for higher
dimensions; however, the author does not know how to control the
orbit when dimM ≥ 3.

As we stated above, the average-shadowing property is closely related
to the topological transitivity. Recall that a diffeomorphism f on M is
called topologically transitive if there is a dense orbit, and let T T (M) be
the C1 interior of the set of all topologically transitive diffeomorphisms.
Then, since every Anosov diffeomorphism is topologically transitive
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when dimM = 2, AS(M) ⊂ T T (M) by the theorem. Moreover, we
can check the converse.

Corollary. AS(M) = T T (M).

As usual, a sequence {xi}∞i=−∞ of points in M is called a δ-pseudo-
orbit, δ > 0, of f ∈ Diff (M) if d(f(xi), xi+1) < δ for all i ∈ Z. We
say that f has the shadowing property if, for every ε > 0, there is a
δ > 0 such that for every δ-pseudo-orbit {xi}∞i=−∞ there exists z ∈M
satisfying d(f i(z), xi) < ε for all i ∈ Z. Let S(M) be the C1 interior
of the set of all diffeomorphisms satisfying the shadowing property.
Then f ∈ S(M) if and only if f satisfies Axiom A and the strong
transversality condition (see [5], [6]). Clearly AS(M) ⊂ S(M) by
the theorem when dimM = 2 but its converse is not true in general.
Indeed, there exists a diffeomorphism satisfying Axiom A and the
strong transversality condition that is not Anosov (e.g., a Morse-Smale
diffeomorphism on the unit sphere S2).

A diffeomorphism f ∈ Diff (M) is said to be expansive if there is a
constant e > 0 such that if d(fn(x), fn(y)) ≤ e for all n ∈ Z, then
x = y. It is well known that if f ∈ S(M) is expansive, then f is
Anosov (see [7]). Thus, if f ∈ S(M) is expansive, then f ∈ AS(M)
when dimM = 2. We remark that only the two-dimensional closed
manifold on which there is an Anosov diffeomorphism is the torus.

Lemmas and proofs of results. LetM,d be as before, and denote
the set of all periodic points of f ∈ Diff (M) by P (f). A hyperbolic set
Λ (f -invariant closed set) is called a basic set if f|Λ has a dense orbit,
i.e., topologically transitive, and locally maximal. The stable manifold,
W s(x), and the unstable manifold, Wu(x) of x ∈ Λ are defined in
the usual way, and put W σ(Λ) = ∪x∈ΛW

σ(x), σ = s, u. When f
satisfies Axiom A, the nonwandering set, Ω(f), of f is equal to the
closure of P (f) and is decomposed into a union of basic sets Ω(f) =
Λ1 ∪ Λ2 ∪ · · · ∪ Λl. It is well known that M = ∪l

i=1W
σ(Λi), σ = s, u,

and W s(Λi) ∩Wu(Λi) = Λi for 1 ≤ i ≤ l. If f satisfies Axiom A with
no cycles, then there is a sequence of compact sets (which is called a
filtration) ∅ = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M such that f(Mi) ⊂ intMi

and ∩n∈Zf
n(Mi\Mi−1) = Λi for 1 ≤ i ≤ l (cf. [8]). It can be checked
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that, for every neighborhood Ui of Λi, 1 ≤ i ≤ l, a positive integer
mi exists satisfying Λi ⊂ fmi(Mi)\f−mi(Mi−1) ⊂ Ui. We denote by
F1(M) the set of all f ∈ Diff (M) having a C1 neighborhood U(f)
such that every p ∈ P (g), g ∈ U(f), is hyperbolic. Then it is proved
in [4] that if f ∈ F1(M), then f satisfies Axiom A with no cycles (its
converse is also true, see [3]). Our theorem will be obtained by using
the following

Proposition. If M is a two-dimensional closed manifold, then
AS(M) ⊂ F1(M).

To prove the proposition, we prepare two lemmas.

