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ABELIAN GROUPS WITH SELF-INJECTIVE
QUASI-ENDOMORPHISM RINGS

ULRICH ALBRECHT

1. Introduction. One of the most important concepts in the
discussion of endomorphism rings of torsion-free abelian groups is
that of faithfulness. A left R-module A is fully faithful (faithful) if
M ®pr A # 0 for all (finitely generated) right R-modules M. It is easy
to see that a faithful module which is flat is fully faithful. On the other
hand, faithful modules exist which are not fully faithful: @,Z/pZ where
the direct sum is taken over all primes is a faithful Z-module, but is
not fully faithful.

Abelian groups which are faithful or fully faithful as modules over
their endomorphism ring share some of the homological properties of
torsion-free groups of rank 1 which Baer discussed in 1937 in [11]. For
instance, a self-small abelian group A is (faithful) fully faithful as a
module over its endomorphism ring if and only if an exact sequence
0 — B% G — P — 0splits if P is A-projective (of finite A-rank) and
G = SA(G) + a(B), for details, see [2] and [9]. Here P is A-projective
(of finite A-rank) if it is a direct summand of @ ;A for some (finite)
index-set J, and S4(G) = Hom (A, G)A. The group A is self-small if,
for every index-set I and all « € Hom (A, @A) there is a finite subset
I’ of T such that a(A4) C & A. For example, every torsion-free group
of finite rank is self-small, but self-small torsion-free groups of arbitrary
cardinality exist.

In this paper the concept of faithfulness is extended to the quasi-
category of torsion-free abelian groups: A torsion-free group A is said
to be quasi-fully faithful if QA = Q ®z A is a fully faithful QE-
module where £ = FE(A) denotes the endomorphism ring of A and
QF = Q ®z FE is its quasi-endomorphism ring. Theorem 2.1 and
its corollaries give additional characterizations of quasi-fully faithful
groups. It is shown that every quasi-fully faithful group A has the
finite quasi-Baer-splitting property, i.e., an exact sequence 0 — B >
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G — P — 0 quasi-splits if P is a quasi-summand of an A-projective
group of finite A-rank and G = S4(G) + «(B) [4]. The converse holds
if A is almost flat, Theorem 2.4, i.e., there is a nonzero integer m
such that mTor £ (M, A) = 0 for all right E-modules M (for details on
almost flatness, see [6]). This equivalence may fail if the almost flatness
of A is replaced by the weaker requirement that A is quasi-flat since
there is a torsion-free group A of rank 4 which is quasi-flat and has
the finite quasi-Baer-splitting property but is not quasi-fully faithful,
Example 2.6. Here A is quasi-flat, see [7], if Tor £ (M, A) is torsion for
all right E-modules M. Every torsion-free abelian group G arises as
a direct summand of a quasi-flat group since Z & G is flat and hence
quasi-flat.

Problem 84 in [13] seeks a characterization of the abelian groups
with self-injective endomorphism ring. Though one was given by the
author in [1], the only torsion-free groups in the class which arises as
an answer are divisible. However, asking the same question for quasi-
endomorphism rings instead of endomorphism rings results in a large
class of abelian groups which contains several well-known classes of
torsion-free groups of finite rank, e.g., the groups with a semi-simple
Artinian quasi-endomorphism ring. Section 3 addresses this quasi-
version of [13, Problem 84]. The results of Section 2 are used to give
several characterizations of the quasi-flat abelian groups of finite rank
whose quasi-endomorphism ring is self-injective, Theorem 3.5.

2. Quasi-fully faithful abelian groups. Associated with every
abelian group A is an adjoint pair (Ha,T4) of functors between the
category of abelian groups and the category of right E-modules. These
functors are defined as H4(G) = Hom (A,G) and To(M) = M Qg A
for all abelian groups G and all right E-modules M, and induce
natural maps 04 : TaHA(G) — G and ¢4, : M — HaTa(M) by
04 (a ® a) = a(a) and [¢p4;(2)](a) = z @ a for all a € A, x € M and
a € Hy(G). Usually, the superscripts referring to A are omitted. The
class of A-solvable groups arises as the largest full subcategory of the
category of abelian groups on which 64 induces a natural equivalence
between T4 H 4 and the identity functor. For instance, all A-projective
groups are A-solvable if A is self-small.

The concept of A-solvability is extended to the quasi-category of
abelian groups by calling an abelian group G is QA-solvable if the
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induced map Qbg : QTaHAs(G) — QG is an isomorphism. Be-
cause imfg = Si(G), the group G is QA-solvable if and only if
ker g and G/S4(G) are torsion. Finally, an exact sequence 0 —

B % ¢ 2 G = 0 of abelian groups is called quasi-A-balanced if
Ha(G)/im Ha(pB) is torsion. In this case, C/[a(B) + S4(G)] is tor-
sion: For every ¢ € C, a nonzero integer k exists, elements a,... ,a,
of A and maps ¢1,...,¢, € Ha(G) with k3(c) = D", ¢i(a;). Since
HA(G)/im H(p) is torsion, one can choose a nonzero integer m and
maps ¥1, ... , ¥, € Ha(C) such that m¢; = p; fori =1,... ,n. Then
B(kme) = B0 vila;)), and kme € Sa(C) + ker 3.

Since every QFE-module M has a torsion-free divisible additive group,
Tor ¥(M,QA/A) = 0 and M @ [QA/A] = 0. Thus, M ®qr QA =
T4 (M). In particular, A is quasi-fully faithful if and only if T4 (M) # 0
for all nonzero right E-modules M whose additive group is torsion-free
divisible. The first result of this section discusses the relation between
quasi-full faithfulness and quasi-A-balanced sequences.

Theorem 2.1. The following conditions are equivalent for a self-
small torsion-free abelian group A:

a) A is quasi-fully faithful.
b) If M is a nonzero right E-module with a torsion-free additive
group, then T (M) # 0.

c) A right E-module M such that T4 (M) is torsion is itself torsion
as an abelian group.

d) An exact sequence 0 — B = C 2 G — 0 such that G s QA-
solvable is quasi-A-balanced if and only if C'/[a(B)+Sa(C)] is torsion.

