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CONSTRUCTION OF WEIGHT TWO EIGENFORMS VIA
THE GENERALIZED DEDEKIND ETA FUNCTION

DONALD L. VESTAL, JR.

ABSTRACT. The generalized Dedekind eta function has
been used in various ways to construct modular functions of
different weights. In this paper we give a way to construct
modular forms of weight two for the modular groups Γ0(N)
which, in some cases, turn out to be Hecke eigenforms (though
never cusp forms).

1. The generalized Dedekind eta function. Let h denote
the upper half plane (so h = {τ | Im τ > 0}), and let P2(x) =
{x}2 − {x} + (1/6) denote the second Bernoulli polynomial, defined
on the fractional part of x, {x} = x − �x�. For integers g and δ, with
δ > 0, we define the generalized Dedekind eta function as

(1) ηδ,g(τ ) = eπiδP2(g/δ)τ
∏

m≡g (mod δ)
m>0

(1− qm)
∏

m≡−g (mod δ)
m>0

(1− qm)

where τ ∈ h and q = e2πiτ . These functions are a variation of the
eta functions defined by Schoeneberg in [5] and can be used to create
modular functions in various ways (see [4] and [6]). For example, from
[6], we have

Theorem. Let N be a positive integer, and let

f(τ ) =
∏
δ|N

0≤g<δ

η
rδ,g

δ,g (τ ),

where rδ,g ∈ Z and rδ,ag = rδ,g for all a relatively prime to N . Set
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k =
∑

δ|N rδ,0. If

∑
δ|N

0≤g<δ

δP2

(
g

δ

)
rδ,g ≡ 0 (mod 2),

∑
δ|N

0≤g<δ

N

6δ
rδ,g ≡ 0 (mod 2),

and if k is an even integer, then f is a modular function of weight k
on Γ0(N).

2. The functions Hδ,g(τ ). In this paper we will consider a class
of modular forms, reminiscent of the Eisenstein series, of weight two,
derived from the generalized Dedekind eta function.

First recall that, for A =
(

a b

c d

)
∈ Γ0(δ) and g 	≡ 0 (mod δ),

ηδ,g(Aτ ) = νδ,g(A)ηδ,ag(τ )

where

νδ,g(A) =




exp
(
πi

[
a

c
δP2(g/δ) +

d

c
δP2

(ag
δ

)

−2sgn c · s(a, c/δ; 0, g/δ)
])

if c 	= 0

exp
(
πi
b

d
δP2(g/δ)

)
if c = 0,

and s(h, k;x, y) is the generalized Dedekind sum (see [4] and [5]). Let

(2) Hδ,g(τ ) =
1
2πi

η′δ,g(τ )
ηδ,g(τ )

.

Since ηδ,g(τ ) is holomorphic and nonzero on h, Hδ,g(τ ) is holomorphic
on h. We now consider what happens at the cusps. The function ηδ,g(τ )
is meromorphic at any cusp γ of h (see [5]), so

ηδ,g(Aτ ) =
∞∑

n=M

anq
n
δ ,
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where M ∈ Z and qδ = e2πiτ/δ. Differentiating both sides of the above
equation with respect to τ yields

(cτ + d)−2 η′δ,g(Aτ ) =
∞∑

n=M

an

(
2πi
δ

)
nqn

δ ;

in particular, if ηδ,g(τ ) has a pole of order M at γ, then η′δ,g(τ ) also has
a pole of order M at γ. Similarly, if ηδ,g(τ ) has a zero of order M at
γ, then η′δ,g(τ ) also has a zero of order M at γ. Consequently, Hδ,g(τ )
will be holomorphic at γ.

Of special interest is the expansion of Hδ,g(τ ) at infinity. We find this
by looking at the logarithmic derivative of the expansion of ηδ,g(τ ) at
infinity: starting with (1) we have

(3)

logηδ,g(τ )

= πiδP2(g/δ)τ +
∑

m≡g (mod δ)
m>0

log(1−qm) +
∑

m≡−g (mod δ)
m>0

log(1−qm)

= πiδP2(g/δ)τ −
∑

m≡g (mod δ)
m>0

∞∑
n=1

qmn

n
−

∑
m≡−g (mod δ)

m>0

∞∑
n=1

qmn

n
.

