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ABELIAN GROUPS WITH SELF-INJECTIVE
QUASI-ENDOMORPHISM RINGS

ULRICH ALBRECHT

1. Introduction. One of the most important concepts in the
discussion of endomorphism rings of torsion-free abelian groups is
that of faithfulness. A left R-module A is fully faithful (faithful) if
M ⊗R A �= 0 for all (finitely generated) right R-modules M . It is easy
to see that a faithful module which is flat is fully faithful. On the other
hand, faithful modules exist which are not fully faithful: ⊕pZ/pZ where
the direct sum is taken over all primes is a faithful Z-module, but is
not fully faithful.

Abelian groups which are faithful or fully faithful as modules over
their endomorphism ring share some of the homological properties of
torsion-free groups of rank 1 which Baer discussed in 1937 in [11]. For
instance, a self-small abelian group A is (faithful) fully faithful as a
module over its endomorphism ring if and only if an exact sequence
0 → B

α→ G→ P → 0 splits if P is A-projective (of finite A-rank) and
G = SA(G) + α(B), for details, see [2] and [9]. Here P is A-projective
(of finite A-rank) if it is a direct summand of ⊕JA for some (finite)
index-set J , and SA(G) = Hom (A,G)A. The group A is self-small if,
for every index-set I and all α ∈ Hom (A,⊕IA) there is a finite subset
I ′ of I such that α(A) ⊆ ⊕I′A. For example, every torsion-free group
of finite rank is self-small, but self-small torsion-free groups of arbitrary
cardinality exist.

In this paper the concept of faithfulness is extended to the quasi-
category of torsion-free abelian groups: A torsion-free group A is said
to be quasi-fully faithful if QA = Q ⊗Z A is a fully faithful QE-
module where E = E(A) denotes the endomorphism ring of A and
QE = Q ⊗Z E is its quasi-endomorphism ring. Theorem 2.1 and
its corollaries give additional characterizations of quasi-fully faithful
groups. It is shown that every quasi-fully faithful group A has the
finite quasi-Baer-splitting property, i.e., an exact sequence 0 → B

α→
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G → P → 0 quasi-splits if P is a quasi-summand of an A-projective
group of finite A-rank and G .= SA(G) + α(B) [4]. The converse holds
if A is almost flat, Theorem 2.4, i.e., there is a nonzero integer m
such that mTor E

1 (M,A) = 0 for all right E-modules M (for details on
almost flatness, see [6]). This equivalence may fail if the almost flatness
of A is replaced by the weaker requirement that A is quasi-flat since
there is a torsion-free group A of rank 4 which is quasi-flat and has
the finite quasi-Baer-splitting property but is not quasi-fully faithful,
Example 2.6. Here A is quasi-flat, see [7], if Tor E

1 (M,A) is torsion for
all right E-modules M . Every torsion-free abelian group G arises as
a direct summand of a quasi-flat group since Z ⊕ G is flat and hence
quasi-flat.

Problem 84 in [13] seeks a characterization of the abelian groups
with self-injective endomorphism ring. Though one was given by the
author in [1], the only torsion-free groups in the class which arises as
an answer are divisible. However, asking the same question for quasi-
endomorphism rings instead of endomorphism rings results in a large
class of abelian groups which contains several well-known classes of
torsion-free groups of finite rank, e.g., the groups with a semi-simple
Artinian quasi-endomorphism ring. Section 3 addresses this quasi-
version of [13, Problem 84]. The results of Section 2 are used to give
several characterizations of the quasi-flat abelian groups of finite rank
whose quasi-endomorphism ring is self-injective, Theorem 3.5.

2. Quasi-fully faithful abelian groups. Associated with every
abelian group A is an adjoint pair (HA, TA) of functors between the
category of abelian groups and the category of right E-modules. These
functors are defined as HA(G) = Hom (A,G) and TA(M) = M ⊗E A
for all abelian groups G and all right E-modules M , and induce
natural maps θAG : TAHA(G) → G and φA

M : M → HATA(M) by
θAG(α ⊗ a) = α(a) and [φA

M (x)](a) = x ⊗ a for all a ∈ A, x ∈ M and
α ∈ HA(G). Usually, the superscripts referring to A are omitted. The
class of A-solvable groups arises as the largest full subcategory of the
category of abelian groups on which θG induces a natural equivalence
between TAHA and the identity functor. For instance, all A-projective
groups are A-solvable if A is self-small.