Proof. a) = b). Suppose that T4 (M) = 0 for some right EF-module M
whose additive group is torsion-free. The inclusion M C QM induces
the exact sequence Ty (M) — Ta(QM) — TA(QM/M) — 0. Since
Ty (M) =0, one has T4 (QM) = 0. Hence, QM = 0 because of a), and
M =0 too since M is torsion-free.

b) = ¢). Suppose that M is a right E-module such that T4 (M)
is torsion. If the additive group of M is not torsion, then one may
assume that it is torsion-free. As before, an exact sequence T4 (M) —
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TA(QM) — TA(QM/M) — 0 exists. Since the first and third term
are torsion groups, T4(QM) = 0, which is impossible by b) because
QM #0.

¢) = d). Let G be a QA-solvable group, and consider an exact
sequence 0 — B % C LG o It C/[Sa(C) + a(B)] is torsion, let
M =im Ha(B) C Ha(G). The map 6 : T4(M) — G which is defined
by 0(¢ ® a) = ¢(a) for all ¢ € M and a € A fits into the commutative
diagram

TaHA(C) 2228 py () ——— 0

o

C A G 0.

Since coker (36¢) is torsion as an epimorphic image of the torsion group
C/la(B) + Sa(C)], the group cokerd has to be torsion. Moreover, 6
fits into the commutative diagram

TA(M) —2 0 Ty H o (G) ——— Ta(HA(G) /M) ———0

S

where ¢ : M — H4(G) denotes the inclusion map. The Snake-Lemma
induces an exact sequence ker g — T (Ha(G)/M) — coker 0 in which
the first and third term are torsion. Therefore, Ta(Ha(G)/M) is
torsion. The same holds for the additive group of H4(G)/M by c);
and the given sequence is quasi-A-balanced.

d) = a). Let M be the right QE-module with T4 (M) = 0. Consider

an exact sequence P 5 F LA M — 0 in which P and F' are projective

E-modules. An application of the functor T4 yields the exact sequence

0 - U — Ta(P) Tale) TA(F) — Ta(M) = 0 for some suitable

subgroup U of T4(P). The last sequence is quasi-A-balanced by d)
since T4 (F) is A-solvable in view of the self-smallness of A. It induces
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the top-row of the commutative diagram

HaTa(P) 2222 1,1y () T 0
l]ﬁp ZL#F
P o F M 0

¢
in which T is a right E-module whose additive group is torsion. The

induced map ¢ is an isomorphism by the 5-lemma. Hence, M™ is
torsion. Since M is a QFE-module, M = 0. o

The property of A to be quasi-fully faithful can be characterized in
terms of the right ideals of E if A is quasi-flat. As a reminder for
the reader, U, denotes the Z-purification of U in G whenever U is a
subgroup of a torsion-free group G.

Corollary 2.2. The following conditions are equivalent for a quasi-
flat torsion-free abelian group A:

a) A is quasi-fully faithful.
b) Ha([IA]«) = L for all right ideals I of E.

c) If T is a right ideal of E such that A/IA is torsion, then E/I is
torsion as an abelian group.

Proof. a) = b). If I is a right ideal of E, then J = H4([IA].) is a
pure right ideal of E containing I,.. Let ¢ : E/I — E/J be the natural

projection. Since A is quasi-flat, the first term in the induced exact

sequence Tor Z(E/J, A) — Ta(J/T) — Ta(E/T) Y Ty (E/J) — 0 is

a torsion group. Moreover, the map Ta(¢) fits into the commutative
diagram

0 IA A Tu(E/T) ——— 0
e
0 JA A Tu(E)J) ——0

in which ¢ is the inclusion map. By the Snake-Lemma, ker Ty (¢) =
JA/ITA C TA,/TA is a torsion group. Thus, T4(J/I) is torsion, and
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the same holds for the additive group of J/I by Theorem 2.1, which is
impossible unless J = I,.

b) = c). If A/TA is torsion, I, = Hom (4,IA,) =E.

¢) = a). By Theorem 2.1, it suffices to show that a right E-
module M with a torsion-free additive group vanishes if T4(M) = 0.
For every © € M, there is a right ideal I of E such that zFE =
E/I. Since A is quasi-flat, the first group in the exact sequence
Tor #(M/zE, A) — Ta(xE) — Ta(M) = 0 is torsion. Therefore,
AJTA X Ty(E/I) = Ta(zE) is a torsion group. By c¢), E/I is torsion
as an abelian group. Since M has a torsion-free additive group, = 0.
]

Corollary 2.3. Let A be a quasi-flat torsion-free abelian group.

a) If every right ideal of QE is the right annihilator of some subset
of QFE, then A is quasi-fully faithful.

b) If A is strongly indecomposable and QE is a finite dimensional
Q-algebra, then A is quasi-fully faithful.

Proof. a) Consider a right ideal I of E and choose o € Hs(IA,).
For every a € A, there are a nonzero integer m, ai,...,a, € A and
Br,...,Bn € I such that ma(a) = 377, Bj(a;). Since QI is the
right annihilator of some S C QF and QFE/FE is torsion as an abelian
group, QI actually is the right annihilator of a set S’ C E whose
elements are nonzero integer multiples of the elements of S. Thus,
moa(a) = Y75, ofj(a;) = 0 for all o € S’. This shows S’a = 0 and
a € QINE =1I,. By Corollary 2.2, A is quasi-fully faithful.

b) Since QA is a finitely generated flat module over the local Artinian
ring QF, it is free. However, nonzero free modules are fully faithful
and so A is quasi-fully faithful. O

In particular, A satisfies condition a) in the last corollary if it is a
quasi-flat torsion-free abelian group whose quasi-endomorphism ring is
a quasi-Frobenius ring, i.e., it is a right and left Artinian self-injective
ring.

A self-small abelian group A has the finite quasi-Baer splitting prop-
erty if and only if every finitely generated right EF-module M such that
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Ta(M) is bounded is itself bounded as an abelian group [4, Theorem
2.3]. Using this result it is easy to see that every quasi-fully faithful
group A has the finite quasi-Baer splitting property since a finitely gen-
erated module whose additive group is torsion has to be bounded. The
next result shows that the converse is true if A is almost flat:

Theorem 2.4. The following conditions are equivalent for a self-
small almost flat abelian group A:

a) A is quasi-fully faithful.
b) A has the finite quasi-Baer-splitting property.

c) The class of right E-modules M such that coker ¢ps is torsion is
closed with respect to submodules.

