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VOLTERRA INCLUSIONS IN BANACH SPACES

MIHI KIM

ABSTRACT. A solution characterization and a uniqueness
for the Volterra inclusion (VI) are studied by means of the
Laplace transform.

1. Introduction. The aim of this paper is to study the Volterra
inclusion (or relation)

(VI) v(t) ∈ A
∫ t

0

v(t − s) dµ(s) + F(t), t ≥ 0

by means of the Laplace transform.

Sums, compositions, or limits of closed operators are not necessarily
closed but relatively closed (see Bäumer and Neubrander [2]). Since
the inverse B−1 of an operator B is usually multivalued, the degenerate
Volterra equation Bv(t) = A

∫ t

0
v(t − s)dµ(s) + f(t) leads to (VI) with

a possibly nonclosed multivalued operator A := B−1A = {(x, y) : x ∈
D(A), y ∈ D(B), and Ax = By} and a possibly multivalued function
F = B−1f . Another example which leads to the consideration of (VI)
for multivalued operators and/or multivalued functions is a control
problem of the following type. Let A be a single-valued linear operator
on a Banach space X, and let Zt ⊆ X, t ≥ 0. The problem to be
considered is to find all forcing terms f : [0,∞) → X with f(t) ∈ Zt

for which there exists a solution of the Volterra equation

u(t) = A

∫ t

0

u(t − s) dµ(s) + f(t)

with a given property (P ) (like u(0) = x0 for some x0 ∈ X). Define a
multivalued function F by F(t) := Zt for every t ≥ 0. Then the control
problem is equivalent to finding all solutions of the inclusion

u(t) ∈ A

∫ t

0

u(t − s) dµ(s) + F(t)
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with the property (P ). If Zt = Z for all t ≥ 0 for a linear subspace
Z of X, then the operator Ax := Ax + Z is multivalued and linear
(see Section 2 for the definition of a multivalued linear operator) and
the control problem is equivalent to finding all the solutions of the
homogeneous Volterra inclusion

u(t) ∈ A
∫ t

0

u(t − s) dµ(s)

with the given property (P ).

Section 1 includes one more example of an equation that leads to (VI)
with a relatively closed operator A.

The inclusion (VI) is a generalization of the multivalued Cauchy
problem (du/dt) ∈ Au(t) + f(t), 0 < t < ∞; u(0) = x and the Volterra
equation v(t) = A

∫ t

0
v(t − s) dµ(s) + f(t), t ≥ 0 (see Knuckles and

Neubrander [7] and Kim [5], [6]).

For (VI) we assume that F is a single- or multivalued function from
[0,∞) to a Banach space X, and µ : [0,∞) → C a normalized function
of local bounded variation. A ⊆ X × X is assumed to be a single- or
multivalued, linear operator with domain D(A). Further we assume
that there exists an auxiliary Banach space XA which is continuously
embedded in X (i.e., XA ↪→ X), for which D(A) is a subspace of XA
and the graph of A is closed in XA × X (see Section 2). A function
v ∈ C([0,∞);X) is said to be a solution of (VI) if

(i) the convolution v ∗ dµ(t) :=
∫ t

0
v(t − s)dµ(s) of v and dµ, t ≥ 0,

is locally Bochner integrable in XA, and

(ii) v ∗ dµ(t) ∈ D(A) for all t ≥ 0 and (VI) holds.

If F is single-valued, if A is a single-valued closed linear operator with
sufficiently nice spectrum and resolvent, and if (VI) models a well-posed
evolutionary problem where t denotes the time variable, then properties
of the equation (VI) are studied extensively (see Prüss [9]).

