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ON THE SINGULARITIES AT INFINITY
OF PLANE ALGEBRAIC CURVES

JANUSZ GWOŹDZIEWICZ AND ARKADIUSZ P�LOSKI

ABSTRACT. We study polynomials in two complex vari-
ables with no critical points and with at most one irregular
value at infinity. We give some applications to polynomial
automorphisms.

Introduction. Let f : C2 → C be a polynomial of degree d > 1
with finite set of critical points, i.e., such that the partial derivatives
(∂f/∂X), (∂f/∂Y ) do not have common factors. Then the polynomials
f − t, t ∈ C have no multiple factors.

Let Ct be the projective closure of the fiber f−1(t). If F (X,Y, Z) is
the homogeneous form corresponding to f = f(X,Y ), then Ct is given
by the equation F (X,Y, Z) − tZd = 0. Let L∞ ⊂ P2(C) be the line
at infinity defined by Z = 0, and let C∞ = Ct ∩ L∞. Then the set
C∞ is described by equations F (X,Y, 0) = Z = 0 in P2(C). For every
point p ∈ C∞, we consider the Milnor number µt

p = µp(Ct), and we put
µmin

p = inft∈Cµ
t
p. The set Λ(f) = {t ∈ C : µt

p > µmin
p for a p ∈ C∞}

is finite (see [6]). The elements of Λ(f) are called irregular values of
f . We put according to Broughton λt(f) =

∑
p∈C∞(µt

p − µmin
p ) and

λ(f) =
∑

t∈C λt(f).

Equivalent definitions of irregular values are discussed in [10]. A
polynomial f : C2 → C is called a coordinate polynomial if there is
a polynomial g : C2 → C such that C[X,Y ] = C[f, g]. The famous
Abhyankar-Moh theorem [2] can be stated as follows: an affine plane
curve is isomorphic to a line if and only if its minimal equation is a
coordinate polynomial. Using the Abhyankar-Moh theorem, Ephraim
proved [11] that a polynomial f : C2 → C is a coordinate polynomial
if and only if f has no critical points and Λ(f) = ∅.

In this note we study polynomials in two complex variables with no
critical points in C2. Our aim is to characterize polynomials with one
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irregular value. Improving a recent result by Assi ([3], [4]), we give a
description of the irregular fiber of such a polynomial (Theorem 1)
and apply it to the estimation of the number of points at infinity
(Theorem 2). Then we give a discriminant criterion for polynomials
to have one irregular value (Theorem 3) and apply it to polynomial
automorphisms (Theorem 4).

All theorems are stated in Section 1 and their proofs are given in
Section 2. We end the paper by open questions concerning polynomials
in two complex variables.

1. Results. If f : C2 → C is a polynomial with no critical points,
then the irreducible components of any fiber f−1(t) are smooth and
pairwise disjoint. The following theorem is the main result of this note.

Theorem 1. Let f : C2 → C be a polynomial with no critical points.
Fix t0 ∈ C. Then the following conditions are equivalent:

(i) Λ(f) = {t0}.
(ii) The fiber f−1(t0) is an affine reducible curve. All irreducible

components of f−1(t0) are rational and at least one component is
isomorphic to a line. If there is only one component isomorphic to
a line, then every component not isomorphic to a line has exactly two
branches at infinity. If there are l > 1 components isomorphic to a
line, then there is only one component of f−1(t0) not isomorphic to a
line. It has l + 1 branches at infinity.

Note here that an affine curve is isomorphic to a line if and only if it
is rational, smooth and has exactly one branch at infinity. Then both
cases described in (ii) can occur.

Examples. Let f(X,Y ) = Y P (XY ) where P (T ) ∈C[T ] is a poly-
nomial of one variable with simple, nonzero roots. Then f has no
critical points and f−1(0) = {Y = 0} ∪ ⋃

i{XY − ti = 0} where ti are
roots of P (T ). Theorem 1 shows that Λ(f) = {0}.

Let f(X,Y ) = Q(X)2Y +Q(X) where Q(X) ∈ C[X] is a polynomial
with simple roots of degree q > 0. Then f has no critical points and the
fiber f−1(0) has q irreducible components {X−x = 0} where Q(x) = 0
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isomorphic to C and one component {Q(X)Y +1 = 0} which is rational
with q + 1 branches at infinity. Using Theorem 1, we get Λ(f) = {0}.