Differentiating (3) with respect to τ yields

η′δ,g
ηδ,g

(τ ) = πiδP2

(
g

δ

)
−

∑
m≡g (mod δ)

m>0

∞∑
n=1

2πimqmn

−
∑

m≡−g (mod δ)
m>0

∞∑
n=1

2πimqmn

= πiδP2

(
g

δ

)
− 2πi

∞∑
n=1

( ∑
m≡g (mod δ)

m>0

m+
∑

m≡−g (mod δ)
m>0

m

)
qmn

= πiδP2

(
g

δ

)
− 2πi

∞∑
N=1

( ∑
m≡g (mod δ)

m>0

m+
∑

m≡−g (mod δ)
m>n

m

)
qN .
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Let
σδ,g(N) =

∑
d|N

d≡g (mod δ)

d+
∑
d|N

d≡−g (mod δ)

d;

then the expansion of Hδ,g(τ ) at infinity can be written as

(4) Hδ,g(τ ) =
1
2πi

η′δ,g
ηδ,g

(τ ) =
1
2
δP2(g/δ)−

∞∑
N=1

σδ,g(N)qN .

The coefficients of this expansion can be used to derive combinatorial
results. For example, the fourth power of the classical theta function(
θ(τ ) =

∑
n∈Z q

n2)
can be written as 1+

∑
N≥1 s4(N)qN , where s4(N)

denotes the number of ways of writing N as a sum of four squares.
One can show that θ4(τ ) = (1/3)H4,1(τ ) + (2/3)H4,2(τ ), which gives
the formula for s4(N):

s4(N) = 8σ4,1(N) + 4σ4,2(N).

Similarly, one can find a formula for the number of ways a positive
integer N can be written as a sum of four triangular numbers:

t4(N) = σ4,1(2N + 1) = σ(2N + 1),

where t4(N) denotes the number of ways of writing N as a sum of four
triangular numbers (see [6] for the details of these derivations).

We can use the transformation formula of ηδ,g(τ ) to find a transfor-
mation formula for Hδ,g(τ ): if A ∈ Γ0(δ), then

ηδ,g(Aτ ) = νδ,g(A)ηδ,ag(τ );

this implies (after differentiating by τ ) that

η′δ,g(Aτ ) = νδ,g(A)(cτ + d)2η′δ,ag(τ ).

Therefore,

Hδ,g(Aτ ) =
1
2πi

η′δ,g(Aτ )
ηδ,g(τ )

= (cτ + d)2
1
2πi

η′δ,ag

ηδ,ag
(τ )

= (cτ + d)2 Hδ,ag(τ ).
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Suppose that (δ/g) = 2, 3, 4 or 6. If A =
(

a b

c d

)
∈ Γ0(δ), then

(a, δ) = 1 and hence ag ≡ ±g (mod δ). So

Hδ,g(Aτ ) = (cτ + d)2Hδ,ag(τ ) = (cτ + d)2Hδ,g(τ ),

which implies that Hδ,g(τ ) is a modular form of weight two on Γ0(δ).

As an example, consider H2,1(τ ). This is a modular form of weight
two on Γ0(2). Using the formulas of Shimura and Gunning (see [6]),
we find that the space of modular forms of weight two on Γ0(2) has
dimension one, so that, in fact, H2,1(τ ) is the modular form of weight
two on Γ0(2). In particular, it is the eigenform (with respect to
the Hecke transform) for Γ0(2). We will discuss eigenforms more in
Section 4.

When (δ/g) is not 2, 3, 4, or 6, then the function Hδ,g(τ ) may not be
a modular form on Γ0(δ). For example, H5,1(τ ) is not a modular form
for Γ0(5):

H5,1

(
2τ + 1
5τ + 3

)
= (5τ + 3)2H5,2(τ ) 	= (5τ + 3)2H5,1(τ ).

However, note that for A ∈ Γ1(δ), we always have Hδ,g(Aτ ) = (cτ +
d)2Hδ,g(τ ), since a ≡ 1 (mod δ); hence, Hδ,g(τ ) is always a modular
form of weight two on Γ1(δ).

