VOLTERRA INCLUSIONS IN BANACH SPACES

MIHI KIM

ABSTRACT. A solution characterization and a uniqueness for the Volterra inclusion (VI) are studied by means of the Laplace transform.

1. Introduction. The aim of this paper is to study the Volterra inclusion (or relation)

(VI)
$$v(t) \in \mathcal{A} \int_0^t v(t-s) \, d\mu(s) + \mathcal{F}(t), \quad t \ge 0$$

by means of the Laplace transform.

Sums, compositions, or limits of closed operators are not necessarily closed but relatively closed (see Bäumer and Neubrander [2]). Since the inverse B^{-1} of an operator B is usually multivalued, the degenerate Volterra equation $Bv(t) = A \int_0^t v(t-s) d\mu(s) + f(t)$ leads to (VI) with a possibly nonclosed multivalued operator $A := B^{-1}A = \{(x,y) : x \in D(A), y \in D(B), \text{ and } Ax = By\}$ and a possibly multivalued function $\mathcal{F} = B^{-1}f$. Another example which leads to the consideration of (VI) for multivalued operators and/or multivalued functions is a control problem of the following type. Let A be a single-valued linear operator on a Banach space X, and let $Z_t \subseteq X$, $t \geq 0$. The problem to be considered is to find all forcing terms $f: [0, \infty) \to X$ with $f(t) \in Z_t$ for which there exists a solution of the Volterra equation

$$u(t) = A \int_0^t u(t-s) d\mu(s) + f(t)$$

with a given property (P) (like $u(0) = x_0$ for some $x_0 \in X$). Define a multivalued function \mathcal{F} by $\mathcal{F}(t) := Z_t$ for every $t \geq 0$. Then the control problem is equivalent to finding all solutions of the inclusion

$$u(t) \in A \int_0^t u(t-s) d\mu(s) + \mathcal{F}(t)$$

Copyright ©2002 Rocky Mountain Mathematics Consortium

Received by the editors on March 20, 2000, and in revised form on October 19, 2001.

168 M. KIM

with the property (P). If $Z_t = Z$ for all $t \geq 0$ for a linear subspace Z of X, then the operator Ax := Ax + Z is multivalued and linear (see Section 2 for the definition of a multivalued linear operator) and the control problem is equivalent to finding all the solutions of the homogeneous Volterra inclusion

$$u(t) \in \mathcal{A} \int_0^t u(t-s) \, d\mu(s)$$

with the given property (P).

Section 1 includes one more example of an equation that leads to (VI) with a relatively closed operator A.

The inclusion (VI) is a generalization of the multivalued Cauchy problem $(du/dt) \in \mathcal{A}u(t) + f(t)$, $0 < t < \infty$; u(0) = x and the Volterra equation $v(t) = A \int_0^t v(t-s) d\mu(s) + f(t)$, $t \ge 0$ (see Knuckles and Neubrander [7] and Kim [5], [6]).

For (VI) we assume that \mathcal{F} is a single- or multivalued function from $[0,\infty)$ to a Banach space X, and $\mu:[0,\infty)\to \mathbf{C}$ a normalized function of local bounded variation. $\mathcal{A}\subseteq X\times X$ is assumed to be a single- or multivalued, linear operator with domain $D(\mathcal{A})$. Further we assume that there exists an auxiliary Banach space $X_{\mathcal{A}}$ which is continuously embedded in X (i.e., $X_{\mathcal{A}}\hookrightarrow X$), for which $D(\mathcal{A})$ is a subspace of $X_{\mathcal{A}}$ and the graph of \mathcal{A} is closed in $X_{\mathcal{A}}\times X$ (see Section 2). A function $v\in C([0,\infty);X)$ is said to be a solution of (VI) if

- (i) the convolution $v*d\mu(t):=\int_0^t v(t-s)d\mu(s)$ of v and $d\mu,\,t\geq 0$, is locally Bochner integrable in X_A , and
 - (ii) $v * d\mu(t) \in D(\mathcal{A})$ for all $t \geq 0$ and (VI) holds.

If \mathcal{F} is single-valued, if \mathcal{A} is a single-valued closed linear operator with sufficiently nice spectrum and resolvent, and if (VI) models a well-posed evolutionary problem where t denotes the time variable, then properties of the equation (VI) are studied extensively (see Prüss [9]).

