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JACOBI FORMS AND GENERALIZED RC-ALGEBRAS

YOUNGJU CHOIE AND WOLFGANG EHOLZER

ABSTRACT. Using the recently found Rankin-Cohen type
brackets on the spaces of Jacobi forms, we define generalized
Rankin-Cohen algebras. We study their algebraic properties
and give examples generalizing the elliptic cases.

1. Introduction. Classically, there are many interesting connec-
tions between differential operators and the theory of elliptic modular
forms, and several interesting results have been obtained (see [6], [8],
for instance). In 1956, Rankin gave a general description of the differ-
ential operators which sent modular forms to modular forms [6]. Later,
Cohen constructed certain differential bilinear operators acting on the
graded ring M∗(Γ) of modular forms on the group Γ ⊂ PSL(2, Z) and
used them to construct modular forms with interesting Fourier coef-
ficients [4]. In 1990, Zagier studied the algebraic properties of these
bilinear operators and called them Rankin-Cohen brackets [8]. More-
over, the Rankin-Cohen brackets are shown to appear as the various
terms in the (convergent) expansion of the composition of two symbols
in a certain symbolic calculus associated with SL(2,R) [7]. The exis-
tence of infinitely many identities among the Rankin-Cohen brackets
motivated the definition of Rankin-Cohen algebras whose properties
have been studied in detail in [8].

Recently, the theory of Jacobi forms has been studied extensively
and systematically, first by Eichler and Zagier [5] and many others. It
turns out that Jacobi forms are connected with modular forms of half-
integral weight as well as integral weight, Siegel modular forms and
elliptic curves. It was shown that the heat operator plays an important
role connecting Jacobi forms and elliptic modular forms. In [1], [2], [3]
the generalization of the Rankin-Cohen brackets, which involves the
heat operator, to Jacobi forms has been found.
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Since there are also infinitely many relations among the Rankin-
Cohen type brackets on the space of Jacobi forms, it is natural to define
generalized Rankin-Cohen algebras which we will call GRC algebras.
In this paper we study the properties of GRC-algebras on Jacobi forms.
These results are the generalization of the results obtained in the elliptic
case (see [8]).

2. Jacobi forms and differential operator. In this section we
recall some basic notations of the theory of Jacobi forms and define the
heat operator. In particular, we recall the Rankin-Cohen type brackets
using the heat operator. Our conventions follow those used in [5].

Let Γ(1) be the modular group, the set of 2× 2 matrices with integer
entries and determinant 1. The following slash operators on function
f : H×C → C are given in [5]. For fixed integers k and m, let

(f |k,m

(
a b
c d

)
)(τ, z) := (cτ+d)−ke2πim(−cz2/(cτ+d))f

(
aτ+b

cτ+d
,

z

cτ+d

)
,

for
(

a b

c d

)
∈ Γ(1), and

(f |m[λ, ν])(τ, z) := e2πim(λ2τ+2λz)f(τ, z + λτ + ν) for [λ, ν] ∈ Z2.

Using these slash operators we give the definition of Jacobi forms.

Definition 2.1. A Jacobi form of weight k and index m (k,m ∈ Z+)
on Γ(1) is a holomorphic function f : H×C → C satisfying

(f |k,mM)(τ, z) = f(τ, z) for M ∈ Γ(1),
(f |mX)(τ, z) = f(τ, z) for X ∈ Z2,

and such that it has a Fourier expansion for the form

f(τ, z) =
∞∑

n=0
r∈Z,r2≤4nm

c(n, r)qnζr,

where q = e2πiτ and ζ = e2πiz. If f has a Fourier expansion of the
same form but with r2 < 4nm, then f is called a Jacobi cusp form of
weight k and index m.
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We denote by Jk,m the vector space of all Jacobi forms of weight k
and index m and by Jcups

k,m the vector space of all Jacobi cusp forms
of weight k and index m. We identify the space Jk,0 as the space
of elliptic modular forms of weight k which we also denote by Mk

(similarly Jcusp
k,0 = M cusp

k the space of elliptic cusp forms).