The concept of A-solvability is extended to the quasi-category of
abelian groups by calling an abelian group G is QA-solvable if the
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induced map QθG : QTAHA(G) → QG is an isomorphism. Be-
cause im θG = SA(G), the group G is QA-solvable if and only if
ker θG and G/SA(G) are torsion. Finally, an exact sequence 0 →
B

α→ C
β→ G → 0 of abelian groups is called quasi-A-balanced if

HA(G)/imHA(β) is torsion. In this case, C/[α(B) + SA(G)] is tor-
sion: For every c ∈ C, a nonzero integer k exists, elements a1, . . . , an
of A and maps φ1, . . . , φn ∈ HA(G) with kβ(c) =

∑n
i=1 φi(ai). Since

HA(G)/imHA(β) is torsion, one can choose a nonzero integer m and
maps ψ1, . . . , ψn ∈ HA(C) such that mφi = βψi for i = 1, . . . , n. Then
β(kmc) = β(

∑n
i=1 ψi(ai)), and kmc ∈ SA(C) + kerβ.

Since every QE-module M has a torsion-free divisible additive group,
Tor E

1 (M,QA/A) = 0 and M ⊗E [QA/A] = 0. Thus, M ⊗QE QA ∼=
TA(M). In particular, A is quasi-fully faithful if and only if TA(M) �= 0
for all nonzero right E-modules M whose additive group is torsion-free
divisible. The first result of this section discusses the relation between
quasi-full faithfulness and quasi-A-balanced sequences.

Theorem 2.1. The following conditions are equivalent for a self-
small torsion-free abelian group A:

a) A is quasi-fully faithful.

b) If M is a nonzero right E-module with a torsion-free additive
group, then TA(M) �= 0.

c) A right E-module M such that TA(M) is torsion is itself torsion
as an abelian group.

d) An exact sequence 0 → B
α→ C

β→ G → 0 such that G is QA-
solvable is quasi-A-balanced if and only if C/[α(B)+SA(C)] is torsion.

Proof. a) ⇒ b). Suppose that TA(M) = 0 for some right E-module M
whose additive group is torsion-free. The inclusion M ⊆ QM induces
the exact sequence TA(M) → TA(QM) → TA(QM/M) → 0. Since
TA(M) = 0, one has TA(QM) = 0. Hence, QM = 0 because of a), and
M = 0 too since M+ is torsion-free.

b) ⇒ c). Suppose that M is a right E-module such that TA(M)
is torsion. If the additive group of M is not torsion, then one may
assume that it is torsion-free. As before, an exact sequence TA(M) →
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TA(QM) → TA(QM/M) → 0 exists. Since the first and third term
are torsion groups, TA(QM) = 0, which is impossible by b) because
QM �= 0.

c) ⇒ d). Let G be a QA-solvable group, and consider an exact

sequence 0 → B
α→ C

β→ G → 0. If C/[SA(C) + α(B)] is torsion, let
M = imHA(β) ⊆ HA(G). The map θ : TA(M) → G which is defined
by θ(φ⊗ a) = φ(a) for all φ ∈M and a ∈ A fits into the commutative
diagram

TAHA(C) w

TAHA(β)

u

θC

w TA(M) w

u

θ

0

C w

β
G w 0.

Since coker (βθC) is torsion as an epimorphic image of the torsion group
C/[α(B) + SA(C)], the group coker θ has to be torsion. Moreover, θ
fits into the commutative diagram

TA(M) w

TA(ι)

u

θ

TAHA(G)

u

θG

w TA(HA(G)/M) w 0

G w
1G

G

where ι : M → HA(G) denotes the inclusion map. The Snake-Lemma
induces an exact sequence ker θG → TA(HA(G)/M) → coker θ in which
the first and third term are torsion. Therefore, TA(HA(G)/M) is
torsion. The same holds for the additive group of HA(G)/M by c);
and the given sequence is quasi-A-balanced.

d) ⇒ a). Let M be the right QE-module with TA(M) = 0. Consider

an exact sequence P α→ F
β→ M → 0 in which P and F are projective

E-modules. An application of the functor TA yields the exact sequence

0 → U → TA(P )
TA(α)→ TA(F ) → TA(M) = 0 for some suitable

subgroup U of TA(P ). The last sequence is quasi-A-balanced by d)
since TA(F ) is A-solvable in view of the self-smallness of A. It induces
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the top-row of the commutative diagram

HATA(P ) w

HATA(α)
HATA(F ) w T w 0

P

u

� φP

w
α F

u

� φF

w M w
φ

0

in which T is a right E-module whose additive group is torsion. The
induced map φ is an isomorphism by the 5-lemma. Hence, M+ is
torsion. Since M is a QE-module, M = 0.

The property of A to be quasi-fully faithful can be characterized in
terms of the right ideals of E if A is quasi-flat. As a reminder for
the reader, U∗ denotes the Z-purification of U in G whenever U is a
subgroup of a torsion-free group G.