We characterize the solutions of (VI) in terms of the resolvent inclu-
sion

0 ∈ (I − d̂µ(λ)A)y(λ)− F̂(λ), λ > ω,

which is sometimes easier to be solved than (VI) and obtain a unique-
ness for (VI) in Section 3. The results generalize those results in [6].
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The methods of integrated and convoluted solution operator families
have been well applied to the study of the well-posed Volterra equations
(VI) with both A and F single-valued (see [5], [6]). Those concepts of
integrated and convoluted solution operator families for Volterra equa-
tions which assume the existence of the resolvent (I − d̂µ(λ)A)−1 of
the operator A on an interval (ω,∞) extend automatically to multi-
valued closed linear operators A. However, the assumption of the re-
solvent (I − d̂µ(λ)A)−1 of a multivalued operator A, as a single-valued
bounded linear operator in the definition of a convoluted (or integrated)
solution operator family for the Volterra inclusion (VI), implies imme-
diately that A is single-valued. Hence the methods of integrated and
convoluted solution operator families don’t seem to extend properly to
multivalued closed linear operators.

2. Preliminaries. Let X and Y be Banach spaces throughout.

Let A ⊆ X × Y be a multivalued operator with domain D(A) :=
{x ∈ X : (x, y) ∈ A for some y ∈ X} and range Ran (A) := {y ∈ X :
y ∈ Ax, x ∈ D(A)}. A is called linear if D(A) is a linear subspace of
X and

(2.1) µAx ⊆ A(µx) and Ax +Ay ⊆ A(x + y)

for all x, y ∈ D(A) and µ ∈ C − {0}. The relations in (2.1) are
equivalent to

(2.2) µAx = A(µx) and Ax +Ay = A(x + y)

for all x, y ∈ D(A) and µ ∈ C − {0}, respectively in order (see Cross
[3], Favini and Yagi [4] or [7]).

A multi- or single-valued operator A ⊆ X ×Y is said to be relatively
closed if there exist auxiliary Banach spaces XA and YA such that

(i) D(A) ⊆ XA ↪→ X and R(A) ⊆ YA ↪→ Y , and

(ii) A is closed in XA × YA, i.e., if D(A) 
 xn → x in XA and
Axn 
 yn → y in YA, then x ∈ D(A) and y ∈ Ax.

In this case, more specifically A is said to be (XA × YA)-closed, and
(XA ↪→ X)-closed if YA = Y = X.

Examples of relatively closed linear operators include sums, compo-
sitions, or limits of relatively closed linear operators. For relatively
closed operators and the following, refer to [2] or [7].
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We give an example of an equation that leads to an equation of (VI)-
type with a relatively closed operator A. Consider the integral equation

(2.3) v(t) = A

∫ t

0

v(t − s) dµ(s) + B

∫ t

0

v(t − s) dµ(s) + f(t), t ≥ 0

where µ is a scalar valued function of bounded variation and f a
Banach space (X, ‖ · ‖)-valued function on [0,∞). Suppose that A
and B are single-valued closed linear operators on X with domain D.
The operator A := A + B : D → X is not necessarily closed but
([D] ↪→ X)-closed where [D] is the space D equipped with the norm
‖x‖[D] = ‖x‖ + ‖Ax‖ for every x ∈ D as usual (see [7]). Thus, (2.3)
can be handled as a (VI)-type: v(t) = A ∫ t

0
v(t− s) dµ(s) + f(t), t ≥ 0,

where A is a single valued ([D] ↪→ X)-closed linear operator.

Proposition 2.1. Suppose that A ⊆ X×X is linear and (XA ↪→ X)-
closed. If u : [0,∞) → XA is Bochner integrable, u(t) ∈ D(A) for all
t ∈ [0,∞), and Au(·) 
 y(·) : [0,∞) → X is Bochner integrable, then∫ ∞
0

u(s) ds ∈ D(A) and
∫ ∞
0

y(s) ds ∈ A ∫ ∞
0

u(s) ds.

In the following we list some basic notation and Laplace transform
results for Section 3 that could be skipped. One can refer to [1], [5],
or [8] for details. By BVε([0,∞);C) for ε ≥ 0 we denote the space
consisting of C-valued functions f of local bounded variation on [0,∞)
satisfying that f(0) = 0 and that for some constant M ≥ 0, var[0,t](f) ≤
Meεt for all t ≥ 0. By Cω we denote the set {λ ∈ C : Reλ > ω} and
by N0 the set {0} ∪ N. The exponential growth bound of a function
f ∈ L1

loc([0,∞);X) is defined as

ω(f) := inf{ω ∈ R : sup
t≥τ

‖e−ωtf(t)‖ < ∞ for some τ ≥ 0}.