We characterize the solutions of (VI) in terms of the resolvent inclusion

$$0 \in (I - \widehat{d\mu}(\lambda)A)y(\lambda) - \widehat{\mathcal{F}}(\lambda), \quad \lambda > \omega,$$

which is sometimes easier to be solved than (VI) and obtain a uniqueness for (VI) in Section 3. The results generalize those results in [6].

The methods of integrated and convoluted solution operator families have been well applied to the study of the well-posed Volterra equations (VI) with both \mathcal{A} and \mathcal{F} single-valued (see [5], [6]). Those concepts of integrated and convoluted solution operator families for Volterra equations which assume the existence of the resolvent $(I - \widehat{d\mu}(\lambda)\mathcal{A})^{-1}$ of the operator \mathcal{A} on an interval (ω, ∞) extend automatically to multivalued closed linear operators \mathcal{A} . However, the assumption of the resolvent $(I - \widehat{d\mu}(\lambda)\mathcal{A})^{-1}$ of a multivalued operator \mathcal{A} , as a single-valued bounded linear operator in the definition of a convoluted (or integrated) solution operator family for the Volterra inclusion (VI), implies immediately that \mathcal{A} is single-valued. Hence the methods of integrated and convoluted solution operator families don't seem to extend properly to multivalued closed linear operators.

2. Preliminaries. Let *X* and *Y* be Banach spaces throughout.

Let $A \subseteq X \times Y$ be a multivalued operator with domain $D(A) := \{x \in X : (x,y) \in A \text{ for some } y \in X\}$ and range $\operatorname{Ran}(A) := \{y \in X : y \in Ax, x \in D(A)\}$. A is called linear if D(A) is a linear subspace of X and

(2.1)
$$\mu \mathcal{A}x \subseteq \mathcal{A}(\mu x)$$
 and $\mathcal{A}x + \mathcal{A}y \subseteq \mathcal{A}(x+y)$

for all $x, y \in D(A)$ and $\mu \in \mathbf{C} - \{0\}$. The relations in (2.1) are equivalent to

(2.2)
$$\mu \mathcal{A}x = \mathcal{A}(\mu x) \quad \text{and} \quad \mathcal{A}x + \mathcal{A}y = \mathcal{A}(x+y)$$

for all $x, y \in D(A)$ and $\mu \in \mathbf{C} - \{0\}$, respectively in order (see Cross [3], Favini and Yagi [4] or [7]).

A multi- or single-valued operator $A \subseteq X \times Y$ is said to be relatively closed if there exist auxiliary Banach spaces X_A and Y_A such that

(i)
$$D(A) \subseteq X_A \hookrightarrow X$$
 and $R(A) \subseteq Y_A \hookrightarrow Y$, and

(ii) \mathcal{A} is closed in $X_{\mathcal{A}} \times Y_{\mathcal{A}}$, i.e., if $D(\mathcal{A}) \ni x_n \to x$ in $X_{\mathcal{A}}$ and $\mathcal{A}x_n \ni y_n \to y$ in $Y_{\mathcal{A}}$, then $x \in D(\mathcal{A})$ and $y \in \mathcal{A}x$.

In this case, more specifically \mathcal{A} is said to be $(X_{\mathcal{A}} \times Y_{\mathcal{A}})$ -closed, and $(X_{\mathcal{A}} \hookrightarrow X)$ -closed if $Y_{\mathcal{A}} = Y = X$.

Examples of relatively closed linear operators include sums, compositions, or limits of relatively closed linear operators. For relatively closed operators and the following, refer to [2] or [7].

170 M. KIM

We give an example of an equation that leads to an equation of (VI)-type with a relatively closed operator \mathcal{A} . Consider the integral equation

$$(2.3) \ v(t) = A \int_0^t v(t-s) \, d\mu(s) + B \int_0^t v(t-s) \, d\mu(s) + f(t), \quad t \ge 0$$

where μ is a scalar valued function of bounded variation and f a Banach space $(X, \|\cdot\|)$ -valued function on $[0, \infty)$. Suppose that A and B are single-valued closed linear operators on X with domain D. The operator $A := A + B : D \to X$ is not necessarily closed but $([D] \hookrightarrow X)$ -closed where [D] is the space D equipped with the norm $\|x\|_{[D]} = \|x\| + \|Ax\|$ for every $x \in D$ as usual (see [7]). Thus, (2.3) can be handled as a (VI)-type: $v(t) = A \int_0^t v(t-s) \, d\mu(s) + f(t), t \ge 0$, where A is a single valued $([D] \hookrightarrow X)$ -closed linear operator.