Corollary 2.2. The following conditions are equivalent for a quasi-
flat torsion-free abelian group A:

a) A is quasi-fully faithful.

b) HA([IA]∗) = I∗ for all right ideals I of E.

c) If I is a right ideal of E such that A/IA is torsion, then E/I is
torsion as an abelian group.

Proof. a) ⇒ b). If I is a right ideal of E, then J = HA([IA]∗) is a
pure right ideal of E containing I∗. Let φ : E/I → E/J be the natural
projection. Since A is quasi-flat, the first term in the induced exact

sequence Tor E
1 (E/J,A) → TA(J/I) → TA(E/I)

TA(φ)→ TA(E/J) → 0 is
a torsion group. Moreover, the map TA(φ) fits into the commutative
diagram

0 w IA

u

ι

w A

u

1A

w TA(E/I)

u

TA(φ)

w 0

0 w JA w A w TA(E/J) w 0

in which ι is the inclusion map. By the Snake-Lemma, kerTA(φ) ∼=
JA/IA ⊆ IA∗/IA is a torsion group. Thus, TA(J/I) is torsion, and
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the same holds for the additive group of J/I by Theorem 2.1, which is
impossible unless J = I∗.

b) ⇒ c). If A/IA is torsion, I∗ = Hom (A, IA∗) = E.

c) ⇒ a). By Theorem 2.1, it suffices to show that a right E-
module M with a torsion-free additive group vanishes if TA(M) = 0.
For every x ∈ M , there is a right ideal I of E such that xE ∼=
E/I. Since A is quasi-flat, the first group in the exact sequence
Tor E

1 (M/xE,A) → TA(xE) → TA(M) = 0 is torsion. Therefore,
A/IA ∼= TA(E/I) ∼= TA(xE) is a torsion group. By c), E/I is torsion
as an abelian group. Since M has a torsion-free additive group, x = 0.

Corollary 2.3. Let A be a quasi-flat torsion-free abelian group.

a) If every right ideal of QE is the right annihilator of some subset
of QE, then A is quasi-fully faithful.

b) If A is strongly indecomposable and QE is a finite dimensional
Q-algebra, then A is quasi-fully faithful.

Proof. a) Consider a right ideal I of E and choose α ∈ HA(IA∗).
For every a ∈ A, there are a nonzero integer m, a1, . . . , an ∈ A and
β1, . . . , βn ∈ I such that mα(a) =

∑n
j=1 βj(aj). Since QI is the

right annihilator of some S ⊆ QE and QE/E is torsion as an abelian
group, QI actually is the right annihilator of a set S′ ⊆ E whose
elements are nonzero integer multiples of the elements of S. Thus,
mσα(a) =

∑n
j=1 σβj(aj) = 0 for all σ ∈ S′. This shows S′α = 0 and

α ∈ QI ∩ E = I∗. By Corollary 2.2, A is quasi-fully faithful.

b) Since QA is a finitely generated flat module over the local Artinian
ring QE, it is free. However, nonzero free modules are fully faithful
and so A is quasi-fully faithful.

In particular, A satisfies condition a) in the last corollary if it is a
quasi-flat torsion-free abelian group whose quasi-endomorphism ring is
a quasi-Frobenius ring, i.e., it is a right and left Artinian self-injective
ring.

A self-small abelian group A has the finite quasi-Baer splitting prop-
erty if and only if every finitely generated right E-module M such that
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TA(M) is bounded is itself bounded as an abelian group [4, Theorem
2.3]. Using this result it is easy to see that every quasi-fully faithful
group A has the finite quasi-Baer splitting property since a finitely gen-
erated module whose additive group is torsion has to be bounded. The
next result shows that the converse is true if A is almost flat:

Theorem 2.4. The following conditions are equivalent for a self-
small almost flat abelian group A:

a) A is quasi-fully faithful.

b) A has the finite quasi-Baer-splitting property.

c) The class of right E-modules M such that cokerφM is torsion is
closed with respect to submodules.

Proof. Throughout this proof, let m be a nonzero integer such that
mTor E

1 (−, A) = 0.

a) ⇒ c). Let M be a right E-module such that cokerφM is torsion as
an abelian group. Consider a submodule U of M , and assume that it
has already been shown that kerφM/U is torsion. The inclusion U ⊆M

induces an exact sequence 0 → U
α→ M

π→ M/U → 0 which gives

the exact sequence Tor E
1 (M/U,A) ∆→ TA(U)

TA(α)→ TA(M). Setting

V = im ∆ yields the exact sequence 0 → HA(V ) → HATA(U)
HATA(α)→

HATA(M) in which HA(V ) is bounded by m as an abelian group
since the same holds for V as an epimorphic image of the group
Tor E

1 (M/U,A).