Proof. Throughout this proof, let m be a nonzero integer such that
mTor ¥(—, A) = 0.

a) = ¢). Let M be a right F-module such that coker ¢, is torsion as
an abelian group. Consider a submodule U of M, and assume that it
has already been shown that ker ¢,y is torsion. The inclusion U € M

induces an exact sequence 0 — U 5 M 5 M/U — 0 which gives

the exact sequence Tor ¥(M/U, A) N TA(U) Talp) TA(M). Setting

V =im A yields the exact sequence 0 — Ha (V) — HaTa(U) HaTg()
HaT4s(M) in which H4(V) is bounded by m as an abelian group
since the same holds for V' as an epimorphic image of the group
Tor (MU, A).

For x € HyT4(U), there are y € M and a nonzero integer k with
HaTs(a)(kz) = ¢ar(y) since ¢pr has a torsion cokernel. Because of
the naturality of ¢, one obtains

drryum(y) = HaTa(m)pn(y) = HaTa(wer)(kx) = 0.

Therefore, Im(y) = 0 for some nonzero integer I since ker ¢y is
assumed to be torsion as an abelian group. Thus, write ly = a(u)
for some u € U, and obtain lkHaTs(a)(z) = lom(y) = opma(u) =
HaTs(a)py(u). Since ker HyT4(«) is bounded by m, one has mik =
maeu(u). Consequently, ¢y has a torsion cokernel.
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It remains to show that ker ¢y, is torsion as an abelian group.

Consider an exact sequence 0 — W % F 2, M/U — 0 of right E-
modules in which F is free. It induces the exact sequence

0 — Tor B(M/U, A) — Ta(W) 22 14 (F) 9 1 (01/U) — 0.
If one sets K = imT4(o) and denotes the inclusion K C Ty (F)
by ¢, then the previous sequence induces the exact sequences 0 —

Tor E(M/U, A) — Ta(W) ) K 0 .and 0 — K 5 Ta(F) ™29

Ta(M/U) — 0 such that Ta(c) = (Ta(o). Since TorZ(M/U, A) is
bounded, and K is torsion-free as a subgroup of the A-projective group
T4 (F), the first of these sequences splits. Consequently, H4(T4(0)) is
onto, and T4(W) =2 K @ T for some bounded group 7. The second
sequence induces the top-row of the commutative diagram

Ha(d)

0 —— Hu(K) HATA(F)MHATA(M/U)
]‘(ﬁ l]‘(ﬁF wf’M/U
0 w a F 0 M/U 0.

By the Snake-Lemma, ker ¢ 57,y = coker ¢, and it suffices to show that
the latter is torsion.

To see this, observe that

Hy(1)p = dppo = HATa(0)pw = Ha(t)Ha(Ta(0))ow

yields ¢ = Ha(Ta(o))pw. Since the map H,(Ta(o)) is onto, coker ¢
is torsion once it has been established that coker ¢y is torsion as an
abelian group.

Consider an exact sequence P AW —0of right E-modules with P

projective. It induces an epimorphism T4 (P) Ta T4(W). Because

Ta(W) =2 K @& T, one obtains ker 07, () = ker 0 @ ker 0. Since
T is bounded, the same holds for TyH4(T), and ker 67 is bounded.
Moreover, the commutative diagram

Tor P(HAT4(F)/HA(K),A) —2— TAHA(K TAHATA(F)

J@K IJGTA (F)

0 K L TA(F)

) TaHA(e)
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yields that ker g = ker T4 H4(:) = im A is bounded by m. Therefore,

T4 (W) is QA-solvable since Sa(T4(W)) = T4(W). By Theorem 2.1,

the sequence Ty (P) Ta) Ta(W) — 0 is quasi-A-balanced. There is a

right E-module 77 which is torsion as an abelian group and makes the
top row of the commutative diagram

HaTa(P) 225 |,y (W) T 0
2%)19 wa
P A w 0

exact. Since A is onto, coker ¢y = coker ¢y A = coker HaTa(N)pp =
coker HyTa(M\) 2 T and ¢w has a torsion cokernel.

¢) = b). Let M be a nonzero finitely generated right E-module
such that T,4(M) is bounded. An exact sequence 0 — U 5 F —

M — 0 of right E-modules where F' is a finitely generated free module

induces the sequence 0 — Tor¥(M,A) — Ta(U) Ta() Ty(F) —

Ta(M) — 0 in which Tor £(M, A) and T4 (M) are bounded abelian
groups. Therefore, T4 (o) and hence H4 T4 () are quasi-isomorphisms.
There is a nonzero integer ! such that lcoker HoT4(a) = 0. One has
lop(x) = HaTa(a)(z) for some z € HyT4(U) whenever z € F. By c),
¢u has a torsion cokernel, and therefore, kz = ¢y (u) for some nonzero
integer k and w € U. Thus, lk¢p(x) = HaTa(a)py(u) = ¢prpa(u) since
HaTa(a)py = ¢ra. Consequently, lkx = a(u) and M™T is torsion.
Since M is finitely generated, M is bounded.

b) = a). If A isnot quasi-fully faithful, then there is a right E-module
M such that T4 (M) torsion but tM # M. No generality is lost, if one
assumes that the additive group of M is torsion-free. An exact sequence
0 - M — QM of right E-modules exists, which induces the exact
sequence Tor £ ([QM]/M, A) N Ta(M) — TA(QM). Since T4(QM)
is torsion-free and divisible and T4(M) is torsion, A is onto, and
Ta(M) is bounded by m as an image of Tor ¥ ([QM]/M, A). If U is a
finitely generated submodule of M, then the inclusion U C M, induces
an exact sequence Tor ¥ (M /U, A) — Ta(U) — Ta(M) which yields
m2T4(U) = 0. Since A has the finite quasi-Baer splitting property, U
is bounded as an abelian group which is not possible. O
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This section concludes with an example that the implication b) = a)
in the last theorem may fail if A is not almost flat:

Example 2.5. a) There exists a quasi-flat torsion-free abelian group
A of rank 4 which has the finite quasi-Baer-splitting property but is
not quasi-fully faithful.

b) There exists a quasi-flat quasi-fully faithful torsion-free group A
of rank 4 which is not almost flat.