A function f is said to be exponentially bounded if ω(f) < ∞. The
n-th normalized antiderivative of f ∈ L1

loc([0,∞);X) is the function
defined by f [n](t) :=

∫ t

0
((t − s)n−1/(n − 1)!)f(s) ds for t ≥ 0. For

f ∈ L1
loc([0,∞);X), we define

(2.4) abs (f) := inf{Reλ : f̂(λ) := lim
T→∞

∫ T

0

e−λtf(t) dt exists}
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and f is said to be Laplace transformable if abs(f) < ∞. Clearly,
abs(f) ≤ ω(f). If abs(f) < ∞ and if ω is a constant such that
ω ≥ {abs(f), 0}, then ω(f [1]) ≤ ω and

(2.5) λf̂ [1](λ) = f̂(λ)

for all λ ∈ Cω. The notation absX(f) sometimes replaces abs(f) when
it is necessary to specify the space X in which the integral in (2.4)
converges. The elementary fact will be used implicitly in Theorem 3.1
that if X1 is continuously embedded in X and absX1(f) < ∞, then
absX1(f) = absX(f) < ∞ and

∫ ∞
0

e−λtf(t) dt is a limit in both X and
X1 for λ ∈ Cω with ω ≥ absX1(f). For f : [0,∞) → X which is of local
bounded variation on or continuous in [0,∞), we define abs(df) as the
extended real number inf{Reλ : d̂f(λ) := limT→∞

∫ T

0
e−λt df(t) exists}

and f is said to be Laplace-Stieltjes transformable if abs(df) < ∞.
If f : [0,∞) → X is of local bounded variation or continuous with
f(0) = 0 and ω(f) < ∞ and if ω(f) ≤ ω ∈ R, then

(2.6) d̂f(λ) = λf̂(λ)

for all λ ∈ Cω.

Proposition 2.2. Suppose that f ∈ C([0,∞);X) with ω(f) < ∞
and that g ∈ BVε([0,∞);C) for some ε ≥ 0. Let ω be a number such
that ω ≥ max{ω(f), ε}. Then abs(f ∗ dg) ≤ ω and for λ ∈ Cω,

f̂ ∗ dg(λ) = f̂(λ)d̂g(λ).

Theorem 2.3 (Uniqueness Theorem). Let f ∈ L1
loc([0,∞);X) with

abs(f) < ∞. If there exists an ω ≥ abs(f) such that f̂ ≡ 0 on (ω,∞),
then f(t) = 0 for almost all t ≥ 0.

By Lipω([0,∞);X) for ω ∈ R we denote the space consisting of
those functions F : [0,∞) → X such that F (0) = 0 and ‖F‖Lipω

defined as inf{M : ‖F (t + h) − F (t)‖ ≤ M
∫ t+h

t
eωr dr for t, h ≥ 0}

is finite. If ω ≥ 0 and F ∈ Lipω([0,∞);X), then clearly ω(F ) ≤ ω. If



172 M. KIM

f ∈ L1
loc([0,∞);X) with ω(f) < ∞, then for any number ω > ω(f),

f [1] ∈ Lipω([0,∞);X).

Theorem 2.4 (Phragmén-Doetsch Inversion Theorem). Let F ∈
Lipω([0,∞);X) and let r := d̂F on (ω,∞). Then

∥∥∥F (t)−
∞∑

j=1

(−1)j+1

j!
etnjr(nj)

∥∥∥ ≤ 2
n
‖F‖Lipω

for all n ∈ N with n > ω and all t ≥ 0.

Let F : [0,∞) → X be multivalued. A single-valued function
f : [0,∞) → X is called a section of F if f(t) ∈ F(t) for all t ≥ 0 (see
[3] or [4]). We denote the set of all sections of F by sec(F). We extend
the definition of Laplace transformable functions to multivalued ones
as follows. Let F : [0,∞) → X be a multivalued function for which
f ∈ L1

loc([0,∞);X) with abs(f) < ∞ for all f ∈ sec(F). We define
abs(F) as the extended real number supf∈sec(F) abs(f). F is said to
be Laplace transformable if abs(F) < ∞. By F̂(λ) we denote the set
{f̂(λ) : f ∈ sec(F)} for λ ∈ Cabs(F). If a multivalued function F
is exponentially bounded on [0,∞), i.e., there exist constants M and
ω for which ‖f(t)‖ ≤ Meωt for every t ≥ 0 and f ∈ sec (F), then
abs(F) ≤ ω.