For x ∈ HATA(U), there are y ∈ M and a nonzero integer k with
HATA(α)(kx) = φM (y) since φM has a torsion cokernel. Because of
the naturality of φ, one obtains

φM/Uπ(y) = HATA(π)φM (y) = HATA(πα)(kx) = 0.

Therefore, lπ(y) = 0 for some nonzero integer l since kerφM/U is
assumed to be torsion as an abelian group. Thus, write ly = α(u)
for some u ∈ U , and obtain lkHATA(α)(x) = lφM (y) = φMα(u) =
HATA(α)φU (u). Since kerHATA(α) is bounded by m, one has mlk =
mφU (u). Consequently, φU has a torsion cokernel.
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It remains to show that kerφM/U is torsion as an abelian group.

Consider an exact sequence 0 → W
σ→ F

δ→ M/U → 0 of right E-
modules in which F is free. It induces the exact sequence

0 → Tor E
1 (M/U,A) −→ TA(W )

TA(σ)−→ TA(F )
TA(δ)−→ TA(M/U) −→ 0.

If one sets K = imTA(σ) and denotes the inclusion K ⊆ TA(F )
by ι, then the previous sequence induces the exact sequences 0 →
Tor E

1 (M/U,A) → TA(W )
TA(σ)→ K → 0 and 0 → K

ι→ TA(F )
TA(δ)→

TA(M/U) → 0 such that TA(σ) = ιTA(σ). Since Tor E
1 (M/U,A) is

bounded, and K is torsion-free as a subgroup of the A-projective group
TA(F ), the first of these sequences splits. Consequently, HA(TA(σ)) is
onto, and TA(W ) ∼= K ⊕ T for some bounded group T . The second
sequence induces the top-row of the commutative diagram

0 w HA(K) w

HA(ι)
HATA(F ) w

HATA(δ)
HATA(M/U)

0 w W w
σ

u

φ

F

u

� φF

w
δ M/U

u

φM/U

w 0.

By the Snake-Lemma, kerφM/U
∼= cokerφ, and it suffices to show that

the latter is torsion.

To see this, observe that

HA(ι)φ = φFσ = HATA(σ)φW = HA(ι)HA(TA(σ))φW

yields φ = HA(TA(σ))φW . Since the map Ha(TA(σ)) is onto, cokerφ
is torsion once it has been established that cokerφW is torsion as an
abelian group.

Consider an exact sequence P λ→ W → 0 of right E-modules with P

projective. It induces an epimorphism TA(P )
TA(λ)→ TA(W ). Because

TA(W ) ∼= K ⊕ T , one obtains ker θTA(W )
∼= ker θK ⊕ ker θT . Since

T is bounded, the same holds for TAHA(T ), and ker θT is bounded.
Moreover, the commutative diagram

Tor E
1 (HATA(F )/HA(K), A) w

∆ TAHA(K)

u

θK

w

TAHA(ι)
TAHATA(F )

u

� θTA
(F )

0 w K w
ι TA(F )
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yields that ker θK = kerTAHA(ι) = im ∆ is bounded by m. Therefore,
TA(W ) is QA-solvable since SA(TA(W )) = TA(W ). By Theorem 2.1,

the sequence TA(P )
TA(λ)→ TA(W ) → 0 is quasi-A-balanced. There is a

right E-module T1 which is torsion as an abelian group and makes the
top row of the commutative diagram

HATA(P ) w

HATA(λ)
HATA(W ) w T1 w 0

P

u

� φP

w
λ W

u

φW

w 0

exact. Since λ is onto, cokerφW = cokerφWλ = cokerHATA(λ)φP =
cokerHATA(λ) ∼= T1 and φW has a torsion cokernel.

c) ⇒ b). Let M be a nonzero finitely generated right E-module
such that TA(M) is bounded. An exact sequence 0 → U

α→ F →
M → 0 of right E-modules where F is a finitely generated free module

induces the sequence 0 → Tor E
1 (M,A) → TA(U)

TA(α)→ TA(F ) →
TA(M) → 0 in which Tor E

1 (M,A) and TA(M) are bounded abelian
groups. Therefore, TA(α) and hence HATA(α) are quasi-isomorphisms.
There is a nonzero integer l such that lcokerHATA(α) = 0. One has
lφF (x) = HATA(α)(z) for some z ∈ HATA(U) whenever x ∈ F . By c),
φU has a torsion cokernel, and therefore, kz = φU (u) for some nonzero
integer k and u ∈ U . Thus, lkφF (x) = HATA(α)φU (u) = φFα(u) since
HATA(α)φU = φFα. Consequently, lkx = α(u) and M+ is torsion.
Since M is finitely generated, M+ is bounded.