In [5] the action of the heat operator L on J∗,∗ has been studied. It
plays an important role connecting Jacobi forms and elliptic modular
forms. It also turns out that the heat operator Lm can be used to
construct the Rankin-Cohen type brackets on the space of Jacobi forms
[1]. We recall the definition of the heat operator and the Rankin-Cohen
type bilinear differential operators.

Definition 2.2. Heat operator. For any integer m the heat
operator Lm is defined by


Lm(f) =

(
8π im

∂

∂τ
− ∂2

∂z2

)
(f) if f ∈ J∗,m with m ∈ Z+

L0(f) =
∂

∂τ
(f) if f ∈ J∗,0

.

Remark 2.3. Note that the normalization of the heat operator L is
different from the one used in [1].

Definition 2.4. Rankin-Cohen type brackets. Let fi with
i = 1, 2 be complex-valued holomorphic functions on H × C. Then,
for all nonnegative integers n, and for some integers ki, mi, i = 1, 2,
the nth Rankin-Cohen type bracket [ ,�n is defined by

[f1f2]n =
∑

r+s=n

(−1)r
(
a1 + n− 1

s

) (
a2 + n− 1

r

)

·ms
1m

r
2L

r
m1

(f1)Ls
m2

(f2)

where αi = ki − (1/2), i = 1, 2.

We now recall the main result in [1].

Theorem 2.5. Let fi ∈ Jki,mi
for i = 1, 2. Then, for any

nonnegative integer n,
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1) [f1, f2]n ∈ Jk1+k2+2n,m1+m2 .

2) If f1 or f2 ∈ Jcusp
∗,∗ , then [f1f2]n ∈ Jcusp

∗,∗ .

Proof. See Theorem 3.1 in [1].

We also define a covariant differential operator for Jacobi forms,
which we will need later.

Proposition 2.6. Let δ(k,m) = k− (1− δm,0)/2. Then the operator
D defined by

D(f) := Lm(f)− 1
3
δ(k,m)E2(τ )f, f ∈ Jk,m,

(with Lm as in (2.2)) maps J∗,∗ to J∗+2,∗. Here E2(τ ) is the elliptic
Eisenstein series of weight 2, i.e., E2(τ ) = 1− 24

∑∞
n=1 σ(n)e

2πinτ .

Proof. It is well known that E2(τ ) satisfies, for any M =
(

a b

c d

)
∈

Γ(1),

(cτ + d)−2E2(Mτ ) = E2(τ ) +
6c

πi(cτ + d)
.

A simple computation shows that

Lm(f)|k+2,mM = Lm(f |k,mM) +
2δ(k,m)
πi(cτ + d)

f |k,mM,

for all f ∈ Jk,m. Together with equation (10) on page 33 of [5], this
implies the proposition.

3. Generalized Rankin-Cohen algebras. In [8], Zagier defined
Rankin-Cohen algebras (RC algebras) over a field K as a graded K-
vector space R∗ = ⊕k≥0Rk together with bilinear operators [·, ·]n :
Rk ×Rl → Rk+l+2n which hold all the algebraic identities satisfied by
the Rankin-Cohen brackets. It was shown that under a rather general
hypothesis, all RC-algebras arise as subalgebras of certain standard
RC-algebras.
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In this section we define generalized Rankin-Cohen algebras (GRC
algebras) using the Rankin-Cohen type brackets considered in the last
section and get the analogous properties of RC algebras. However,
before we give a definition of generalized RC algebras, we want to
mention some of the identities satisfied by the Rankin-Cohen type
brackets on the spaces of Jacobi forms which can easily be proved from
their definition.

Proposition 3.1. Let fi ∈ Jki,mi
, i = 1, 2, 3, and let [ , ]n be the

nth Rankin-Cohen type bracket. Then one has the following identities

(1) [[f1, f2]0, f3]0 = [f1, [f2, f3]0]0,

(2) [f1, f2]n = (−1)n[f2, f1]n, for all n,

(3) δ(k3,m3)[[f1, f2]1, f3]0 + δ(k1,m1)[[f2, f3]1, f1]0
+ δ(k2,m2)[[f3, f1]1, f2]0 = 0.

For m1 = m2 = m3 = 0, it satisfies the Jacobi identity

(4) [[f1, f2]1, f3]1 + [[f2, f3]1, f1]1 + [[f3, f1]1, f2]1 = 0.