3. Existence and uniqueness. Let X be a Banach space
throughout this section. The following characterization of exponen-
tially bounded solutions to (VI) extends Theorem 2.1 in [6].

Theorem 3.1. Let A ⊆ X × X be a multi- or single-valued (XA ↪→
X)-closed linear operator and µ ∈ BVε([0,∞);C) for some ε ≥ 0. Let
F : [0,∞) → X be a multi- or single-valued, Laplace transformable
function. Let v ∈ C([0,∞);X) be an exponentially bounded function
such that v ∗ dµ ∈ L1

loc([0,∞) : XA) with absXA(v ∗ dµ) < ∞. Let
ω ≥ max{ε, abs(F), ω(v), absXA(v ∗ dµ)}. Then the following are
equivalent.

(i) v is a solution to (VI).
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(ii) d̂µ(λ)v̂(λ) ∈ D(A) and 0 ∈ (I − d̂µ(λ)A)v̂(λ) − F̂(λ) for all
λ ∈ Cω.

(iii) d̂µ(l)v̂(l) ∈ D(A) and 0 ∈ (I − d̂µ(l)A)v̂(l)− F̂(l) for all l ∈ N
with l > ω.

Proof. Suppose that (i) holds. Then v(t)− f(t) ∈ A ∫ t

0
v(t− s) dµ(s),

t ≥ 0, for some f ∈ sec(F). Let λ ∈ Cω. It follows from Propositions
2.1 and 2.2 that

v̂(λ)− f̂(λ) =
∫ ∞

0

e−λtv(t) dt −
∫ ∞

0

e−λtf(t) dt

=
∫ ∞

0

e−λt(v(t)− f(t)) dt

∈ A
∫ ∞

0

e−λtv ∗ dµ(t) dt

= Av̂(λ)d̂µ(λ).

Hence, v̂(λ) ∈ d̂µ(λ)Av̂(λ) + F̂(λ). Thus, (i) implies (ii). Clearly, (ii)
implies (iii). We show that (iii) =⇒ (i) by the Phragmén inversion
formula (Theorem 2.4):

G(t) = lim
n→∞

∞∑
j=1

(−1)j+1

j!
etnjr(nj)

for t ≥ 0 and n > ω where G ∈ Lipω([0,∞);X) and r(·) = d̂G(·) on
(ω,∞). Suppose that (iii) holds. Then

(3.1) v̂(l)− f̂(l) ∈ Av̂ ∗ dµ(l)

for some f ∈ sec(F) and for all l ∈ N with l > ω. Let ω′ > ω. It
follows from ω(v[1]), ω(f [1]) < ω′ that v[2], f [2] ∈ Lipω′([0,∞);X) and
from ωXA((v ∗ dµ)[1]) < ω′ that (v ∗ dµ)[2] ∈ Lipω′([0,∞) : XA). Hence
it follows from (3.1) and the relations (2.5) and (2.6) that

d̂v[2](l)− d̂f [2](l) ∈ A ̂d(v ∗ dµ)[2](l)

for every l ∈ N with l > ω′. It follows from the Phragmén inversion
formula and the (XA ↪→ X)-closedness of A that

v[2](t)− f [2](t) ∈ A(v ∗ dµ)[2](t), t ≥ 0.
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It follows from the twice differentiability of (v ∗dµ)[2](t) in XA and the
(XA ↪→ X)-closedness of A that

v(t)− f(t) ∈ A(v ∗ dµ)(t), t ≥ 0.

Thus, v(t) ∈ A(v ∗ dµ)(t)−F(t), t ≥ 0.

Remark. (i) One can see that Theorem 3.1 does not depend on the
choice of the auxiliary Banach space XA. The existence of the space
XA satisfying the hypothesis in Theorem 3.1, especially when A is not
closed in X, will be enough for the theorem to hold.