Proof. Select subgroups X and Y of Q containing Z with the property
that 1 has height sequences (0,1,0,1,...) in X and (1,0,1,0,1,0,...)
in Y. As in [12], choose an isomorphism 6 : Q/X — Q/Y, and set
G={(a,b) e QadQ|fa+X)=>b+Y} Since X = X & {0} and
Y 2 {0}®Y are pure in G, the typeset of G has at least three elements.
By [8, Theorem 3.3], E(G) C Q. Since G/(X &Y) = Q/Z, one can
find a subgroup H of G containing X @Y such that G/H = Z(2*°)
(see also [6] and [7]). In the same way as for G, one shows E(H) C Q.
Since ro(H) = 2, one obtains Zs ® H = Zo @& Zy. Therefore, the
group (f(H) + H)/H is finite for any f € Hom (H,G). Consequently,
Hom (H, G) has rank 1.

Any homomorphism from H into G induces an endomorphism of X
since X is pure and fully invariant in G. Hence, Hom (H,G) = Z
which implies that Sy (G) = H. In particular, G/Sg(G) is an infinite
torsion group. On the other hand, Hom (G, H) = 0 since G is not
quasi-isomorphic to H.

a) By [4, Corollary 3.3], the group A = G @ H has the finite quasi-
Baer splitting property if Sg(G) # G and Sg(H) # H, and these
conditions are indeed satisfied.

The left ideal I = {a € E | a(G) = 0} of E = E(A) is a two-
sided ideal since Hom (G, H) = 0 yields that G is fully invariant in A.
Furthermore, JA = ITH 2 H®Hom (H,G)H = H ® Sy (G) yields that
A/IA is torsion as an image of the torsion group G/Sg(G). On the
other hand, since E/I is nonzero and torsion-free, A is not quasi-fully
faithful by Theorem 2.1.

It remains to show that A is quasi-flat. By [7, Corollary 3.2] (Ulmer’s
theorem), it suffices to show that [ker ¢]/S4(ker ¢) is torsion for all
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maps ¢ € Hom (A", A) and all n < w. Consider a homomorphism
¢: UV — A where U =2 G" and V = H"™ for some n < w. Set
K = ker ¢, and observe that U contains a subgroup U’ = H™ such that
U/U’ is torsion. Moreover, ¢(U'®@V) C Sy (GOH) = Sy (G)®H. Since
Sy (G) = H, one obtains that ¢(U’ @ V) is isomorphic to a subgroup of
H & H. Because of E(H) C Q, one has Sx(K) 2 Sg(KN[U &V]) =
KnN[U ¢ V]. Consequently, K/S4(K) is an epimorphic image of
K/(KNU V)2 (K+[U'aV])/[U'aV]|C(UaV)/(UaV). Since
the latter group is torsion, K/S4(K) is torsion.

b) On the other hand, if the exact sequence 0 - G — A — H — 0
represents an element of infinite order of Ext (H, G), then it was shown
in [6] and [7] that A is strongly indecomposable, quasi-flat group which
is not almost flat. Because of part a) of Corollary 2.3, A is quasi-fully
faithful. O

Interestingly, 4 is the smallest rank for which a quasi-flat group A
of finite rank exists which has the finite quasi-Baer splitting property
but is not quasi-fully faithful. By [7, Theorem 4.3], every quasi-flat
torsion-free group A of rank at most 3 is quasi-isomorphic to a group
which is flat as a module over its endomorphism ring. By [6, Corollary
2.5], A is almost flat. Therefore, A has the finite quasi-Baer splitting
property if and only if A is quasi-fully faithful.

3. Annihilator conditions. Write rz(S) and [g(S) for the right
and left annihilator of a subset S of a ring R, respectively. A right and
left Noetherian ring R is a quasi-Frobenius ring if and only if every
right (left) ideal of R is the right (left) annihilator of a finite subset
of R. It is the goal of this section to study torsion-free abelian groups
whose quasi-endomorphism rings satisfy one (both) of these annihilator
conditions.

Lemma 3.1. The following are equivalent for a torsion-free abelian
group A:

a) Bvery right ideal of QF is the right annihilator of a subset of QE.
b) relg(I)/I is Z-torsion for all right ideals I of E.
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Proof. a) = b). Let I be a right ideal of E' whose Z-purification in E
is denoted by I.. If S is a subset of QF with QI. = rqg(S), then no
generality is lost if one assumes S C E. Then, rg(S) =rqr(S)NE =
QIL.NE =1I,. Thus, rglg(I)/I =rglg(l.)/I = I./I is torsion.

b) = a). Observe that rglg(Il) = I for all pure right ideals I of E
because of b). If J is any right ideal of QE, then lqgr(J) = lqr(JNE)
since J/JNE is torsion. But then, J = rqe(lg(JNE)) 2 rqrlqe(J) 2
J. O

A torsion-free group G such that G/S4(G) is torsion has finite A-
rank if every descending chain Uy D Uy D --- of pure subgroups of G
such that U,,/S4a(U,) is torsion for all n < w has finite length. If A has
finite rank, then a torsion-free group G such that G/S4(G) is torsion
has finite A-rank if and only if G has finite rank.

Theorem 3.2. Let A be a quasi-flat, quasi-fully faithful torsion-free
abelian group whose quasi-endomorphism ring is right Artinian.

a) The following conditions are equivalent for a torsion-free QA-
solvable group G:

i) G has finite A-rank.

ii) QHA(G) is a finitely generated right QE-module.

iii) G contains a finitely A-generated subgroup U such that G/U is
torsion.

b) Let G be a torsion-free abelian group. Then G = G/Ra(G) is
a QA-solvable group of finite A-rank if and only if the following two
conditions are satisfied

i) G/Sa(G) is torsion.

ii) For every homomorphism o : G — Al there is a finite subset J
of I such that kero = kermjo where w; : AT — A’ is the projection
with kernel A\,

Proof. i) = ii). Since QF is a right Artinian ring, QH 4 (G) is finitely
generated if and only if it is Artinian. Consider submodules U; and
Us of QHA(G) such that U; is a proper submodule of Us. The Z-
pure E-submodules Vi = Uy N Ha(G) C Us N Ha(G) = Va5 of Ha(G)
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satisfy V3 # Vh since QV; = U; for ¢ = 1,2. The inclusion maps
i1 : Vi = Hu(G), ia : Vo — Hx(G) and ¢ : V; — V4 induce the
commutative diagram

Tor £(Va/ V7, A)

Tor P(Ha(G)/Vi, A) — 21— Ty (Vi) — Y Ty H,(G)
Ta(t) JlTAHA(G)
Tor B(HA(G) Vo, A) —22 Ty (Vo) — 2220 1 1,(G)

Ta(Va/V1).