Proposition 2.1. Suppose that $A \subseteq X \times X$ is linear and $(X_A \hookrightarrow X)$ -closed. If $u : [0, \infty) \to X_A$ is Bochner integrable, $u(t) \in D(A)$ for all $t \in [0, \infty)$, and $Au(\cdot) \ni y(\cdot) : [0, \infty) \to X$ is Bochner integrable, then $\int_0^\infty u(s) \, ds \in D(A)$ and $\int_0^\infty y(s) \, ds \in A \int_0^\infty u(s) \, ds$.

In the following we list some basic notation and Laplace transform results for Section 3 that could be skipped. One can refer to [1], [5], or [8] for details. By $BV_{\varepsilon}([0,\infty); \mathbf{C})$ for $\varepsilon \geq 0$ we denote the space consisting of \mathbf{C} -valued functions f of local bounded variation on $[0,\infty)$ satisfying that f(0) = 0 and that for some constant $M \geq 0$, $\operatorname{var}_{[0,t]}(f) \leq Me^{\varepsilon t}$ for all $t \geq 0$. By \mathbf{C}_{ω} we denote the set $\{\lambda \in \mathbf{C} : \operatorname{Re} \lambda > \omega\}$ and by \mathbf{N}_0 the set $\{0\} \cup \mathbf{N}$. The exponential growth bound of a function $f \in L^1_{loc}([0,\infty); X)$ is defined as

$$\omega(f) := \inf\{\omega \in \mathbf{R} : \sup_{t \ge \tau} \|e^{-\omega t} f(t)\| < \infty \text{ for some } \tau \ge 0\}.$$

A function f is said to be exponentially bounded if $\omega(f) < \infty$. The n-th normalized antiderivative of $f \in L^1_{loc}([0,\infty);X)$ is the function defined by $f^{[n]}(t) := \int_0^t ((t-s)^{n-1}/(n-1)!)f(s)\,ds$ for $t \geq 0$. For $f \in L^1_{loc}([0,\infty);X)$, we define

$$(2.4) \qquad \mathrm{abs}\,(f) := \inf\{\mathrm{Re}\,\lambda : \widehat{f}(\lambda) := \lim_{T \to \infty} \int_0^T e^{-\lambda t} f(t)\,dt \text{ exists}\}$$

and f is said to be Laplace transformable if $abs(f) < \infty$. Clearly, $abs(f) \leq \omega(f)$. If $abs(f) < \infty$ and if ω is a constant such that $\omega \geq \{abs(f), 0\}$, then $\omega(f^{[1]}) \leq \omega$ and

(2.5)
$$\lambda \widehat{f^{[1]}}(\lambda) = \widehat{f}(\lambda)$$

for all $\lambda \in \mathbf{C}_{\omega}$. The notation $\mathrm{abs}_X(f)$ sometimes replaces $\mathrm{abs}(f)$ when it is necessary to specify the space X in which the integral in (2.4) converges. The elementary fact will be used implicitly in Theorem 3.1 that if X_1 is continuously embedded in X and $\mathrm{abs}_{X_1}(f) < \infty$, then $\mathrm{abs}_{X_1}(f) = \mathrm{abs}_X(f) < \infty$ and $\int_0^\infty e^{-\lambda t} f(t) \, dt$ is a limit in both X and X_1 for $\lambda \in \mathbf{C}_{\omega}$ with $\omega \geq \mathrm{abs}_{X_1}(f)$. For $f:[0,\infty) \to X$ which is of local bounded variation on or continuous in $[0,\infty)$, we define $\mathrm{abs}(df)$ as the extended real number inf $\{\mathrm{Re}\,\lambda:\widehat{df}(\lambda):=\lim_{T\to\infty}\int_0^T e^{-\lambda t}\,df(t) \text{ exists}\}$ and f is said to be Laplace-Stieltjes transformable if $\mathrm{abs}(df)<\infty$. If $f:[0,\infty)\to X$ is of local bounded variation or continuous with f(0)=0 and $\omega(f)<\infty$ and if $\omega(f)\leq\omega\in\mathbf{R}$, then

(2.6)
$$\widehat{df}(\lambda) = \lambda \widehat{f}(\lambda)$$

for all $\lambda \in \mathbf{C}_{\omega}$.