It is also true that, for m1 = m2 = 0, one has1

k2
1(k1 + 1)f2

1 [f2, f2]2 − k2
2(k2 + 1)f2

2 [f1, f1]2
= −(k1 + 1)(k2 + 1)2[f1, f2]21 − k2(k2 + 1)(k1 + 1)f2[[f1, f2], f1]1.

Recall from [8] that a simple counting argument shows that there
exist many more universal identities, satisfied by the Rankin-Cohen
type brackets (for instance, the permutations of the r-fold 2-brackets
[..[[f1, f2]2f3] . . . ]2 are linearly dependent for all sufficiently large r.
More precisely, we see that there are at most 5× 2r − 2r− 5 unknowns
with r!/2 equations coming from all possible permutations.)

Definition 3.2. A generalized RC algebra (GRC algebra) over a field
K is a bigraded K-vector space R∗,∗ = ⊕k,mRk,m (with R0,0 = K · 1
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and dimKRk,m < ∞ for all k,m) together with bilinear operations
[·, ·]n : Rk,m ⊗ Rk′,m′ → Rk+k′+2n,m+m′ , k, k′,m,m′, n ≥ 0, which
satisfy (1) (4) of Proposition 3.1 with the fi ∈ Rki,mi

, i = 1, 2, 3.

Example 3.3. Theorem 2.5 implies that (J∗,∗, [.]n) is a GRC algebra.
Here [.]n is the nth Rankin-Cohen type bracket.

Next we define the notion of standard GRC-algebras.

Definition 3.4. Let R∗, ∗ be a commutative bigraded algebra with
unit over K with two derivations D1 and D2 of degree (2,0) and (1,0),
respectively (D1(R∗,∗) = R∗+2,∗ and D2(R∗,∗) = R∗+1,∗) and assume
that D2R∗,0 = 0. Set Lm = D1 − (1/m)D2

2 on R∗,m, m �= 0, and
L0 = D1, and define a bilinear operator [ , ]L,n by

(5) [f, g]L,n =
∑

r+s=n

(−1)r
(
δ(k,m) + n− 1

s

)

·
(
δ(k′,m′) + n− 1

r

)
Lr

m(f)Ls
m′(g)

for any f ∈ Rk,m and g ∈ Rk′,m′ . Then L is called a generalized heat
operator and the GRC algebra (R∗,∗, [ , ]L,∗) is called a standard GRC
algebra (note that (R∗,∗, [ , ]L,∗) is the GRC algebra since [f, g]L,n is
in Rk+k′+2n,m+m′).

Remark 3.5. Note that J∗,∗ together with the heat operator given
in Definition 2.2 does not define a standard GRC-algebra since J∗,∗
is not closed under the action of the heat operator. However, by
Proposition 2.6, J∗,∗ is a standard GRC-algebra with D (here D1 =
(4/2πi)(∂/∂τ )− (δ(k,m)E2/3) and D2 = (1/2πi)(∂/∂z)).

The following Proposition 3.6 shows the existence of a class of GRC-
algebras in which the standard GRC-algebra is obtained as a special
case of Φ = 0. The proof of the proposition shows that such a wider
class of GRC-algebras is realized as a subalgebra of the standard one.
It is analogous to Proposition 1 given in [8].

Proposition 3.6. Let R∗,∗ be a bigraded commutative associative
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K-algebra with R0,0 = K.1 together with an element Φ ∈ R4,0 and a
generalized heat operator D. Define brackets [ , ]D,Φ,n, n ≥ 0, on R∗,∗,
by

[f, g]D,Φ,n =
∑

r+s=n

(−1)r
(
δ(k,m) + n− 1

s

) (
δ(k′,m′) + n− 1

r

)
frgs

where fr ∈ Rk+2r,m, gs ∈ Rk′+2s,m′ , r, s ≥ 0, satisfying

fr+1 = Dfr + r(δ(k,m)− 1 + r)Φfr−1

gs+1 = Dgs + s(δ(k′,m′)− 1 + s)Φgr−1

with initial conditions f0 = f and g0 = g. So f1 = D(f), g1 = D(g).
Then (R∗,∗, [ , ]D,Φ,∗) is a GRC-algebra.