3. Constructing modular forms. We now focus exclusively on
Γ0(δ). Let Mk(Γ′) denote the vector space of modular forms of weight
k on Γ′. Based on the previous section, we have results such as

H2,1(τ ) =
1
2
(2)P2

(
1
2

)
−

∞∑
N=1

σ2,1(N)qN

= − 1
12

−
∞∑

N=1

σ2,1(N)qN ∈ M2(Γ0(2)),

H6,1(τ ) =
1
2
(6)P2

(
1
6

)
−

∞∑
N=1

σ6,1(N)qN

=
1
12

−
∞∑

N=1

σ6,1(N)qN ∈ M2(Γ0(6)),
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and

H20,5(τ ) =
1
2
(20)P2

(
5
20

)
−

∞∑
N=1

σ20,5(N)qN

= − 5
24

−
∞∑

N=1

σ20,5(N)qN ∈ M2(Γ0(20)).

Although H5,1(τ ) and H5,2(τ ) are not modular on Γ0(5), they can
be used to construct modular forms for Γ0(5), in some cases with a
character as a multiplier. For example, let F (τ ) = H5,1(τ )+H5,2(τ )+

H5,3(τ ) +H5,4(τ ). Then, for A =
(

a b

c d

)
∈ Γ0(5), we have

F (Aτ ) = H5,1(Aτ ) +H5,2(Aτ ) +H5,3(Aτ ) +H5,4(Aτ )
= (cτ + d)2

(
H5,a(τ ) +H5,2a(τ ) +H5,3a(τ ) +H5,4a(τ )

)
= (cτ + d)2F (τ ),

and thus F (τ ) ∈ M2(Γ0(5)). Similarly, suppose χ is the quadratic
character defined by the Legendre symbol modulo 5: χ(a) = (a/5).
Now let G(τ ) = H5,1(τ )−H5,2(τ )−H5,3(τ ) +H5,4(τ ). Then

G(Aτ ) = H5,1(Aτ )−H5,2(Aτ )−H5,3(Aτ ) +H5,4(Aτ )
= (cτ + d)2

(
H5,a(τ )−H5,2a(τ )−H5,3a(τ ) +H5,4a(τ )

)
.

If a ≡ ±1 (mod 5), then G(Aτ ) = (cτ + d)2G(τ ). If a ≡ ±2 (mod 5),
then G(Aτ ) = (cτ + d)2

(
H5,2(τ ) − H5,4(τ ) − H5,1(τ ) + H5,3(τ )

)
=

−(cτ + d)2G(τ ). We summarize this by writing

G(Aτ ) =
(
a

5

)
(cτ + d)2G(τ ).

Since (a/5) = (d/5) for
(

a b

c d

)
∈ Γ0(5), we have shown that G(Aτ ) =

χ(d)(cτ + d)2G(τ ), and hence G is a modular form of weight two on
Γ0(5) with χ as a multiplier.

We generalize the last two examples with the following.

Theorem 1. Let χ be a Dirichlet character modulo N (N a positive
integer), and set

f(τ ) =
N∑

k=1

χ(k)HN,k(τ ).
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Then f is a modular form of weight two on Γ0(N) with multiplier χ.

Proof. EachHN,k(τ ) is holomorphic at the cusps of Γ0(N), so we need

only check the transformation formula. Taking A =
(

a b

c d

)
∈ Γ0(N),

we find

f(Aτ ) =
N∑

k=1

χ(k)HN,k(Aτ )

=
N∑

k=1

χ(k)(cτ + d)2HN,ak(τ )

= χ̄(a)
N∑

k=1

χ(ak)(cτ + d)2 HN,ak(τ )

= χ̄(a)(cτ + d)2
N∑

k=1

χ(ak)HN,ak(τ )

= χ̄(a)(cτ + d)2f(τ ).

Since ad ≡ 1 (mod N), we can replace χ̄(a) with χ(d). This gives

f(Aτ ) = χ(d)(cτ + d)2f(τ ),

which implies that f is a modular form of weight 2 on Γ0(N) with
multiplier χ.