Proposition 2.2. Suppose that $f \in C([0,\infty);X)$ with $\omega(f) < \infty$ and that $g \in BV_{\varepsilon}([0,\infty); \mathbf{C})$ for some $\varepsilon \geq 0$. Let ω be a number such that $\omega \geq \max\{\omega(f), \varepsilon\}$. Then $\mathrm{abs}(f*dg) \leq \omega$ and for $\lambda \in \mathbf{C}_{\omega}$,

$$\widehat{f * dg}(\lambda) = \widehat{f}(\lambda)\widehat{dg}(\lambda).$$

Theorem 2.3 (Uniqueness Theorem). Let $f \in L^1_{loc}([0,\infty); X)$ with $abs(f) < \infty$. If there exists an $\omega \ge abs(f)$ such that $\widehat{f} \equiv 0$ on (ω, ∞) , then f(t) = 0 for almost all $t \ge 0$.

By $\operatorname{Lip}_{\omega}([0,\infty);X)$ for $\omega \in \mathbf{R}$ we denote the space consisting of those functions $F:[0,\infty)\to X$ such that F(0)=0 and $\|F\|_{\operatorname{Lip}_{\omega}}$ defined as $\inf\{M:\|F(t+h)-F(t)\|\leq M\int_t^{t+h}e^{\omega r}\,dr$ for $t,\ h\geq 0\}$ is finite. If $\omega\geq 0$ and $F\in \operatorname{Lip}_{\omega}([0,\infty);X)$, then clearly $\omega(F)\leq \omega$. If

 $f \in L^1_{loc}([0,\infty);X)$ with $\omega(f) < \infty$, then for any number $\omega > \omega(f)$, $f^{[1]} \in \operatorname{Lip}_{\omega}([0,\infty);X)$.

Theorem 2.4 (Phragmén-Doetsch Inversion Theorem). Let $F \in \text{Lip}_{\omega}([0,\infty);X)$ and let $r := \widehat{dF}$ on (ω,∞) . Then

$$\left\| F(t) - \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j!} e^{tnj} r(nj) \right\| \le \frac{2}{n} \|F\|_{\text{Lip}_{\omega}}$$

for all $n \in \mathbf{N}$ with $n > \omega$ and all $t \geq 0$.

Let $\mathcal{F}:[0,\infty)\to X$ be multivalued. A single-valued function $f:[0,\infty)\to X$ is called a section of \mathcal{F} if $f(t)\in\mathcal{F}(t)$ for all $t\geq 0$ (see [3] or [4]). We denote the set of all sections of \mathcal{F} by $\sec(\mathcal{F})$. We extend the definition of Laplace transformable functions to multivalued ones as follows. Let $\mathcal{F}:[0,\infty)\to X$ be a multivalued function for which $f\in L^1_{\mathrm{loc}}([0,\infty);X)$ with $\mathrm{abs}(f)<\infty$ for all $f\in\sec(\mathcal{F})$. We define $\mathrm{abs}(\mathcal{F})$ as the extended real number $\sup_{f\in\sec(\mathcal{F})}\mathrm{abs}(f)$. \mathcal{F} is said to be Laplace transformable if $\mathrm{abs}(\mathcal{F})<\infty$. By $\widehat{\mathcal{F}}(\lambda)$ we denote the set $\{\widehat{f}(\lambda):f\in\sec(\mathcal{F})\}$ for $\lambda\in\mathbf{C}_{\mathrm{abs}(\mathcal{F})}$. If a multivalued function \mathcal{F} is exponentially bounded on $[0,\infty)$, i.e., there exist constants M and ω for which $\|f(t)\|\leq Me^{\omega t}$ for every $t\geq 0$ and $f\in\sec(\mathcal{F})$, then $\mathrm{abs}(\mathcal{F})\leq\omega$.

3. Existence and uniqueness. Let X be a Banach space throughout this section. The following characterization of exponentially bounded solutions to (VI) extends Theorem 2.1 in [6].

Theorem 3.1. Let $A \subseteq X \times X$ be a multi- or single-valued $(X_A \hookrightarrow X)$ -closed linear operator and $\mu \in BV_{\varepsilon}([0,\infty); \mathbb{C})$ for some $\varepsilon \geq 0$. Let $\mathcal{F}: [0,\infty) \to X$ be a multi- or single-valued, Laplace transformable function. Let $v \in C([0,\infty);X)$ be an exponentially bounded function such that $v * d\mu \in L^1_{loc}([0,\infty):X_A)$ with $\mathrm{abs}_{X_A}(v * d\mu) < \infty$. Let $\omega \geq \max\{\varepsilon, \, \mathrm{abs}(\mathcal{F}), \, \omega(v), \, \mathrm{abs}_{X_A}(v * d\mu)\}$. Then the following are equivalent.