b) ⇒ a). If A is not quasi-fully faithful, then there is a right E-module
M such that TA(M) torsion but tM �= M . No generality is lost, if one
assumes that the additive group ofM is torsion-free. An exact sequence
0 → M → QM of right E-modules exists, which induces the exact
sequence Tor E

1 ([QM ]/M,A) ∆→ TA(M) → TA(QM). Since TA(QM)
is torsion-free and divisible and TA(M) is torsion, ∆ is onto, and
TA(M) is bounded by m as an image of Tor E

1 ([QM ]/M,A). If U is a
finitely generated submodule of M , then the inclusion U ⊆M , induces
an exact sequence Tor E

1 (M/U,A) → TA(U) → TA(M) which yields
m2TA(U) = 0. Since A has the finite quasi-Baer splitting property, U
is bounded as an abelian group which is not possible.
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This section concludes with an example that the implication b) ⇒ a)
in the last theorem may fail if A is not almost flat:

Example 2.5. a) There exists a quasi-flat torsion-free abelian group
A of rank 4 which has the finite quasi-Baer-splitting property but is
not quasi-fully faithful.

b) There exists a quasi-flat quasi-fully faithful torsion-free group A
of rank 4 which is not almost flat.

Proof. Select subgroups X and Y of Q containing Z with the property
that 1 has height sequences (0, 1, 0, 1, . . . ) in X and (1, 0, 1, 0, 1, 0, . . . )
in Y . As in [12], choose an isomorphism θ : Q/X → Q/Y , and set
G = {(a, b) ∈ Q ⊕ Q | θ(a + X) = b + Y }. Since X ∼= X ⊕ {0} and
Y ∼= {0}⊕Y are pure in G, the typeset of G has at least three elements.
By [8, Theorem 3.3], E(G) ⊆ Q. Since G/(X ⊕ Y ) ∼= Q/Z, one can
find a subgroup H of G containing X ⊕ Y such that G/H ∼= Z(2∞)
(see also [6] and [7]). In the same way as for G, one shows E(H) ⊆ Q.
Since r2(H) = 2, one obtains Z2 ⊗ H ∼= Z2 ⊕ Z2. Therefore, the
group (f(H) +H)/H is finite for any f ∈ Hom (H,G). Consequently,
Hom (H,G) has rank 1.

Any homomorphism from H into G induces an endomorphism of X
since X is pure and fully invariant in G. Hence, Hom (H,G) ∼= Z
which implies that SH(G) .= H. In particular, G/SH(G) is an infinite
torsion group. On the other hand, Hom (G,H) = 0 since G is not
quasi-isomorphic to H.

a) By [4, Corollary 3.3], the group A = G ⊕H has the finite quasi-
Baer splitting property if SH(G) � .= G and SG(H) � .= H, and these
conditions are indeed satisfied.

The left ideal I = {α ∈ E | α(G) = 0} of E = E(A) is a two-
sided ideal since Hom (G,H) = 0 yields that G is fully invariant in A.
Furthermore, IA = IH ⊇ H ⊕Hom (H,G)H = H ⊕SH(G) yields that
A/IA is torsion as an image of the torsion group G/SH(G). On the
other hand, since E/I is nonzero and torsion-free, A is not quasi-fully
faithful by Theorem 2.1.

It remains to show that A is quasi-flat. By [7, Corollary 3.2] (Ulmer’s
theorem), it suffices to show that [kerφ]/SA(kerφ) is torsion for all
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maps φ ∈ Hom (An, A) and all n < ω. Consider a homomorphism
φ : U ⊕ V → A where U ∼= Gn and V ∼= Hn for some n < ω. Set
K = kerφ, and observe that U contains a subgroup U ′ ∼= Hn such that
U/U ′ is torsion. Moreover, φ(U ′⊕V ) ⊆ SH(G⊕H) = SH(G)⊕H. Since
SH(G) .= H, one obtains that φ(U ′⊕V ) is isomorphic to a subgroup of
H ⊕H. Because of E(H) ⊆ Q, one has SA(K) ⊇ SH(K ∩ [U ′ ⊕ V ]) =
K ∩ [U ′ ⊕ V ]. Consequently, K/SA(K) is an epimorphic image of
K/(K∩ [U ′⊕V ]) ∼= (K+[U ′⊕V ])/[U ′⊕V ] ⊆ (U⊕V )/(U ′⊕V ). Since
the latter group is torsion, K/SA(K) is torsion.

b) On the other hand, if the exact sequence 0 → G → A → H → 0
represents an element of infinite order of Ext (H,G), then it was shown
in [6] and [7] that A is strongly indecomposable, quasi-flat group which
is not almost flat. Because of part a) of Corollary 2.3, A is quasi-fully
faithful.