Since Vo/V; is torsion-free, T4(Va/V}) cannot be torsion by Theo-
rem 2.1 because A is quasi-fully faithful. Thus, one can choose an
element x of T4 (V) such that ZzNim T4 (¢) = 0. Then mOcTa(12)(x) ¢
im0cT4(e1) for all nonzero integers m. Otherwise, there is y € T4 (V1)
such that 0gTa(t2)(max) = 0cTa(11)(y) = 0cTa(t2t)(y). Since ker b
is torsion, there is a nonzero integer k such that Ty (i2)(kmax) =
To(12)Ta(t)(ky). Consequently, kma — Ta(1)(ky) € ker T4 (12) = im Ay
which is torsion since A is quasi-flat. There is a nonzero integer [
with lkma = T4 (¢)(Iky) which is not possible in view of the choice of
x. Setting W; = [0cTa(:)](Ta(Vi)) for ¢ = 1,2 defines A-generated
subgroups of G such that W, C Wy but W5/W; is not torsion as an
abelian group. Consequently, (W), is a proper subgroup of (Ws).,
and (W;)./Sa((W;).) is torsion for ¢ = 1, 2.

Therefore, a strictly descending chain of QFE-submodules of QH 4(G)
which has infinite length induces a strictly descending chain {X,, | n <
w} of pure subgroups of G such that X,,/S4(X,) is torsion which is
not possible by 1).

i) = iii). Since QHA(G) is finitely generated, an exact sequence
QE"™ & QHA(G) — 0 exists. But [7(E™) + Ha(G)]/Ha(G) is a
finitely generated E-module whose additive group is torsion, so there
is a nonzero integer m such that V. = ma(E™) C Hs(G). An
application of T4 to the inclusion map ¢ : V. — Hy(G) yields the
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exact sequence T4 (V) Ta() TAHA(G) — Ta(Ha(G)/V) — 0. Then

U =0cTa(t)(Ta(V)) is a finitely A-generated subgroup of G such that
G/U is torsion.

ili) = i). Suppose that it has already been shown that QH4(G)
is an Artinian QF-module. Consider a descending chain Uy 2 Uy 2

- of pure subgroups of G such that U,/Sa(U,) is torsion for all
n < w. The submodules {V,, = Hx(U,) | n < w} of Ha(G) form
a descending chain of submodules of H4(G) such that H,(G)/V,, is
torsion-free. Since S4(U,) = V,, A, one obtains V,, = V,, 41 if and only
if SA(Up) = Sa(Upt1). But U, = Sa(Uy)s yields V;, = V4 if and
only if U,, = Uy,11. Because QH4(G) is an Artinian QFE-module, an
index m exists such that QV,, = QV,, for all m < n < w. Then
U, = U, for all those n since V,, = QV,, N Ha(G).

It remains to show that QH 4(G) is Artinian. Since QF is a right
Artinian ring, it suffices to establish that QH 4 (G) is finitely generated.
Choose a finitely A-generated subgroup H of G such that G/U is
torsion, and consider the induced exact sequence 0 — U — G 5

G/U — 0. Tt induces the exact sequence 0 — H4(U) — Ha(G) Hafm)
M — 0 where M = im H,(7) is a submodule of H4(G/U). The latter
yields the top row of the commutative diagram

TAHA(U) ——— TaHA(G) 222"y (M) ——— 0

JQU JQG JG
0 U G u G/U 0

Since S4(U) = U, the Snake-Lemma gives the exact sequence ker g —
ker # — 0 whose first term is a torsion group because G is QA-solvable.
Therefore, T4(M) is torsion. In view of the fact that A is quasi-fully
faithful, M is torsion as an abelian group by Theorem 2.1. Then
QHA(G) = QHA(U).

By [7, Corollary 3.2], U is a QA-solvable abelian group. Since U is
finitely A-generated, an exact sequence 0 — W — A" — U — 0 exists
for some n < w. By Theorem 2.1, this sequence is quasi-A-balanced
and induces an exact sequence 0 — Hao(W) — Ha(A™) — Ha(U) —
T — 0 in which T is a right F-module whose additive group is torsion.
An application of the exact function Q®z shows that QH4(U) is a
finitely generated QFE-module.
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b) Suppose that G = G/RA(G) is a QA-solvable group of finite A-
rank. Let U = kero. Since R4(G/U) = 0, one can find an index set
I and a homomorphism ¢ : G — Al with kerc = U. Suppose that
ker(mjo) # U whenever J is a finite subset of I. There is a sequence
{in | n < w} of indices in I such that U, = N7_o kerm;; contains
U,+1 as a proper subgroup. Since U,, = U, /Ra(G) is the kernel of a
map from G into A"*1, one obtains U,,/S4(U,,) is torsion because A is
quasi-flat and G is QA-solvable. But this contradicts the fact that G
has finite A-rank. Therefore, there is a finite subset J of I such that
ker(myo) =U.

Conversely, there is a homomorphism o : G — A’ for some index-set
I such that R4(G) = kero. Choose a finite subset J of I such that
RA(G) = kermyo. Therefore, G is isomorphic to a subgroup of A"
for some n < w and is QA-solvable by [7, Corollary 3.2]. Moreover,
QH A(G) is a finitely generated QE-module since it is isomorphic to a
submodule of the finitely generated module QH 4(A™) and QF is right
Artinian. ]

Corollary 3.3. Let A be a quasi-flat torsion-free abelian group
such that QE has the ACC for right and left annihilators. For every
homomorphism o : A — AL, there is a finite subset J of I such that
ker o = kermjo.