(i) v is a solution to (VI).

(ii) $\widehat{d\mu}(\lambda)\widehat{v}(\lambda) \in D(\mathcal{A})$ and $0 \in (I - \widehat{d\mu}(\lambda)\mathcal{A})\widehat{v}(\lambda) - \widehat{\mathcal{F}}(\lambda)$ for all $\lambda \in \mathbf{C}_{\omega}$.

(iii) $\widehat{d\mu}(l)\widehat{v}(l) \in D(\mathcal{A})$ and $0 \in (I - \widehat{d\mu}(l)\mathcal{A})\widehat{v}(l) - \widehat{\mathcal{F}}(l)$ for all $l \in \mathbf{N}$ with $l > \omega$.

Proof. Suppose that (i) holds. Then $v(t) - f(t) \in \mathcal{A} \int_0^t v(t-s) d\mu(s)$, $t \geq 0$, for some $f \in \sec(\mathcal{F})$. Let $\lambda \in \mathbf{C}_{\omega}$. It follows from Propositions 2.1 and 2.2 that

$$\begin{split} \widehat{v}(\lambda) - \widehat{f}(\lambda) &= \int_0^\infty e^{-\lambda t} v(t) \, dt - \int_0^\infty e^{-\lambda t} f(t) \, dt \\ &= \int_0^\infty e^{-\lambda t} (v(t) - f(t)) \, dt \\ &\in \mathcal{A} \int_0^\infty e^{-\lambda t} v * d\mu(t) \, dt \\ &= \mathcal{A} \widehat{v}(\lambda) \widehat{d\mu}(\lambda). \end{split}$$

Hence, $\widehat{v}(\lambda) \in \widehat{d\mu}(\lambda) \mathcal{A}\widehat{v}(\lambda) + \widehat{\mathcal{F}}(\lambda)$. Thus, (i) implies (ii). Clearly, (ii) implies (iii). We show that (iii) \Longrightarrow (i) by the Phragmén inversion formula (Theorem 2.4):

$$G(t) = \lim_{n \to \infty} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j!} e^{tnj} r(nj)$$

for $t \geq 0$ and $n > \omega$ where $G \in \text{Lip }\omega([0,\infty);X)$ and $r(\cdot) = \widehat{dG}(\cdot)$ on (ω,∞) . Suppose that (iii) holds. Then

(3.1)
$$\widehat{v}(l) - \widehat{f}(l) \in \widehat{\mathcal{A}v * d\mu}(l)$$

for some $f \in \sec(\mathcal{F})$ and for all $l \in \mathbf{N}$ with $l > \omega$. Let $\omega' > \omega$. It follows from $\omega(v^{[1]})$, $\omega(f^{[1]}) < \omega'$ that $v^{[2]}$, $f^{[2]} \in \operatorname{Lip}_{\omega'}([0,\infty);X)$ and from $\omega_{X_{\mathcal{A}}}((v*d\mu)^{[1]}) < \omega'$ that $(v*d\mu)^{[2]} \in \operatorname{Lip}_{\omega'}([0,\infty):X_{\mathcal{A}})$. Hence it follows from (3.1) and the relations (2.5) and (2.6) that

$$\widehat{dv^{[2]}}(l) - \widehat{d\!f^{[2]}}(l) \,\in\, \mathcal{A}d(\widehat{v*d\mu})^{[2]}(l)$$

for every $l \in \mathbf{N}$ with $l > \omega'$. It follows from the Phragmén inversion formula and the $(X_{\mathcal{A}} \hookrightarrow X)$ -closedness of \mathcal{A} that

$$v^{[2]}(t) - f^{[2]}(t) \in \mathcal{A}(v * d\mu)^{[2]}(t), \quad t \ge 0.$$

174 M. KIM

It follows from the twice differentiability of $(v*d\mu)^{[2]}(t)$ in X_A and the $(X_A \hookrightarrow X)$ -closedness of A that

$$v(t) - f(t) \in \mathcal{A}(v * d\mu)(t), \quad t \ge 0.$$

Thus, $v(t) \in \mathcal{A}(v * d\mu)(t) - \mathcal{F}(t), t \geq 0.$

Remark. (i) One can see that Theorem 3.1 does not depend on the choice of the auxiliary Banach space $X_{\mathcal{A}}$. The existence of the space $X_{\mathcal{A}}$ satisfying the hypothesis in Theorem 3.1, especially when \mathcal{A} is not closed in X, will be enough for the theorem to hold.