(ii) Theorem 3.1 can be applied to finding the solutions of (VI). Let
y be a solution of the characteristic inclusion

0 ∈ (I − d̂µ(λ)A)y(λ)− F̂(λ), λ > ω

for some ω ≥ max{ε, abs(F)}. Suppose that y has a Laplace transform
representation y = v̂ on (ω, ∞) for some v ∈ C([0,∞);X) such that
ω(v) ≤ ω and absXA(v ∗dµ) ≤ ω. Then by Theorem 3.1, v is a solution
to (VI).

We take simple problems and show how Theorem 3.1 is applied to
finding their solutions in the following.

Example 1. Let X = C[0, 1]. We consider the problem

(3.2)
∂

∂r
v(t, r) = a(r)

∫ t

0

v(t − s, r) ds + f(t), t ≥ 0,

where f is a continuous function from [0,∞) to X with abs(f) < ∞
and a(r) is a function in C1[0, 1]. Let Bu(r) = (d/dr)u(r) for every
u ∈ C1[0, 1] and define Au(r) = a(r)u(r) for every u ∈ C[0, 1]. Let
µ(t) = t. Then the equation (3.2) becomes

(3.3) Bv(t) = A

∫ t

0

v(t − s) dµ(s) + f(t), t ≥ 0.

B is a closed linear operator with domain C1[0, 1] and range C[0, 1],
and B−1u(r) =

∫
u(r) dr = {∫ r

0
u(s) ds + C : C ∈ R} which is a
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multivalued closed linear operator from C[0, 1] to C1[0, 1]. Obviously,
A is a continuous linear operator on C[0, 1]. µ ∈ BVε([0,∞);C) for all
ε > 0 and d̂µ(λ) = 1/λ for every λ > 0. A function v ∈ C([0,∞);X) is
a solution to the equation (3.3) if and only if it satisfies the inclusion

(3.4) v(t) ∈ A
∫ t

0

v(t − s) dµ(s) + F(t), t ≥ 0,

where Au(r) := B−1Au(r) =
∫

a(r)u(r) dr is a multivalued closed
linear operator from C[0, 1] to C1[0, 1] (see [7]), and F(t)(r) =
B−1f(t)(r) =

∫
f(t)(r) dr = {f(t)[1](r) + C : C ∈ R} is a multival-

ued function from [0,∞) to C[0, 1]. If ω(v) < ∞, then ω(v ∗ dt) ≤
max{0, ω(v)}. Let ω be any number such that ω ≥ max{0, abs(f)}.
In order to find a solution of (3.4), we consider the characteristic inclu-
sion

(3.5) 0 ∈ (I − d̂µ(λ)A)y(λ)− F̂(λ), λ > ω,

where y(λ) is an unknown function.

(I − d̂µ(λ)A)y(λ) = y(λ)− 1
λ

∫
a(r)y(λ)(r) dr

=
{

y(λ)(r)− 1
λ
((a · y(λ))[1](r) + K) : K ∈ R

}
=

{
y(λ)(r)− 1

λ
(a · y(λ))[1](r)− K

λ
: K ∈ R

}
.

F̂(λ)(r) = B−1f̂(λ)(r) =
∫

f̂(λ)(r) dr = {f̂(λ)[1](r)+C : C ∈ R} since
B−1 is closed. Hence y is an analytic solution of (3.5) if and only if
(I − d̂µ(λ)A)y(λ) ∩ F̂(λ) �= ∅, λ > ω, which is equivalent to

(3.6) y(λ)(r)− 1
λ
(a · y(λ))[1](r)− K

λ
= f̂(λ)[1](r) + C, λ > ω.

for some K, C ∈ R. Differentiating (3.6) with respect to r we get

(3.7)
d

dr
y(λ)(r)− 1

λ
a(r)y(λ)(r) = f̂(λ)(r),

0 ≤ r ≤ 1, λ > ω,
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which is a linear first order differential equation of y(λ). If y(λ) is a
solution of (3.7), then it is a solution of the characteristic inclusion
(3.5). If v is a function with ω(v) < ∞, then ω(v ∗ dt) ≤ max{0, ω(v)}.
Hence if there exists a function v in C([0,∞);X) with ω(v) < ∞ such
that v̂(λ) = y(λ), λ > ω, then ω(v ∗ dt) ≤ max{0, ω(v)} ≤ ω, and so
from the remark following Theorem 3.1, v is a solution of the inclusion
(3.4).