Proof. If G is chosen to be A in the proof of part b) of Theorem 3.2,
then the arguments used there construct a strictly descending chain of
right annihilators in QFE which gives rise to a strictly ascending chain
of left annihilators, which is impossible. Now continue as in the proof
of part b) of Theorem 3.2 observing that the fact that A is quasi-fully
faithful is not used in the arguments which are relevant for the proof
of this corollary. o

Corollary 3.4. Let A be a torsion-free abelian group which is quasi-
flat.

a) The following conditions are equivalent if QFE is right and left
Noetherian:

i) Every right ideal of QF is the right annihilator of a finite subset
of QF.
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i) A is a quasi-fully faithful group such that every pure subgroup U
of A for which U/SA(U) is torsion satisfies Ry(A/U) = 0.

b) Suppose that QF is a right Artinian ring such that lgrg(I)/I is
torsion for all left ideals I of E. If P is isomorphic to an A-projective
group of finite A-rank, then an exact sequence 0 — P % G of torsion-
free groups quasi-splits if and only if Ra(G) Na(P) = 0.

Proof. a) i) = ii). Observe that A is quasi-fully faithful by Corollary
2.3. If U is a pure subgroup of A such that U/S4(U) is torsion,
then H4(U) is a pure right ideal of E for which a1,...,04 € FE
with QHA(U) = rqge(a1,...,a). Define a map A : A — A’ by
AMa) = (a1(a),...,ai(a)). To show ii), it is enough to verify that
U is the kernel of A.

Consider u € U. Since U/S4(U) is torsion, one can find a nonzero
integer k, maps ¢1,...,¢s € Ha(U) and aq,...,as € A such that
ku =%%_,¢;(a;). Then ka;(u) = X35_ a;¢;(a;) = 0, and U C ker A. If
B € Ha(ker \), then o;3 = 0 yields 8 € rqe(a1, ... ,au)NE = Ha(U).
Therefore, S4(ker \) C U. The quasi-flatness of A guarantees that the
group ker /S (ker \) is torsion [7, Theorem 3.1], and so U = ker A.

ii) = i). Let I be a right ideal of E, and set U = (I, A).. Because
of ¢), Ra(A/U) = 0. By Corollary 3.3, there is a finite set T such
that A/U is isomorphic to a subgroup of AT. Consequently, there
are 1,...,0, € E with the property that U = N7_ kerf;. If
a € I, then a(A) C U, and so ;o = 0 for ¢ = 1,...,n. Thus,
L. Crqe(f,...,0n). Conversely, if ¢ € rqr(fi,...,0:) N E, then
@(A) C NI ker3; = U and ¢ € Hu(U) = I, since A is quasi-
flat. Therefore, I, = rqr(Bi,...,0,) N E. Hence, QI = QI, =
TQE(/Bla o Bu)-

b) Let I be a proper left ideal of QE such that rqg(I) = 0. Then
rg(INE)=0and E=lgrg(INE)=I1NEFE since I NE is pure in E.
But this is not possible since I is proper. By [3, Theorem 2.3], every
exact sequence 0 — P — F such that F' is a quasi-summand of an
A-projective group of finite A-rank quasi-splits.

Now consider an exact sequence 0 — P % G in which a(P)NR4(G) =
0. Since G/RA(G) is isomorphic to a subgroup of A’ for some index-set
I, one may assume that G = A*I. By Theorem 3.2, there is a finite
subset J of I such that 7, is a monomorphism where 7y : AL — A7 is
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the projection with kernel A7\/. By the result of the first paragraph,
m o quasi-splits; and so does a. ]

The main result of this section gives two characterizations of the
quasi-flat torsion-free groups of finite rank whose quasi-endomorphism
ring is quasi-Frobenius. To formulate one of these easier, call a sequence
0 — B % G quasi-A-cobalanced if, for every ¢ € Hu(B), there is
a nonzero integer m and a map ¢ € Hom (G, A) with ¢|p = md¢.
Moreover, if X is a subset of an abelian group A, then X* = {a € F |
a(X) =0}, while S* = {a € A| Sa =0} if S is a subset of E [10].

Theorem 3.5. The following are equivalent for a quasi-flat torsion-
free abelian group A such that QF is right and left Noetherian.

a) 1) Every A-generated subgroup of A is QA-solvable.

ii) QE is a quasi-Frobenius ring.

b) 1) A is quasi-fully faithful.

ii) If U is a pure subgroup of A™ for some n < w, then U/S(U) is
torsion if and only if Ra(A/U) = 0.

iii) If I is a pure left ideal of E, then I = X* for some subset X of
A.

c) i) A is quasi-flat.

ii) An exact sequence 0 — B % G such that B/Ra(B) is QA-
solvable and has finite A-rank is quasi-A-cobalanced if and only if
a(Ra(B)) = a(B)NRA(G).

Proof. a) = b) and c¢). In order to show c) i), it suffices to ver-
ify that Tor ¥(E/I, A) is torsion for all right ideals I of E. Since
QF is a quasi-Frobenius ring, QI is the right annihilator of a finite
subset {aq,...,a,} of QE. The fact that QE/E is torsion allows
to assume {ai,...,a,} C E. Observe that I C rg(ai,...,q,) and
re(aq, ... ,a,)/I is torsion. Define a map A : A — A" by Aa) =
(a1(a),... ,an(a)) whose kernel is denoted by K. Then Hy(K) =
rg(ay,... ,a,), and the exact sequence 0 — H(K)/I — E/I —
E/HA(K) — 0 induces Tor¥(Ha(K)/I,A) — TorP(E/I,A) —
Tor £(E/H 4(K), A) in which the first term is a torsion group. There-
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fore, it is enough to show that the last term has this property, too. For
this we consider the commutative diagram

0 —— Tor ¥ (Ha(A)/Ha(K), A) ———— TaH(K) ———— TaH(A)

N

0 ker A A

which yields Tor #(Ha(A)/Ha(K)) = ker 0. But ker 0x = ker g, (),
and the latter is torsion by a).

The first step in the proof of c¢) ii) is to assume that G = A"

(03 .
for some n < w. The exact sequence 0 — B — A" induces an

exact sequence 0 — QH4(B) QH4() QH4(A™) of right QE-modules.

There is a map ¢ : QHA(A") — QF with vyQHa(a) = QHa(9)
since QF is self-injective. Choose a nonzero integer m such that
myp(Ha(A™)) C E. Then mypHa(a) = Ha(me). Apply T4 to obtain
TA (mw)TAHA (a) = TAHA (m¢) Then

mlp = 0sTaHA(mep) = 0aTa(my)TaHa(a) = 04Ta(map)0, abp.