Any polynomial of degree ≤ 4 has at most one irregular value. The
polynomial f(X,Y ) = Y ((XY − 1)2 + X2Y ) is of degree 5, has no
critical points and has two irregular values: Λ(f) = {0, 1}.

Corollary to Theorem 1 ([3], [4]). If f : C2 → C has no critical
points and Λ(f) = {t0}, then f = t0 + φ(1 + φψ) in C[X,Y ] where φ
is a coordinate polynomial and ψ /∈ C.

Proof. By Theorem 1, we can write f−1(t0) = Γ ∪ Γ′, where Γ is
isomorphic to a line and Γ′ is not. By the Abhyankar-Moh theorem,
there is a coordinate polynomial φ such that Γ = φ−1(0). Since Γ and
Γ′ are disjoint and φ is a coordinate polynomial, the curve Γ′ has an
equation of the form 1 + φψ = 0, where ψ is a polynomial. One has
ψ /∈ C for Γ′ is not isomorphic to a line. Since the polynomial f − t0 is
reduced, we get f − t0 = φ(1 + φψ).

If a polynomial f : C2 → C is a coordinate polynomial, then the
curve f−1(0) has exactly one point at infinity. Using Theorem 1, we
shall prove

Theorem 2. Let f : C2 → C be a polynomial with no critical points
and with at most one irregular value. If f is of degree d and the curve
f−1(0) has c points at infinity, then c ≤ (d + 1)/2.

The example given below shows that our estimation is exact.

Example. Let f(X,Y ) = Y
∏k

i=1(XY − 1 − iY 2). One checks that
f has no critical points. Using Theorem 1 we see that Λ(f) = {0}.
Here d = 2k + 1 and c = k + 1 = (d + 1)/2.

Let f = f(X,Y ) ∈ C[X,Y ] be a polynomial such that degY f =
deg f = d > 0, and let T be a new variable. Let us consider
the Y -discriminant ∆(X,T ) = discY (f(X,Y ) − T ) of the polynomial
f(X,Y ) − T ∈ C[X,T ][Y ]. It is easy to see that ∆(X,T ) 
= 0 in
C[X,T ]. Moreover, ∆(X, t) 
= 0 for every t ∈ C if and only if the set
of critical points of f is finite.
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Theorem 3. Let t0 ∈ C. The following two conditions are
equivalent:

(i) The polynomial f has no critical points and Λ(f) ⊂ {t0}.
(ii) The set of critical points of f is finite and deg∆(X, t0) = d− 1.

We can use the discriminant to characterize the coordinate polyno-
mials.

Corollary to Theorem 3. Let us write ∆(X,T ) = ∆0(T )XN+· · ·+
∆N (T ) with ∆0(T ) 
= 0 in C[T ]. Then f is a coordinate polynomial if
and only if N = d− 1 and ∆0(T ) = const.

Proof. By the Ephraim theorem, f is a coordinate polynomial if and
only if f has no critical point and Λ(f) ⊂ {t} for all t ∈ C. Use
Theorem 3.

Other characterizations of coordinate polynomials were given in [8]
and [15].

We call a polynomial f : C2 → C a Jacobian polynomial if
there is a polynomial g : C2 → C such that (∂f/∂X)(∂g/∂Y ) −
(∂f/∂Y )(∂g/∂X) = 1. Every Jacobian polynomial has no critical
points and every coordinate polynomial is a Jacobian polynomial. The
plane Jacobian conjecture (see [5], [16]) can be stated as follows:

(JC) Every Jacobian polynomial is a coordinate polynomial.

Theorem 4. Let f = f(X,Y ) ∈ C[X,Y ] be a polynomial such that
degY f = deg f = d. Put ∆f = discY f(X,Y ). Then the following two
conditions are equivalent:

(i) f is a coordinate polynomial

(ii) f is a Jacobian polynomial and deg∆f = d− 1.

In [7] the authors proved that if f has finite set of critical points, then
deg∆f ≥ d − 1. Theorem 4 shows that the plane Jacobian conjecture
is equivalent to the following statement
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(JC′) If f is a Jacobian polynomial such that degY f = deg f = d, then
deg∆f = d− 1.

2. Proofs. Let Γ ⊂ C2 be an affine algebraic curve. We put χ(Γ)
equal to the Euler characteristic of Γ, and r∞(Γ) equal to the number
of branches at infinity of Γ. To prove Theorem 1, we need the following
lemmas.