(ii) Theorem 3.1 can be applied to finding the solutions of (VI). Let y be a solution of the characteristic inclusion

$$0 \in (I - \widehat{d\mu}(\lambda)A)y(\lambda) - \widehat{\mathcal{F}}(\lambda), \quad \lambda > \omega$$

for some $\omega \geq \max\{\varepsilon, \operatorname{abs}(\mathcal{F})\}$. Suppose that y has a Laplace transform representation $y = \widehat{v}$ on (ω, ∞) for some $v \in C([0, \infty); X)$ such that $\omega(v) \leq \omega$ and $\operatorname{abs}_{X_{\mathcal{A}}}(v * d\mu) \leq \omega$. Then by Theorem 3.1, v is a solution to (VI).

We take simple problems and show how Theorem 3.1 is applied to finding their solutions in the following.

Example 1. Let X = C[0,1]. We consider the problem

(3.2)
$$\frac{\partial}{\partial r}v(t,r) = a(r)\int_0^t v(t-s,r)\,ds + f(t), \quad t \ge 0,$$

where f is a continuous function from $[0, \infty)$ to X with $abs(f) < \infty$ and a(r) is a function in $C^1[0,1]$. Let Bu(r) = (d/dr)u(r) for every $u \in C^1[0,1]$ and define Au(r) = a(r)u(r) for every $u \in C[0,1]$. Let $\mu(t) = t$. Then the equation (3.2) becomes

(3.3)
$$Bv(t) = A \int_0^t v(t-s) \, d\mu(s) + f(t), \quad t \ge 0.$$

B is a closed linear operator with domain $C^1[0,1]$ and range C[0,1], and $B^{-1}u(r)=\int u(r)\,dr=\{\int_0^r u(s)\,ds+C\,:\,C\in\mathbf{R}\}$ which is a

multivalued closed linear operator from C[0,1] to $C^1[0,1]$. Obviously, A is a continuous linear operator on C[0,1]. $\mu \in BV_{\varepsilon}([0,\infty); \mathbb{C})$ for all $\varepsilon > 0$ and $\widehat{d\mu}(\lambda) = 1/\lambda$ for every $\lambda > 0$. A function $v \in C([0,\infty); X)$ is a solution to the equation (3.3) if and only if it satisfies the inclusion

(3.4)
$$v(t) \in \mathcal{A} \int_0^t v(t-s) d\mu(s) + \mathcal{F}(t), \quad t \ge 0,$$

where $\mathcal{A}u(r):=B^{-1}Au(r)=\int a(r)u(r)\,dr$ is a multivalued closed linear operator from C[0,1] to $C^1[0,1]$ (see [7]), and $\mathcal{F}(t)(r)=B^{-1}f(t)(r)=\int f(t)(r)\,dr=\{f(t)^{[1]}(r)+C:C\in\mathbf{R}\}$ is a multivalued function from $[0,\infty)$ to C[0,1]. If $\omega(v)<\infty$, then $\omega(v*dt)\leq \max\{0,\ \omega(v)\}$. Let ω be any number such that $\omega\geq \max\{0,\ abs(f)\}$. In order to find a solution of (3.4), we consider the characteristic inclusion

$$(3.5) 0 \in (I - \widehat{d\mu}(\lambda)A)y(\lambda) - \widehat{\mathcal{F}}(\lambda), \quad \lambda > \omega,$$

where $y(\lambda)$ is an unknown function.

$$\begin{split} (I - \widehat{d\mu}(\lambda)\mathcal{A})y(\lambda) &= y(\lambda) - \frac{1}{\lambda} \int a(r)y(\lambda)(r) \, dr \\ &= \Big\{ y(\lambda)(r) - \frac{1}{\lambda} ((a \cdot y(\lambda))^{[1]}(r) + K) : K \in \mathbf{R} \Big\} \\ &= \Big\{ y(\lambda)(r) - \frac{1}{\lambda} (a \cdot y(\lambda))^{[1]}(r) - \frac{K}{\lambda} : K \in \mathbf{R} \Big\}. \end{split}$$