Definition 3.7. A GRC algebra will be called canonical if its
brackets are given as in Proposition 3.6 for some generalized heat
operator D and some element Φ ∈ R4,0.

Proof of Proposition 3.6. The proof of the proposition goes along the
same lines as the proof of Proposition 1 in [8]. First we will embed
(R∗,∗, [ , , ]D,Φ,∗) into a standard GRC algebra (R̂∗,∗, [ , ]L,∗) for some
larger graded ring R̂∗,∗ with a generalized heat operator L. Define the
operator L on R̂∗,∗ := R∗,∗ ⊗K K[φ] (φ has degree (2, 0)) by

L(f) = D(f) + δ(k,m)φf ∈ R̂k+2,m, L(φ) = Φ + φ2

where f ∈ Rk,m and Φ ∈ R̂4,0. This defines L on generators of R̂∗,∗,
and we extend L uniquely such that it satisfies Leibnitz’s rule if one of
the elements is in R̂∗,0. Note that L is a generalized heat operator since
D is a generalized heat operator. We can now prove the proposition by
showing that [f, g]L,n = [f, g]D,Φ,n for f, g ∈ R∗,∗. First, observe that
the brackets [ , ]L,n in equation (5) can be rewritten as

∞∑
n=0

[f, g]L,n

(n+ δ(k,m)− 1)!(n+ δ(k′,m′)− 1)!
Xn = f̃(−X)g̃(X)
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where

f̃(X) =
∞∑

n=0

Ln(f)
n!(δ(k,m)− 1 + n)!

Xn,

g̃(X) =
∞∑

n=0

Ln(g)
n!(δ(k′,m′)− 1 + n)!

Xn.

Second, we claim that fr satisfies

e−φX f̃(X) =
∞∑

r=0

fr

r!(δ(k,m)− 1 + r)!
Xr

(and similarly for g).

Or, equivalently,

fr =
r∑

n=0

(−1)r−n r!(δ(k,m)−1+ r)!
n!(δ(k,m)−1 + n)!(r − n)!

φr−nLn(f) ∈ R̂k+2r,m.

This can be proved by showing that the above equation satisfies the
recursion relation given in the proposition. Assume inductively that
we have proved that fr ∈ Rk+2r,m for some r. Then we find

D(fr) = L(fr)− (δ(k,m) + 2r)φfr

=
r∑

n−0

(−1)r−n r!(δ(k,m)− 1 + r)!
n!(δ(k,m)− 1 + n)!(r − n)!

· [φr−nLn+1(f) + (r − n)φr−n−1(Φ + φ2)Ln(f)
− (δ(k,m) + 2r)φn−r+1Ln(f)]

=
r+1∑
n=0

(−1)r+1−n r!(δ(k,m)− 1 + r)!
n!(δ(k,m)− 1 + n)!(r + 1− n)!

· [n(n+ δ(k,m)− 1)− (r − n)(r + 1− n)

+ (δ(k,m) + 2r)(r + 1− n)]φr−n+1Ln(f)

+ Φ
r−1∑
n=0

(−1)r−n r!(δ(k,m) + r)!
n!(δ(k,m) + n)!(r − n−1)!

φr−n−1Ln(f)

= fr+1 − r(δ(k,m)− 1 + r)Φfr−1,
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from the induction hypothesis. By multiplying e−φX f̃(X) by
eφX g̃(−X) we find that [f, g]L,n = [f, g]D,Φ,n. Hence the proposition
becomes obvious.

The next theorem states a criterion for a GRC-algebra to be canonical
which can be checked in a finite process.

Theorem 3.8. Let (R∗,∗, [ , ]∗) be a GRC-algebra which is finitely
generated over a field of characteristic zero. Then the following state-
ments are equivalent:

(1) (R∗,∗, [ , ]∗) is a canonical GRC-algebra.

(2) For every homogeneous element F ∈ Rk′,m′ , there exists an
element G ∈ R∗+2,0 such that

(a) [F, f ]1 ≡ δ(k′,m′)fG (mod F ) for every k,m ≥ 0 and all
f ∈ Rk,m.

(b) [F, F ]2 ≡ (δ(k′,m′) + 1)G2 − (δ(k′,m′) + 1)[F,G]1 (mod F 2).