Lemma 1. Let Γ ⊂ C2 be an affine irreducible and smooth algebraic
curve. Let γ be the genus of the Riemann surface corresponding to the
projective closure of Γ. Then χ(Γ) = 2 − 2γ − r∞(Γ). In particular,
χ(Γ) ≤ 1 and χ(Γ) = 1 if and only if Γ is isomorphic to a line.

Proof. See, for example, Proposition 2.4 in [13].

Lemma 2. Let f : C2 → C be a polynomial with no critical points,
and let t0 ∈ C. Then the following two conditions are equivalent.

(i) Λ(f) = {t0}.
(ii) χ(f−1(t0)) = 1.

Proof. See Lemma 1 in [18].

Lemma 3. Let Γ ⊂ C2 be an affine, irreducible curve of degree > 1.
Suppose that there exists a pencil L of l parallel lines not meeting Γ.
Then Γ has at least l + 1 branches at infinity.

Proof. Let p be the point at infinity of the lines of the pencil L. Then
p is a point at infinity of the curve Γ and every line of L is tangent to
Γ at p. If p is the unique point at infinity of Γ, then the line at infinity
is also tangent to Γ at p. Therefore through p, l + 1 tangents pass to
Γ, consequently there are at least l + 1 branches of Γ centered at p. If
there is another point at infinity q 
= p of Γ, then there are at least l
branches of Γ centered at p and at least one branch centered at q. This
proves the lemma.



144 J. GWOŹDZIEWICZ AND A. P�LOSKI

Now we can give

Proof of Theorem 1. (i) ⇒ (ii). Assume Λ(f) = {t0} and write
f−1(t0) =

⋃s
i=1 Γi where Γi are irreducible components of f−1(t0).

We have χ(f−1(t0)) =
∑s

i=1
χ(Γi) for Γi are pairwise disjoint. Let

γi = γ(Γi) and r∞,i = r∞(Γi). Then

(1) 1 =
s∑

i=1

(2 − 2γi − r∞,i)

by Lemmas 1 and 2.

All numbers 2 − 2γi − r∞,i are integers less than or equal to 1.
Therefore there is i0 ∈ {1, . . . , s} such that 2 − 2γi0 − r∞,i0 = 1.
Obviously γi0 = 0 and r∞,i0 = 1. Consequently, Γi0 is isomorphic to
C. If Γi (i 
= i0) are not isomorphic to C, then for i 
= i0 we get
2 − 2γi − r∞,i = 0, that is γi = 0 and r∞,i = 2.

Suppose that Γ1, . . . ,Γl are isomorphic to C (l > 1) and Γl+1, . . . ,Γs

are not. Then by (1) we get
∑s

i=l+1(2−2γi−r∞,i) = 1−l. By applying
a polynomial automorphism we may assume that Γ1, . . . ,Γl are affine
lines. Therefore, by Lemma 3, we get r∞,i ≥ l+1 for i ≥ l+1. We see
easily that s = l + 1, γl+1 = 0 and r∞,l+1 = l + 1.

(ii) ⇒ (i). Assume that condition (ii) holds and write f−1(t0) =⋃s
i=1 Γi where Γi are irreducible components of f−1(t0). Then χ(f−1(t0)) =∑s
i=1

χ(Γi) = 1 by Lemma 2 and Λ(f) = {t0} by Lemma 1.

To prove Theorem 2, we need

Lemma 4. Let Γ ⊂ C2 be an affine algebraic curve of degree d with
c points at infinity. Then c ≤ r∞(Γ) ≤ d. If c = d, then the projective
closure of Γ has no singularities at infinity.

Proof. Obvious.

Proof of Theorem 2. Since f has an irregular value, then d ≥ 3.
Let f−1(t0) =

⋃s
i=1 Γi be the decomposition of f−1(t0) into irreducible

components. Let us consider two cases.
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Case 1. Exactly one irreducible component of f−1(t0) is isomorphic
to a line. Suppose that Γ1 is isomorphic to a line and Γ2, . . . ,Γs are
not. Let Γ∞ be the set of points at infinity of an affine curve Γ ⊂ C2.
The curves Γ1,Γi, i = 2, . . . , s, are disjoint, so (Γ1)∞ ∩ (Γi)∞ 
= ∅.
Since Γ1 is isomorphic to C, we have (Γ1)∞ = {p1} and we may write
(Γi)∞ = {p1, pi} for i = 2, . . . , s, for Γi has at most two points at
infinity. Now we get (f−1(t0))∞ = (Γ1)∞ ∪ · · · ∪ (Γs)∞ ⊂ {p1, . . . , ps}.
Therefore #(f−1(t0))∞ ≤ s. On the other hand, d = deg f−1(t0) =∑s

i=1 degΓi ≥ 1 + 2(s− 1) = 2s− 1. Finally, we get s ≤ (d + 1)/2.