Note that in the case where χ(−1) = −1, the function f is the zero
function. If N = 5 and χ(n) is the trivial Dirichlet character modulo
5, then f(τ ) is the function F (τ ) defined above. Similarly, if N = 5
and χ(n) = (n/5), then f(τ ) = G(τ ).

4. Eigenforms. According to Theorem 1, the functions F (τ )
and G(τ ) are modular forms of weight two with the corresponding
characters as multipliers. In fact, they are eigenforms with respect
to the Hecke operator. For example, consider F (τ ). For any positive
integer m, let λm =

∑
d|m,5�d d =

∑
d|m χ(d)d, where χ denotes the

trivial character modulo 5. If Tm denotes the Hecke operator, then
Tm(F ) = λmF . To show this, we need the following.
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Lemma. Let χ be a Dirichlet character. Then, for any positive
integers m and n,

( ∑
d|m

χ(d)d
)(∑

d|n
χ(d)d

)
=

∑
d|gcd (m,n)

(
χ(d)d

∑
e|(mn/d2)

χ(e)e
)
.

Proof. According to Theorem 1.12 of [3], the following are equivalent:

(1) The arithmetic function g is the convolution of two completely
multiplicative functions.

(2) There is a completely multiplicative function B such that for all
positive integers m and n,

g(m)g(n) =
∑

d|gcd (m,n)

B(d)g
(
mn

d2

)
;

in particular, the function B is determined by B(p) = g(p)2 − g(p2) for
any prime p.

We apply this result to the arithmetic function g(n) =
∑

d|n χ(d)d.
Since g is the convolution of x(n)n and 1, both of which are completely
multiplicative, we can write

( ∑
d|m

χ(d)d
)(∑

d|n
χ(d)d

)
=

∑
d|gcd (m,n)

B(d)
( ∑

e|(mn/d2)

χ(e)e
)
,

where B is some completely multiplicative function. In particular, B
is determined by the relation B(p) = g(p)2 − g(p2) = (1 + χ(p)p)2 −
(1 + χ(p)p+ χ(p2)p2) = χ(p)p, which gives the desired result.

Since

F (τ ) = H5,1(τ ) +H5,2(τ ) +H5,3(τ ) +H5,4(τ )

= − 1
3
−

∞∑
N=1

(
σ5,1(N) + σ5,2(N) + σ5,3(N) + σ5,4(N)

)
qN ,

we can write the Fourier expansion of F (τ ) as
∑

anq
n where a0 = −1/3

and an = σ5,1(n) + σ5,2(n) + σ5,3(n) + σ5,4(n) =
∑

d|n χ(d)d. Then
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TmF =
∑

bnq
n where

bn =
∑

d|gcd (m,n)

χ(d) damn/d2

(see [1, Proposition 39]). Now

λman =
( ∑

d|m
χ(d)d

)( ∑
d|n

χ(d)d
)
,

and

bn =
∑

d|gcd (m,n)

χ(d) damn/d2

=
∑

d|gcd (m,n)

(
χ(d)d

∑
e|(mn/d2)

χ(e)e
)
.

By the lemma, λman = bn, and thus TmF = λmF . A similar argument
shows that G(τ ) is an eigenform with respect to the quadratic character
(·/d).
The function defined in Theorem 1 is always a modular form of weight

two on Γ0(N) with χ as a multiplier. We conclude by showing that,
if the function is not the zero function, then it turns out to be an
eigenform:

Theorem 2. Let χ be a Dirichlet character modulo N (N a positive
integer), with χ(−1) = 1, and set

f(τ ) =
N∑

k=1

χ(k)HN,k(τ ).

Then f is an eigenform of weight two on Γ0(N) with multiplier χ.

Proof. Letm be a positive integer, and write f(τ ) as
∑

anq
n and Tmf

as
∑

bnq
n. Then for n > 0, an =

∑
d|n χ(d)d. Let λm =

∑
d|m χ(d)d.

Then

λman =
( ∑

d|m
χ(d)d

)( ∑
d|n

χ(d)d
)
,
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and

bn =
∑

d|gcd (m,n)

χ(d) damn/d2

=
∑

d|gcd (m,n)

(
χ(d)d

∑
e|(mn/d2)

χ(e)e
)
.

By the lemma, λman = bn, and hence f is an eigenform.
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