Lemma 1. Let U(f) ⊂ Diff (M) be a neighborhood of f , and let
fn(p) = p, n > 0, be a periodic point. Then there are ε0 > 0 and
δ0 > 0 such that if Op : TpM → TpM is a linear isomorphism with
‖Op − I‖ < δ0, then there is a g ∈ U(f) satisfying

(i) B4ε0(f
i(p)) ∩B4ε0(f

j(p)) = ∅ for 0 ≤ i �= j ≤ n− 1,

(ii) g(x) = f(x) if x ∈ {p, f(p), . . . , fn−1(p)}∪{M\∪n−1
i=0 B4ε0(f

i(p))},
(iii) g(x) = expfi+1(p) ◦Dfi(p)f ◦ exp−1

fi(p)(x) if x ∈ Bε0(f
i(p)) for

0 ≤ i ≤ n− 2,

(iv) g(x) = expp ◦Op ◦Dfn−1(p)f ◦ exp−1
fn−1(p)(x) if x ∈ Bε0(f

n−1(p)),

where I : TpM → TpM is the identity map and Bε(x) = {y ∈ M :
d(x, y) ≤ ε} for ε > 0.

Proof. See [3, Lemma 1.1.].

Hereafter, let M be a two-dimensional closed manifold.

Lemma 2. For any U(f) ⊂ Diff (M) and fn(p) = p, n > 0, let
ε0, δ0 > 0, be as in Lemma 1. Suppose that p is not hyperbolic.
Then we can find a linear isomorphism Op : TpM → TpM with
‖Op − I‖ < δ0 such that for the diffeomorphism g ∈ U(f), gn(p) = p,
given by Lemma 1 for this Op, there is a Dpg

nL-invariant splitting
TpM = E ⊕ F , dimE = dimF = 1, satisfying Dpg

nL(v) = v, for all
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v ∈ E, for some L > 0.

Proof. For any U(f) and fn(p) = p, n > 0, let ε0, δ0 > 0 be as
in Lemma 1. Let us denote two eigenvalues of Dpf

n by λ and µ,
and suppose that |λ| = 1 (since fn(p) = p is not hyperbolic). At
first, assume that λ is real. If the canonical form of Dpf

n is
(

λ 0

0 µ

)

with respect to some linear isomorphism G : TpM → TpM , that is,

Dpf
n = G ◦

(
λ 0

0 µ

)
◦ G−1, then we put Op = I. Let g ∈ U(f) be the

diffeomorphism given by Lemma 1 for Op = I, and let E,F be the
corresponding eigenspaces for λ, µ respectively. Then the conclusion
will be obtained for L = 1 or 2. For the case when the multiplicity
of λ is 2 and λ = 1, the canonical form of Dfn

p is
(

1 1

0 1

)
with respect

to some linear isomorphism G as above. In this case, take ε > 0 such
that ‖Op − I‖ < δ0, where Op = G ◦

(
1 0

0 1+ε

)
◦G−1. Let g ∈ U(f) be

the diffeomorphism given by Lemma 1 for the Op, and let E,F be the
eigenspaces for the eigenvalues 1, 1 + ε of Dpg

n respectively. Then we
have the conclusion for L = 1 (the other case when λ = −1 follows in
a similar way).

Next we suppose that λ is a complex number, and let α+ βi, α− βi
be the eigenvalues of Dpf

n, |λ|2 = α2 + β2 = 1. There is a linear
isomorphism G : TpM → TpM and θ = θ(α, β) ∈ R such that

Dpf
n = G ◦

(
cos θ − sin θ

sin θ cos θ

)
◦ G−1. Take θ′ ∈ R near 0 and L > 0

such that ‖Op − I‖ < δ0 and (Op ◦Dpf
n)L = G ◦

(
1 0

0 1

)
◦ G−1. Here

Op = G ◦
(

cos θ′ − sin θ′

sin θ′ cos θ′

)
◦ G−1. Let g ∈ U(f) be the diffeomorphism

given by Lemma 1 for the Op. Then the conclusion is clear.

Proof of Proposition. Let f ∈ AS(M). To get the conclusion, it is
enough to show that every p ∈ P (f) is hyperbolic since AS(M) is an
open set. Fix U(f) ⊂ AS(M) and suppose that fn(p) = p ∈ P (f),
n > 0, is not hyperbolic; we shall derive a contradiction. Let ε0,
g ∈ U(f), L and TpM = E ⊕ F be given in Lemma 2. Since g has
the average-shadowing property, gnL does so. Hereafter in this proof,
we shall denote gnL by g for simplicity. Choose 0 < ε1 < ε0 with
g(Bε1(p)) ⊂ Bε0(p) and set ε = ε1/10 > 0. Let 0 < δ = δ(ε) < ε be a
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number as in the definition of the average-shadowing property of g. Fix
an integer n0 > 0 such that δ(n0 − 1) < 3ε1 ≤ δn0. By Lemma 2 there
is a µ ∈ R such that Dpg(v) = v, for all v ∈ E, and Dpg(w) = µw, for
all w ∈ F . Thus, for every (v, w) ∈ E ⊕ F if expp(v, w) ∈ Bε1(p) then
g(expp(v, w)) = expp(v, µw).We may suppose further that µ > 0 (for
the case when µ < 0, we consider g2 instead of g and denote it again
by g for convenience).