Case 2. At least two irreducible components of f−1(t0) are not
isomorphic to C. By Theorem 1, we may assume that Γ1, . . . ,Γs−1

are isomorphic to C and Γs has s branches at infinity. Note that
deg Γs > s > 2; the inequality degΓs ≥ s follows from Lemma 4. To
check that deg Γs > s suppose deg Γs = s. Then Γs would have no
singular points by Lemma 4, which leads to a contradiction because a
rational (projective) curve of degree > 2 always has singular points.

We may write (Γi)∞ = {p1} for i = 1, . . . , s − 1 and (Γs)∞ =
{p1, p2, . . . , ps} for r∞(Γs) = s. Therefore, #(f−1(t0))∞ ≤ s. On
the other hand, d = deg f−1(t0) =

∑s
i=1 degΓi ≥ s − 1 + degΓs ≥

(s− 1) + (s+ 1) = 2s. Hence, s ≤ d/2.

Thus we have proved in both cases #(f−1(t0))∞ ≤ number of
irreducible components of f−1(t0) ≤ (d + 1)/2.

Proof of Theorem 3. Keep the notation from the Introduction. Let
f : C2 → C be a polynomial with a finite set of critical points.
According to Krasinski [14, Theorem 6.4], we have

(2) deg∆(X, t0) = d(d− 2) + c−
∑

p∈C∞

µt0
p .

On the other hand, by Cassou-Noguès’ formula [9, Proposition 1.2], we
can write

(3) d(d− 3) + c + 1 =
∑

p∈C∞

µmin
p + µ(f) + λ(f)

where µ(f) is the total Milnor number of f (see [6], [9]). Combining
(2) and (3), we get

(4) deg∆(X, t0) = µ(f) + λ(f) − λt0(f) + d− 1.
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Now Theorem 3 follows easily from (4) since f has no critical points if
and only if µ(f) = 0 and the condition Λ(f) ⊂ {t0} is equivalent to the
equality λ(f) = λt0(f).

Proof of Theorem 4. Implication (i) ⇒ (ii) follows from the corollary
to Theorem 3. To check (ii) ⇒ (i) assume that f is a Jacobian
polynomial such that deg∆f = d − 1. Then by Theorem 3, we
get Λ(f) ⊂ {0}. By the Ephraim theorem it suffices to check that
Λ(f) = ∅. If we had Λ(f) 
= ∅, i.e., Λ(f) = {0}, then by a result of
Assi [4, Corollary 4.8], f would not be a Jacobian polynomial.

3. Questions. We end this note by a few questions concerning
polynomials in two complex variables. We indicate partial answers we
got by using elementary tools (resultants and discriminants, Puiseux
series, Newton diagrams).

Question 1. How many points at infinity can a polynomial have
without critical points of degree d > 3?

Using Theorem 2 and a result of Le Van Than and Oka [17, Theorem
2.4], we checked that the curve f−1(0) has at most d−2 points at infinity
provided f is of degree d > 3 with no critical points. We do not know
if our estimate is exact.

Question 2. Suppose that a polynomial f : C2 → C of degree d > 5
has a finite number of critical points. What is the optimal bound on
the number #Λ(f) of irregular values at infinity?

Our result is #Λ(f) ≤ max(1, d− 3). Is it exact if d > 5?

Question 3. Let f : C2 → C be a polynomial with a finite number of
critical points. What is the optimal bound on λ(f)?

We checked that λ(f) ≤ d2 − 3d for d > 3. If d = 4, then our
estimation is optimal (take f(X,Y ) = X4 − X2Y 2 + 2XY − 1, then
λ(f) = 4).

If f : C2 → C is a polynomial with a finite number of critical points,
then |grad f(z)| ≥ const |z|−λ(f)−1 for large |z|. We can complete the
last question by the following
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Question 4. Let f : C2 → C be a polynomial of degree d > 4 with
a finite number of critical points. What is the optimal bound on the
exponent θ in the inequality |grad f(z)| ≥ const |z|θ for large |z|?

Note that explicit formulae for the Lojasiewicz exponent (the best θ
in the inequality above) are known ([12], [8]).
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