(3) Property 2 holds for some homogeneous F ∈ R∗,0 which is not a
divisor of zero.

Specifically, if (F,G) are a pair of elements satisfying (a) and (b) in 2,
and with F ∈ R∗,0 which is not a divisor of zero, then the bracket on
R∗,∗ will agree with the canonical bracket associated with

(6)

DF,G(f) :=
[F, f ]1 − δ(k,m)fG

δ(k′,m′)F
, f ∈ Rk,m

ΦF,G :=
[F, F ]2 + (δ(k′,m′) + 1)([F,G]1 −G2)

δ2(k′,m′)(δ(k′,m′) + 1)F 2
.

Proof. The proof is similar to that of Proposition 2 in [8]. First
assume that R∗,∗ is canonical with respect to some generalized heat
operator D : R∗,∗ → R∗+2,∗ and Φ ∈ R4,0 and choose any homogeneous
element F ∈ Rk′,m′ . Then properties (a) and (b) in 2 hold with
G = −D(F ) because of the identities

[F, f ]1 − δ(k,m)fG = [F, f ]D,Φ,1 + δ(k,m)fD(F )
= δ(k′,m′)D(f)F, f ∈ Rk,m,
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[F,F ]2 + (δ(k′,m′) + |)[F,G]1 − (δ(k′,m′) + 1)G2

= (δ(k′,m′)(δ(k′,m′) + 1)FD2(F )− (δ(k′,m′) + 1)2D(F )2

+ δ(k′,m′)2(δ(k′,m′) + 1)ΦF 2)− (δ(k′,m′ + 1)(δ(k′,m′)D(F )F
− (δ(k′,m′) + 1)FD2(F ))− (δ(k′,m′) + 1)(D(F ))2

= δ(k′,m′)2(δ(k′,m′) + 1)ΦF 2.

Conversely, suppose that R∗,∗ contains elements F ∈ RN,0, G ∈
RN+2,0, for some N satisfying (a) and (b) in (2), and define D and
Φ by (6). Then we claim that the brackets [ , ]D,Φ,∗ induced by D and
Φ agree with the given brackets. As in the proof of Proposition 3.6, we
can assume that (R∗,∗, [ , ]∗) is a sub GRC algebra of a standard GRC
algebra (R∗,∗, [ , ]L,∗) since the assertion to be proved is equivalent to
a collection of universal identities for the brackets of a GRC algebra
and such identities are true by definition if they are true for standard
algebras. Now the larger algebra (R∗,∗, [ , ]L,∗) is canonical with a
generalized heat operator L of degree (2.0) and Φ of degree (4,0).
Therefore, we only have to show that in a ring with more than one
choice of (F,G), as in (2) of the theorem, the induced brackets agree.
Suppose that (F,G) satisfies (a) and (b) in (2), and let F̃ ∈ RÑ,0 be
an arbitrary homogeneous element of R∗,0. We now have to show that
there is an element G̃ ∈ RÑ+2,0 such that (F̃ , G̃) also satisfy (a) and
(b) in (2). We may start by choosing any G̃ satisfying (b). We set

G̃ =
δ(Ñ , 0)GF̃ − [F, F̃ ]1

δ(N, 0)F
,

which belongs to RÑ,0 by property (a) of (F,G). Then, for f ∈ Rk,m

we find

DF,G(f)−DF̃ ,G̃(f)

=
δ(Ñ , 0)F̃ [f, F ]1 + δ(N, 0)F [F̃ , F ]1 + δ(k,m)f [F̃ , F ]1

δ(N, 0)δ(Ñ , 0)FF̃
= 0

by the second identity of GRC brackets given in Proposition 3.1. From
the third identity of GRC brackets given in Proposition 3.1, we find
similarly that ΦF,G − ΦF̃ ,G̃ = 0. Therefore, the brackets constructed
with DF,G and ΦF,G are the same as those constructed from F̃ and G̃,
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and thus the same as those constructed form any pair (F̃ , G̃) satisfying
(a) and (b) in (2). This proves the theorem.

ENDNOTE

1. This is the corrected version of equation (41) in [8] which contains several

misprints.
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comments which have improved the exposition.
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