Now we pick two points w1 and w2 in expp(E ∩ exp−1
p (Bε1(p)))

symmetrically with respect to p. More precisely, choose v ∈ E and
put w1 = expp(−v), w2 = expp(v) such that d(w1, w2) = ε1. Define a
cyclic sequence {xi}∞i=−∞ of points consisting of w1 and w2 by

x2jn0+1 = x2jn0+2 = · · · = x(2j+1)n0 = w1

and
x(2j+1)n0+1 = x(2j+1)n0+2 = · · · = x2(j+1)n0 = w2

for j ∈ Z. Then it is easy to see that, for all m > 3n0 and k ∈ Z,

1
m

m∑
i=1

d(g(xi+k), xi+k+1) <
3d(w1, w2)

2n0
=

3ε1
2n0

≤ δn0

2n0
< δ

and thus {xi}∞i=−∞ is a cyclic δ-average pseudo-orbit of g. Hence there
is a z ∈ M which ε-shadows {xi}∞i=−∞ in average. Put I = {x ∈
Bε1(p) : g(x) = x}. Then gi(x) = x for i ∈ Z whenever x ∈ I. If
z ∈ I, then d(z, w1) ≥ 5ε or d(z, w2) ≥ 5ε, since d(w1, w2) = 10ε.
In both cases, we have (1/m)

∑m
i=1 d(g

i(z), xi) > ε for any sufficiently
large m > 3n0. This is a contradiction and hence z /∈ I is concluded.

If µ = 1, then I = Bε1(p) so that (1/m)
∑m

i=1 d(g
i(z), xi) > ε for all

m > 0. This is inconsistent with the choice of z. For the case when µ >
1, since we can find m′ ≥ 0 such that gm′+j(z) /∈ Bε1(p) for all j ≥ 0,
because dimM = 2 and z /∈ I, we see d(gm′+j(z), xm′+j) ≥ 2ε for all
j ≥ 0. Thus, if m > m′ is large enough, then (1/m)

∑m
i=1 d(g

i(z), xi) >
ε. This is a contradiction. For the case when µ < 1, we may suppose
that there is an m′′ ≥ 0 such that gi(z) /∈ Bε1(p) for 0 ≤ ∀i ≤ m′′

and gm′′+1(z) ∈ Bε1(p). There are J > 0 and i ∈ {1, 2} such that
j ≥ J implies d(gm′′+j(z), wi) ≥ 4ε. Thus, for any sufficiently large
m > m′′ + J , we have

1
m

m∑
i=1

d(gi(z), xi) ≥
1
m

(m− J −m′′ − 1) · 4
3
ε > ε.
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This is also a contradiction and thus AS(M) ⊂ F1(M) is proved.

Proof of Theorem. Since every Anosov diffeomorphism on a two-
dimensional closed manifold has the average-shadowing property, it
only remains to show that if f ∈ AS(M), then f is Anosov. Let f ∈
AS(M). Since f satisfies Axiom A with no-cycles by the proposition,
for the spectral decomposition Ω(f) = Λ1 ∪ Λ2 ∪ · · · ∪ Λl, there is a
filtration ∅ =M0 ⊂M1 ⊂ · · · ⊂Ml =M .

Claim. Under the above notations, we have l = 1.

If this claim is true, then f is Anosov. Actually, M = W s(Λ1) ∩
Wu(Λ1) = Λ1. Thus the theorem is proved.

To prove the claim, by assuming that l ≥ 2 we shall derive a
contradiction. For simplicity, we suppose l = 2. Take ε > 0 small
enough and fix integers n1, n2 ≥ 5 such that

(n1 − 1)ε < d(M1,Λ2) ≤ n1ε, (n2 − 1)ε < d(Λ1,Λ2) ≤ n2ε.