Interestingly, 4 is the smallest rank for which a quasi-flat group A
of finite rank exists which has the finite quasi-Baer splitting property
but is not quasi-fully faithful. By [7, Theorem 4.3], every quasi-flat
torsion-free group A of rank at most 3 is quasi-isomorphic to a group
which is flat as a module over its endomorphism ring. By [6, Corollary
2.5], A is almost flat. Therefore, A has the finite quasi-Baer splitting
property if and only if A is quasi-fully faithful.

3. Annihilator conditions. Write rR(S) and lR(S) for the right
and left annihilator of a subset S of a ring R, respectively. A right and
left Noetherian ring R is a quasi-Frobenius ring if and only if every
right (left) ideal of R is the right (left) annihilator of a finite subset
of R. It is the goal of this section to study torsion-free abelian groups
whose quasi-endomorphism rings satisfy one (both) of these annihilator
conditions.

Lemma 3.1. The following are equivalent for a torsion-free abelian
group A:

a) Every right ideal of QE is the right annihilator of a subset of QE.

b) rElE(I)/I is Z-torsion for all right ideals I of E.
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Proof. a) ⇒ b). Let I be a right ideal of E whose Z-purification in E
is denoted by I∗. If S is a subset of QE with QI∗ = rQE(S), then no
generality is lost if one assumes S ⊆ E. Then, rE(S) = rQE(S) ∩ E =
QI∗ ∩E = I∗. Thus, rElE(I)/I = rElE(I∗)/I = I∗/I is torsion.

b) ⇒ a). Observe that rElE(I) = I for all pure right ideals I of E
because of b). If J is any right ideal of QE, then lQE(J) = lQE(J ∩E)
since J/J∩E is torsion. But then, J = rQE(lE(J∩E)) ⊇ rQElQE(J) ⊇
J .

A torsion-free group G such that G/SA(G) is torsion has finite A-
rank if every descending chain U0 ⊇ U1 ⊇ · · · of pure subgroups of G
such that Un/SA(Un) is torsion for all n < ω has finite length. If A has
finite rank, then a torsion-free group G such that G/SA(G) is torsion
has finite A-rank if and only if G has finite rank.

Theorem 3.2. Let A be a quasi-flat, quasi-fully faithful torsion-free
abelian group whose quasi-endomorphism ring is right Artinian.

a) The following conditions are equivalent for a torsion-free QA-
solvable group G:

i) G has finite A-rank.

ii) QHA(G) is a finitely generated right QE-module.

iii) G contains a finitely A-generated subgroup U such that G/U is
torsion.

b) Let G be a torsion-free abelian group. Then G = G/RA(G) is
a QA-solvable group of finite A-rank if and only if the following two
conditions are satisfied

i) G/SA(G) is torsion.

ii) For every homomorphism σ : G → AI , there is a finite subset J
of I such that kerσ = kerπJσ where πJ : AI → AJ is the projection
with kernel AI\J .

Proof. i) ⇒ ii). Since QE is a right Artinian ring, QHA(G) is finitely
generated if and only if it is Artinian. Consider submodules U1 and
U2 of QHA(G) such that U1 is a proper submodule of U2. The Z-
pure E-submodules V1 = U1 ∩HA(G) ⊆ U2 ∩HA(G) = V2 of HA(G)



ABELIAN GROUPS 13

satisfy V1 �= V2 since QVi = Ui for i = 1, 2. The inclusion maps
i1 : V1 → HA(G), i2 : V2 → HA(G) and ι : V1 → V2 induce the
commutative diagram

Tor E
1 (V2/V1, A)

u

Tor E
1 (HA(G)/V1, A) w

∆1 TA(V1)

u

TA(ι)

w

TA(ι1)
TAHA(G)

u

1TAHA(G)

Tor E
1 (HA(G)/V2, A) w

∆2 TA(V2)

u

w

TA(ι2)
TAHA(G)

TA(V2/V1).