 $\widehat{\mathcal{F}}(\lambda)(r) = B^{-1}\widehat{f}(\lambda)(r) = \int \widehat{f}(\lambda)(r) dr = \{\widehat{f}(\lambda)^{[1]}(r) + C : C \in \mathbf{R}\}$ since B^{-1} is closed. Hence y is an analytic solution of (3.5) if and only if $(I - \widehat{d\mu}(\lambda)A)y(\lambda) \cap \widehat{\mathcal{F}}(\lambda) \neq \emptyset$, $\lambda > \omega$, which is equivalent to

$$(3.6) \qquad y(\lambda)(r) - \frac{1}{\lambda}(a \cdot y(\lambda))^{[1]}(r) - \frac{K}{\lambda} = \widehat{f}(\lambda)^{[1]}(r) + C, \quad \lambda > \omega.$$

for some $K, C \in \mathbf{R}$. Differentiating (3.6) with respect to r we get

(3.7)
$$\frac{d}{dr}y(\lambda)(r) - \frac{1}{\lambda}a(r)y(\lambda)(r) = \widehat{f}(\lambda)(r),$$
$$0 \le r \le 1, \quad \lambda > \omega,$$

which is a linear first order differential equation of $y(\lambda)$. If $y(\lambda)$ is a solution of (3.7), then it is a solution of the characteristic inclusion (3.5). If v is a function with $\omega(v) < \infty$, then $\omega(v*dt) \leq \max\{0, \omega(v)\}$. Hence if there exists a function v in $C([0,\infty);X)$ with $\omega(v) < \infty$ such that $\widehat{v}(\lambda) = y(\lambda)$, $\lambda > \omega$, then $\omega(v*dt) \leq \max\{0, \omega(v)\} \leq \omega$, and so from the remark following Theorem 3.1, v is a solution of the inclusion (3.4).

The following trivial inclusion is solved directly.

Example 2. Let X be a Banach space, and let $\mathcal{A} := 0_{\infty} : \{0\} \to X$ be an operator defined by $\mathcal{A}0 = X$ which is the inverse of the zero operator in X (see [4] for example). Then \mathcal{A} is non-single valued, closed and linear. Let μ be a unit step function

$$\mu(t) = \begin{cases} 1 & t > 0 \\ 0 & t = 0. \end{cases}$$

For a point x in X, define $\mathcal{F}(t) := x$ for all $t \geq 0$. Then $\mu \in BV_0([0,\infty); \mathbb{C})$ and $\omega(\mathcal{F}) = 0$. For $v \in C([0,\infty); X)$, $v * d\mu(t) = v(t)$. Hence $v * d\mu(t) \in D(\mathcal{A})$ implies that $v \equiv 0$ on $[0,\infty)$. Under the above assumptions, we have the inclusion

(3.8)
$$v(t) \in Av * d\mu(t) + x = X + x = X.$$

Clearly, $v \equiv 0$ satisfies (3.7). Hence $v \equiv 0$ is a unique solution to (3.8).

If the function \mathcal{F} in (VI) is single-valued, Theorem 3.1 and the linearity of \mathcal{A} give a uniqueness of the solutions of (VI): the inclusion (VI) has at most one exponentially bounded solution if and only if for any $\omega \geq \varepsilon$, the characteristic inclusion

$$0 \in (I - \widehat{d\mu}(\lambda)\mathcal{A})y(\lambda), \quad \lambda > \omega$$

has no nonzero solution y which has a Laplace transform representation $y(\lambda) = \widehat{v}(\lambda)$ of an exponentially bounded function $v \in C([0, \infty); X)$ such that $\mathrm{abs}_{X_A}(v*d\mu) < \infty$ and $v*d\mu(t) \in D(A)$. If \mathcal{F} is single-valued another uniqueness for (VI) is possible. The following extends Theorem 2.2 in [6].

Theorem 3.2. Let $A \subseteq X \times X$ be a multi- or single-valued $(X_A \hookrightarrow X)$ -closed linear operator and $\mu \in BV_{\varepsilon}([0,\infty); \mathbf{C})$ for some $\varepsilon \geq 0$. Let

 $\mathcal{F} \in L^1_{loc}([0,\infty);X)$ be a single-valued, Laplace transformable function. Suppose that there exists a sequence $\{\lambda_k\}_k$ in \mathbf{C}_{ε} such that $\operatorname{Re} \lambda_k \to \infty$ as $k \to \infty$, and for which it holds for all $k \in \mathbf{N}$ that $\widehat{d\mu}(\lambda_k)^{-1}x \notin \mathcal{A}x$ for any nonzero x in $D(\mathcal{A})$. Then (VI) has at most one exponentially bounded solution v for which $\operatorname{abs}_{X_A}(v * d\mu) < \infty$.