Here d(A,B) = inf {d(a, b) : a ∈ A, b ∈ B} for A,B ⊂ M . Since f
has the average-shadowing property, there is 0 < δ = δ(ε) < ε such
that every δ-average pseudo-orbit {xi}∞i=−∞ is ε-shadowed in average
by some point in M . Finally, let us fix n3 ≥ 3 such that (n3 − 1)δ <
d(Λ1,Λ2) ≤ n3δ. Take x ∈ Λ1, y ∈ Λ2 with d(x, y) = d(Λ1,Λ2). Since
Ω(f) = P (f), there are p ∈ Λ1 ∩ P (f) and q ∈ Λ2 ∩ P (f) such that

max{d(x, p), d(y, q), d(f(x), f(p)), d(f(y), f(q))} < δ.

Let l1, l2 > 0 be the periods of p, q, respectively,that is, f l1(p) = p,
f l2(q) = q. Fix l3 > 0 such that lil3 > n3 for i = 1, 2, and denote a
cyclic sequence

{. . . , y, f(q), f2(q), . . . , f l1l2l23−1(q), x, f(p), f2(p), . . . ,

f l1l2l23−1(p), y, f(q), . . .}

of points, composed of two points {x, y} and two periodic orbits, by
{zi}∞i=−∞, z0 = y. Then this is a δ-average pseudo-orbit. Indeed, for
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every m > 2l1l2l23 and k ∈ Z,

1
m

m∑
i=1

d(f(zi+k), zi+k+1) ≤
1

2l1l2l23
(4δ + 3δ + 3n3δ) < δ.

Pick z ∈ M which ε-shadows {zi}∞i=−∞ in average. If z ∈ Λ2, then
f i(z) ∈ Λ2 for all i ≥ 0. Hence, for a sufficiently large m > 3l1l2l23,
(1/m)

∑m
i=1 d(f

i(z), zi) > ((n2 − 1)ε/3) > ε. This is a contradiction.
If z /∈ Λ2, then there exists a neighborhood U2 of Λ2 with z /∈ U2. By
using a filtration property we can find m′ > 0 such that, for all i > m′,
f i(z) ∈M1. Thus,

1
m

m∑
i=1

d(f i(z), zi) =
C ′

m
+

1
m

m−m′∑
j=1

d(fm′+j(z), zm′+j) >
(n1 − 1)ε

3
> ε

if we take m large enough. Here C ′ =
∑m′

i=1 d(f
i(z), zi). This is also a

contradiction and so the proof of the claim is completed.

Proof of Corollary. To get the conclusion, it is enough to show that
if f ∈ T T (M), then f ∈ F1(M) when dimM = 2. Suppose that there
is a nonhyperbolic periodic point p of f ∈ T T (M). Then, by making
use of Lemma 1, we can find g (C1 near f) possessing a sink or a
source periodic point p. This is a contradiction since g is topologically
transitive.

Remark. A diffeomorphism g exists on the two-dimensional torus
T2, belonging to the boundary of AS(T2), but g does not have
the average-shadowing property. Indeed, let A(T2) be the set of
all Anosov diffeomorphisms on T2, and let θ2 be the set of all C2

diffeomorphisms g on T2 such that there are a Dg-invariant continuous
splitting TT2 = Eu ⊕ Es, a Riemannian metric ‖ · ‖ and 0 < λ < 1
satisfying

‖Dxg|Es‖ < λ and ‖Dxg|Eu‖ ≥ 1.

Then every element of θ2 is C2 (and so C1)-approximated by Anosov
diffeomorphisms ([9, Proposition C]). For g ∈ θ2\A(T2), let Λ = {x ∈
T2 : ‖Dxg

n|Eu‖ = 1 for n ∈ Z}. Then Λ is a nonempty closed invariant
set. For the case when each connected component of Λ is not a single



DIFFEOMORPHISMS 1137

point, Λ is a finite union of C2 arcs and g(x) = x for all x ∈ Λ (see
[9, Proposition B]). Notice that Es is uniformly contracting. Since a
neighborhood of Λ in M is expressed as a direct product of Λ and a
local stable manifold, by the same argument used in a proof of the
proposition of the present paper, we see that g does not have the
average-shadowing property.
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