Since V2/V1 is torsion-free, TA(V2/V1) cannot be torsion by Theo-
rem 2.1 because A is quasi-fully faithful. Thus, one can choose an
element x of TA(V2) such that Zx∩imTA(ι) = 0. ThenmθGTA(ι2)(x) /∈
im θGTA(ι1) for all nonzero integers m. Otherwise, there is y ∈ TA(V1)
such that θGTA(ι2)(mx) = θGTA(ι1)(y) = θGTA(ι2ι)(y). Since ker θG
is torsion, there is a nonzero integer k such that TA(ι2)(kmx) =
Ta(ι2)TA(ι)(ky). Consequently, kmx−TA(ι)(ky) ∈ kerTA(ι2) = im ∆2

which is torsion since A is quasi-flat. There is a nonzero integer l
with lkmx = TA(ι)(lky) which is not possible in view of the choice of
x. Setting Wi = [θGTA(ιi)](TA(Vi)) for i = 1, 2 defines A-generated
subgroups of G such that W1 ⊂ W2 but W2/W1 is not torsion as an
abelian group. Consequently, (W1)∗ is a proper subgroup of (W2)∗,
and (Wi)∗/SA((Wi)∗) is torsion for i = 1, 2.

Therefore, a strictly descending chain of QE-submodules of QHA(G)
which has infinite length induces a strictly descending chain {Xn | n <
ω} of pure subgroups of G such that Xn/SA(Xn) is torsion which is
not possible by i).

ii) ⇒ iii). Since QHA(G) is finitely generated, an exact sequence
QEn π→ QHA(G) → 0 exists. But [π(En) + HA(G)]/HA(G) is a
finitely generated E-module whose additive group is torsion, so there
is a nonzero integer m such that V = mπ(En) ⊆ HA(G). An
application of TA to the inclusion map ι : V → HA(G) yields the
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exact sequence TA(V )
TA(ι)→ TAHA(G) → TA(HA(G)/V ) → 0. Then

U = θGTA(ι)(TA(V )) is a finitely A-generated subgroup of G such that
G/U is torsion.

iii) ⇒ i). Suppose that it has already been shown that QHA(G)
is an Artinian QE-module. Consider a descending chain U0 ⊇ U1 ⊇
· · · of pure subgroups of G such that Un/SA(Un) is torsion for all
n < ω. The submodules {Vn = HA(Un) | n < ω} of HA(G) form
a descending chain of submodules of HA(G) such that HA(G)/Vn is
torsion-free. Since SA(Un) = VnA, one obtains Vn = Vn+1 if and only
if SA(Un) = SA(Un+1). But Un = SA(Un)∗ yields Vn = Vn+1 if and
only if Un = Un+1. Because QHA(G) is an Artinian QE-module, an
index m exists such that QVn = QVm for all m ≤ n < ω. Then
Un = Um for all those n since Vn = QVn ∩HA(G).

It remains to show that QHA(G) is Artinian. Since QE is a right
Artinian ring, it suffices to establish that QHA(G) is finitely generated.
Choose a finitely A-generated subgroup H of G such that G/U is
torsion, and consider the induced exact sequence 0 → U → G

π→
G/U → 0. It induces the exact sequence 0 → HA(U) → HA(G)

HA(π)→
M → 0 where M = imHA(π) is a submodule of HA(G/U). The latter
yields the top row of the commutative diagram

TAHA(U)

u

θU

w TAHA(G)

u

θG

w

TAHA(π)
TA(M)

u

θ

w 0

0 w U w G w
π G/U w 0

Since SA(U) = U , the Snake-Lemma gives the exact sequence ker θG →
ker θ → 0 whose first term is a torsion group because G is QA-solvable.
Therefore, TA(M) is torsion. In view of the fact that A is quasi-fully
faithful, M is torsion as an abelian group by Theorem 2.1. Then
QHA(G) = QHA(U).

By [7, Corollary 3.2], U is a QA-solvable abelian group. Since U is
finitely A-generated, an exact sequence 0 → W → An → U → 0 exists
for some n < ω. By Theorem 2.1, this sequence is quasi-A-balanced
and induces an exact sequence 0 → HA(W ) → HA(An) → HA(U) →
T → 0 in which T is a right E-module whose additive group is torsion.
An application of the exact function Q⊗Z shows that QHA(U) is a
finitely generated QE-module.
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b) Suppose that G = G/RA(G) is a QA-solvable group of finite A-
rank. Let U = kerσ. Since RA(G/U) = 0, one can find an index set
I and a homomorphism σ : G → AI with kerσ = U . Suppose that
ker(πJσ) �= U whenever J is a finite subset of I. There is a sequence
{in | n < ω} of indices in I such that Un = ∩n

j=0 kerπij contains
Un+1 as a proper subgroup. Since Un = Un/RA(G) is the kernel of a
map from G into An+1, one obtains Un/SA(Un) is torsion because A is
quasi-flat and G is QA-solvable. But this contradicts the fact that G
has finite A-rank. Therefore, there is a finite subset J of I such that
ker(πJσ) = U .