Proof. Since \mathcal{F} is single-valued and \mathcal{A} is linear, it suffices to show that $v \equiv 0$ is the only exponentially bounded solution with $abs_{X_{\mathcal{A}}}(v*d\mu) < \infty$ to the inclusion

(3.9)
$$v(t) \in \mathcal{A} \int_0^t v(t-s) \, d\mu(s), \quad t \ge 0.$$

Suppose that $v \in C([0,\infty);X)$ is a solution of (3.9) such that $\omega(v) < \infty$ and $\operatorname{abs}_{X_{\mathcal{A}}}(v*d\mu) < \infty$. Let $\omega \ge \max\{\varepsilon, \ \omega(v), \ \operatorname{abs}_{X_{\mathcal{A}}}(v*d\mu)\}$. Then it follows from Theorem 3.1 that there exists a $K \in \mathbb{N}$ such that

$$\widehat{v}(\lambda_k) \in \widehat{\mathcal{A}d\mu}(\lambda_k)\widehat{v}(\lambda_k)$$

for all $k \geq K$. Hence, $\widehat{v}(\lambda_k) = 0$ for all $k \geq K$. Fix a $k \geq K$. We claim that $\widehat{v} \equiv 0$ on \mathbf{C}_{ω} . Assume not. Let $m \in \mathbf{N}$ be the order of the zero λ_k of the analytic function \widehat{v} on \mathbf{C}_{ω} . Since $(\widehat{d\mu} \ \widehat{v})(\lambda_k) = \widehat{v * d\mu}(\lambda_k)$, it follows from the $(X_{\mathcal{A}} \hookrightarrow X)$ -closedness and linearity of \mathcal{A} that $(\widehat{d\mu} \ \widehat{v})^{(m)}(\lambda_k) \in D(\mathcal{A})$ and

$$\widehat{v}^{(m)}(\lambda_k) \in \mathcal{A}(\widehat{d\mu}\,\widehat{v})^{(m)}(\lambda_k) = \mathcal{A}\sum_{j=0}^m \binom{m}{j} \widehat{d\mu}^{(j)}(\lambda_k) \widehat{v}^{(m-j)}(\lambda_k)$$
$$= \widehat{d\mu}(\lambda_k) \mathcal{A}\widehat{v}^{(m)}(\lambda_k)$$

where $\widehat{v}^{(m)}(\lambda_k) \neq 0$. This contradicts the hypothesis. Thus, $\widehat{v} \equiv 0$. It follows from Theorem 2.3 and the continuity of v that $v \equiv 0$ on $[0, \infty)$.

Acknowledgments. The author thanks Professor F. Neubrander who initiated this paper and also the referee.

REFERENCES

- 1. B. Bäumer and F. Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari 259 (1994), 27–60.
- 2. ——, Relatively closed operators and abstract differential equations, preprint. (A preliminary version can be found in the Louisiana State University Seminar Notes in Functional Analysis and PDEs, Baton Rouge, LA, 1993).
 - 3. R. Cross, Multivalued Linear Operators, Marcel Dekker, Inc., New York, 1998.
- **4.** A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl. (4) **163** (1993), 353–383.
- ${\bf 5.}$ M. Kim, Abstract Volterra equations, Dissertation, Louisiana State University, 1995.
- **6.** ———, Remarks on Volterra equations in Banach spaces, Comm. Korean Math. Soc. **12** (1997), 1039–1064.
- **7.** C. Knuckles and F. Neubrander, *Remarks on the Cauchy problems for multivalued linear operators*, Partial Differential Equations, Models in Physics and Biology (G. Lumers, S. Nicaise and B.-W. Schulze, eds.), Math. Res. **82**, Akademie-Verlag, Berlin, 1994.
- 8. F. Neubrander, *The Laplace-Stieltjes transform in Banach spaces and abstract Cauchy problems* (Ph. Clément and G. Lumer, eds.) (Proc. of the 3rd Internat. Workshop Conf. on Evolution Equations, Control Theory, and Biomathematics, Han-sur-Lesse) Lecture Notes in Pure and Appl. Math. 155, Dekker, New York, 1994, pp. 417–431.
- ${\bf 9.}$ J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Basel, 1993.

Department of Applied Mathematics, Sejong University, Seoul 143-747,

E-mail address: lsutiger@chollian.net