Since B = Sa(B). is torsion, m¢ = 04 Ta(myd ' a).

For the general case, consider an exact sequence 0 — B % G such
that B = B/Ra(B) is a QA-solvable group of finite A-rank and
a(Ra(B)) = a(B) N Ra(G). This sequence induces the sequence
0 - B % G where G = G/Ra(G). Let 0 : G — Al be any
monomorphism. By Theorem 3.2, I may be chosen to be finite since
quasi-Frobenius rings are right and left Artinian. Observe that A is
quasi-fully faithful because of the already established equivalence in
Corollary 3.4 a). Every map ¢ : B — A induces a map ¢ : B — A. By
the first part of this proof, there are a map 2 : A’ — A and a nonzero
integer m such that m¢ = voa. If 7 : B — B is the projection map,
then ar = « and ¢ = ¢. Thus, Yoa = me.

Conversely, assume that 0 — B 5 G is quasi-A-cobalanced. Since
a(Ra(B)) C Ra(G), consider b € B such that a(b) € Ra(G)). If
¢ € Hom (B, A), then there are a nonzero integer m and a map
¢ € Hom (G, A) such that m¢ = a. Then mep(b) = vYa(b) = 0,
and b € R4(B).
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To verify b) it remains to show ii) and iii) because of Corollary 3.4.
For the former, consider a pure subgroup U of A™ for some n < w.
If R4(A/U) = 0, then there is a map a : A" — Al for some index-
set I with keraw = U. Since QF is right and left Noetherian, I may
be chosen to be finite by Corollary 3.3. Hence, U is the kernel of
a homomorphism between the A-solvable groups A" and A!. By [T,
Theorem 3.1], U/S4(U) is torsion since A is quasi-flat.

Conversely, assume that U/S4(U) is torsion and observe that the
inclusion U C A™ induces an exact sequence 0 — Ha(U) — Ha(A™) —
M — 0 where M is submodule of Hs(A™/U). Since U is pure in
A", the additive group of M is torsion-free. Furthermore, QM is
isomorphic to a submodule of QE™ for some m < w since finitely
generated modules over a quasi-Frobenius ring are reflexive. If this
embedding is denoted by a, then one can find a nonzero integer k such
that ka(A) C E™. The monomorphism k« induces the exact sequence

0 — Tor ¥(E™/ka(M)) N Ta(M) Talse) T4(E™). Since A is quasi-
flat, and T4 (E™) is torsion-free, tT4 (M) =im A, and Ty (M) /tTA(M)
is isomorphic to a subgroup of A™. Consider the induced diagram

TAHA(U) —>TAHA(A") —>TA(M) —F0

0 U A" A" JU ———0

in which the induced map 6 is an epimorphism whose kernel is torsion
by the Snake-Lemma since U/S 4 (U) is torsion. But the fact that A" /U
is torsion-free yields ker @ = tT4(M). Thus A" /U = Ty(M)/tTa(M)
is isomorphic to a subgroup of A™.

For the proof of iii), consider a pure left ideal I of F and choose
B1,...,0s € E such that QI = lqgr(fi,...,0s). In particular, I8; =0
fori=1,... ,n. If v € E satisfies v(8,(A) + -+ + Bs(4)) = 0, then
v € QINE =1 by the Z-purity of I in FE.

b) = a). Observe that the kernel of every map o : A™ — A satisfies
R4(A™/kera) = 0. Thus, kera/Sa(ker @) is torsion by b ii) and A
is quasi-flat by [7, Corollary 3.1]. An application of [7, Theorem 3.1]
yields that the class of torsion-free QA-solvable groups is closed with
respect to A-generated subgroups. This shows a) i).
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In order to establish a) ii), by part a) of Corollary 3.4, it remains to
show that every left ideal I of QF is the left annihilator of some finite
subset of QFE. Let J = ENI and choose QFE-generators ay, ... ,a; € J
of I. Define a map A : A — A’ by Aa) = (ai1(a),...,a(a)). For
a € J, find a nonzero integer m and 71, ... ,r; € e with ma = X!_ r;q4.
Therefore, a(ker \) = 0 and ker A C J* C ker(aq)N---Nker(oy) = ker \.
Since J is the annihilator of some subset of A, one has J = J** by
[10], and so J = (ker \)*. However, the quasi-flatness of A guarantees
that ker \/Sa(ker ) is torsion. Thus, J = V* where V = S, (ker A).
Choose f1,...,08s € Ha(V) which generate QH 4 (V) as a right QF-
module. This is possible since QH4(V) C QF and the latter is a
right Noetherian ring. Then W = X%_,5;F is a finitely generated
E-submodule of H4 (V') such that Ha(V)/W is torsion as an abelian
group. It remains to show that I is the left annihilator of 31,..., (s in

QE.

If @ € I, then ma € J for some nonzero integer m, and ma(V) = 0.
But this is only possible if mag; = 0 for all i = 1,... ,s. Conversely,
if B € QF satisfies 3; = 0 for all i, then there is a nonzero integer
k1 with k18 € e. Consequently, k15 € Ig(W) = lg(Ha(V)), and so
k18 € V* = J. This shows € I.