The following trivial inclusion is solved directly.

Example 2. Let X be a Banach space, and let A := 0∞ : {0} → X
be an operator defined by A0 = X which is the inverse of the zero
operator in X (see [4] for example). Then A is non-single valued,
closed and linear. Let µ be a unit step function

µ(t) =
{
1 t > 0
0 t = 0.

For a point x in X, define F(t) := x for all t ≥ 0. Then µ ∈
BV0([0,∞);C) and ω(F) = 0. For v ∈ C([0,∞);X), v ∗ dµ(t) = v(t).
Hence v ∗ dµ(t) ∈ D(A) implies that v ≡ 0 on [0,∞). Under the above
assumptions, we have the inclusion

(3.8) v(t) ∈ Av ∗ dµ(t) + x = X + x = X.

Clearly, v ≡ 0 satisfies (3.7). Hence v ≡ 0 is a unique solution to (3.8).

If the function F in (VI) is single-valued, Theorem 3.1 and the
linearity of A give a uniqueness of the solutions of (VI): the inclusion
(VI) has at most one exponentially bounded solution if and only if for
any ω ≥ ε, the characteristic inclusion

0 ∈ (I − d̂µ(λ)A)y(λ), λ > ω

has no nonzero solution y which has a Laplace transform representation
y(λ) = v̂(λ) of an exponentially bounded function v ∈ C([0,∞);X)
such that absXA(v ∗ dµ) < ∞ and v ∗ dµ(t) ∈ D(A). If F is single-
valued another uniqueness for (VI) is possible. The following extends
Theorem 2.2 in [6].

Theorem 3.2. Let A ⊆ X × X be a multi- or single-valued (XA ↪→
X)-closed linear operator and µ ∈ BVε([0,∞);C) for some ε ≥ 0. Let
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F ∈ L1
loc([0,∞);X) be a single-valued, Laplace transformable function.

Suppose that there exists a sequence {λk}k in Cε such that Reλk → ∞
as k → ∞, and for which it holds for all k ∈ N that d̂µ(λk)−1x /∈ Ax
for any nonzero x in D(A). Then (VI) has at most one exponentially
bounded solution v for which absXA(v ∗ dµ) < ∞.

Proof. Since F is single-valued and A is linear, it suffices to show that
v ≡ 0 is the only exponentially bounded solution with absXA(v ∗ dµ) <
∞ to the inclusion

(3.9) v(t) ∈ A
∫ t

0

v(t − s) dµ(s), t ≥ 0.

Suppose that v ∈ C([0,∞);X) is a solution of (3.9) such that ω(v) < ∞
and absXA(v ∗ dµ) < ∞. Let ω ≥ max{ε, ω(v), absXA(v ∗ dµ)}. Then
it follows from Theorem 3.1 that there exists a K ∈ N such that

v̂(λk) ∈ Ad̂µ(λk)v̂(λk)

for all k ≥ K. Hence, v̂(λk) = 0 for all k ≥ K. Fix a k ≥ K. We claim
that v̂ ≡ 0 on Cω. Assume not. Let m ∈ N be the order of the zero
λk of the analytic function v̂ on Cω. Since (d̂µ v̂)(λk) = v̂ ∗ dµ(λk),
it follows from the (XA ↪→ X)-closedness and linearity of A that
(d̂µ v̂)(m)(λk) ∈ D(A) and

v̂(m)(λk) ∈ A(d̂µ v̂)(m)(λk) = A
m∑

j=0

(
m

j

)
d̂µ

(j)
(λk)v̂(m−j)(λk)

= d̂µ(λk)Av̂(m)(λk)

where v̂(m)(λk) �= 0. This contradicts the hypothesis. Thus, v̂ ≡ 0. It
follows from Theorem 2.3 and the continuity of v that v ≡ 0 on [0,∞).
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