¢) = a). By [7, Theorem 3.1], it remains to show ii). Let I be a
right ideal of QE and ¢ : I — QF a QFE-module morphism. Choose
a finitely generated right ideal J of E with I = QJ. This is possible
in view of the fact that QF is right Noetherian. Since A is quasi-flat,
the first term in the sequence 0 — Tor ¥(E/J, A) N Ta(J) 5 Ta(E) is
torsion where ¢ : J — FE denotes the inclusion map. Because J is finitely
generated, there is a nonzero integer m such that m¢(J) C E. Thus
m¢ induces a map Ta(me) : Ta(J) — Ta(E). Since Tor £(E/J, A) is
torsion and Ty (E) is torsion-free, im A C ker T4 (m¢). Consequently,
Ta(mg) induces a map Ta(mep) : Ta(J)/inA — T4(E). By c)
one can find a nonzero integer | and a map A : T4(E) — Ta(E)
such that {Ta(m¢) = A where 7 : Ta(J)/imA — T4(E) is the
monomorphism induced by T4 (¢). If = denotes the projection of T4 (J)
onto Ty (J)/im A, then ¢ = 7w and Ty (m¢) = Ta(me)w. Consequently,
the F-module map § = (b;JlHA()\)ng : F — F has the property

6, = ¢ HaAWNHaTA()ps = ¢  Ha(\imr) = ¢ Ha(ITa(mo)m) s
= ¢ Ha(ITa(m@)) ¢ = lopp HaTa(me))ds] = l[mg].
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But § induces a QFE-module morphism 5 QF — QF such that
6 | E = 6. Observe that 6 | J = I[m¢] | J implies 6 | I = Img.
Since multiplication by Im is a central automorphism of QF, the map
(ml)~1§ is a QE-module morphism extending ¢. o

Corollary 3.6. The following are equivalent for a torsion-free group
of finite rank:

a) i) A-generated subgroups of A are QA-solvable.
ii) QFE is a self-injective ring.
b) 1) A is quasi-flat.

ii) An exact sequence 0 — B % G of torsion-free abelian groups of
finite rank such that B/Ra(B) is QA-solvable is quasi-A-cobalanced if
and only if a(Ra(B)) = a(B) N R4(G). O

While every quasi- A-cobalanced sequence 0 — B = G always satisfies
a(RA(B)) = a(B) N RA(G), the converse may fail if B/R4(B) is not
QA-solvable of finite A-rank as the next result shows. Therefore, the
finiteness condition on the A-rank of B/R 4(B) cannot be removed from
part c¢) of Theorem 3.5.

For an abelian group G, the symbol G* denotes the left E-module
Hom (G, A) while M* = Hom g (M, A) whenever M is a left E-module.
There is a natural map g : G — G** which is defined by [¢¢(9)](¢) =
@(g) for all g € G and ¢ € G*. If A is slender, ¢ p is an isomorphism if
P is an A-projective group of nonmeasurable cardinality.

Proposition 3.7. Let A be a slender torsion-free abelian group of
nonmeasurable cardinality. An exact sequence 0 — @ ,A — G exists
with Ra(G) = 0 which is not quasi-A-cobalanced.

Proof. Consider the right E-module QF which is the union of an
ascending chain {Up}n<, given by U, = {(1/n)E | 0 < n < w}.
Since each of these submodules is isomorphic to E, the module QF
has projective dimension 1.

We consider the free module F = @52, F with basis {e; | 0 < i < w}
and define epimorphism 7 : F — QE by w(e;)) = (1/i)14 for
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1 =1,2,.... If x = e;r1 +---+ eprp € kerw with ry,...,7r, €
E, then ¥ (1/il)r; = 0. Therefore, r, = —XI'_!(n!/il)r;, and
= X" ri(e; — (n!/il)ey,). Since m(e; — (n!/il)e,) = 0. Therefore,
rn = =20 n!/il)r; and = B (e, — (n!/il)e,). Since m(e; —

(n!/ile,) = 0, one obtains that P = kerw is countably generated.
But QFE has projective dimension 1, so P is projective, and there
exists a P’ with P ® P’ = ¢,FE. Consequently, an exact sequence
0 - P 2 P, - QF — 0 such that P, = @, A and P, is
projective. Applying T4 to this sequence induces the exact sequence

Tor f(QE, A) A Ta(Pr) Tal) Ta(P) — QA — 0. Since Ta(Py) is

A-projective, it is reduced; and im D = 0 because Tor ¥(QE, A) is
divisible. In particular, T4(c) is a monomorphism. Identifying @, A
with T4 (P1) and setting G = T4(P,), one obtains the exact sequence
0— @,A% G — QA — 0 in which a = Ta(0).

Assume that this sequence is quasi- A-cobalanced. It induces the exact
sequence 0 = (QA)* — G % (@,A)*—Ext (QA, A). Since Ext (QA, A)
is a torsion-free divisible group, and (®,A4)*/ima* is torsion, a* is
onto. Thus a* is an isomorphism, and a commutative diagram exists

00— (EBWA)** a™** G** 0
Zwl/)@wA ZANQL’G
0 SLA @ G QA 0

with exact rows in which g _ 4 and 1 are isomorphisms since @, A
and G are A-projective groups of nonmeasurable cardinality. It yields
QA = 0, which is not possible. O

REFERENCES

1. U. Albrecht, Abelian groups with self-injective endomorphism rings, Comm.
Algebra 15 (1987), 2451-2471.

2. , Faithful abelian groups of infinite rank, Proc. Amer. Math. Soc. 103
(1988), 21-26.

3. , On the quasi-splitting of exact sequences, J. Algebra 144 (1991),
344-358.

4 , Abelian groups and Baer’s lemma, Rocky Mountain J. Math. 22

(1992), 1227-1241.

5. , Extension functors on the category of A-solvable abelian groups,
Czechoslovak Math. J. 41 (1991), 685-694.




ABELIAN GROUPS 23

6. U. Albrecht and H.P. Goeters, Almost flat abelian groups, Rocky Mountain J.
Math. 25 (1995), 827-842.

7. , Flatness and the ring of quasi-endomorphisms, Quaestiones Math. 19
(1996), 379-396.

8. D.M. Arnold, Finite Rank Torsion-Free Abelian Groups and Rings, Lecture
Notes in Math. 931, Springer Verlag, Berlin-New York, 1982.

9. D.M. Arnold and E.L. Lady, Endomorphism rings and direct sums of torsion-
free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-236.

10. D.M. Arnold and C.E. Murley, Abelian groups, A, such that Hom (A, —)
preserves direct sums of copies of A, Pacific J. Math. 56 (1975), 7-20.

11. R. Baer, Abelian groups without elements of finite order, Duke Math. J. 3
(1937), 68-122.

12. R.A. Beaumont and R.J. Wisner, Rings with additive group which is torsion-
free of rank 2, Acta Sci. Math. (Szeged) 20 (1959), 105-116.

13. L. Fuchs, Infinite Abelian Groups, Vols. I and 11, Academic Press, New York-
London, 1970 and 1973.

14. R. Hunter, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc.
215 (1976), 81-98.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, AL 36849
E-mail address: albreuf@auburn.edu