Conversely, there is a homomorphism σ : G→ AI for some index-set
I such that RA(G) = kerσ. Choose a finite subset J of I such that
RA(G) = kerπJσ. Therefore, G is isomorphic to a subgroup of An

for some n < ω and is QA-solvable by [7, Corollary 3.2]. Moreover,
QHA(G) is a finitely generated QE-module since it is isomorphic to a
submodule of the finitely generated module QHA(An) and QE is right
Artinian.

Corollary 3.3. Let A be a quasi-flat torsion-free abelian group
such that QE has the ACC for right and left annihilators. For every
homomorphism σ : A → AI , there is a finite subset J of I such that
kerσ = kerπJσ.

Proof. If G is chosen to be A in the proof of part b) of Theorem 3.2,
then the arguments used there construct a strictly descending chain of
right annihilators in QE which gives rise to a strictly ascending chain
of left annihilators, which is impossible. Now continue as in the proof
of part b) of Theorem 3.2 observing that the fact that A is quasi-fully
faithful is not used in the arguments which are relevant for the proof
of this corollary.

Corollary 3.4. Let A be a torsion-free abelian group which is quasi-
flat.

a) The following conditions are equivalent if QE is right and left
Noetherian:

i) Every right ideal of QE is the right annihilator of a finite subset
of QE.
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ii) A is a quasi-fully faithful group such that every pure subgroup U
of A for which U/SA(U) is torsion satisfies RA(A/U) = 0.

b) Suppose that QE is a right Artinian ring such that lErE(I)/I is
torsion for all left ideals I of E. If P is isomorphic to an A-projective
group of finite A-rank, then an exact sequence 0 → P

α→ G of torsion-
free groups quasi-splits if and only if RA(G) ∩ α(P ) = 0.

Proof. a) i) ⇒ ii). Observe that A is quasi-fully faithful by Corollary
2.3. If U is a pure subgroup of A such that U/SA(U) is torsion,
then HA(U) is a pure right ideal of E for which α1, . . . , αt ∈ E
with QHA(U) = rQE(α1, . . . , αt). Define a map λ : A → At by
λ(a) = (α1(a), . . . , αt(a)). To show ii), it is enough to verify that
U is the kernel of λ.

Consider u ∈ U . Since U/SA(U) is torsion, one can find a nonzero
integer k, maps φ1, . . . , φs ∈ HA(U) and a1, . . . , as ∈ A such that
ku = Σs

j=1φj(aj). Then kαi(u) = Σs
j=1αiφj(aj) = 0, and U ⊆ kerλ. If

β ∈ HA(kerλ), then αiβ = 0 yields β ∈ rQE(α1, . . . , αt)∩E = HA(U).
Therefore, SA(kerλ) ⊆ U . The quasi-flatness of A guarantees that the
group ker /SA(kerλ) is torsion [7, Theorem 3.1], and so U = kerλ.

ii) ⇒ i). Let I be a right ideal of E, and set U = (I∗A)∗. Because
of c), RA(A/U) = 0. By Corollary 3.3, there is a finite set T such
that A/U is isomorphic to a subgroup of AT . Consequently, there
are β1, . . . , βn ∈ E with the property that U = ∩n

j=1 kerβj . If
α ∈ I∗, then α(A) ⊆ U , and so βiα = 0 for i = 1, . . . , n. Thus,
I∗ ⊆ rQE(β1, . . . , βn). Conversely, if φ ∈ rQE(β1, . . . , βn) ∩ E, then
φ(A) ⊆ ∩n

i=1 kerβi = U and φ ∈ HA(U) = I∗ since A is quasi-
flat. Therefore, I∗ = rQE(β1, . . . , βn) ∩ E. Hence, QI = QI∗ =
rQE(β1, . . . , βn).

b) Let I be a proper left ideal of QE such that rQE(I) = 0. Then
rE(I ∩E) = 0 and E = lErE(I ∩ E) = I ∩E since I ∩E is pure in E.
But this is not possible since I is proper. By [3, Theorem 2.3], every
exact sequence 0 → P → F such that F is a quasi-summand of an
A-projective group of finite A-rank quasi-splits.

Now consider an exact sequence 0 → P
α→ G in which α(P )∩RA(G) =

0. Since G/RA(G) is isomorphic to a subgroup of AI for some index-set
I, one may assume that G = A∗I. By Theorem 3.2, there is a finite
subset J of I such that πJα is a monomorphism where πJ : AI → AJ is
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the projection with kernel AI\J . By the result of the first paragraph,
πJα quasi-splits; and so does α.

The main result of this section gives two characterizations of the
quasi-flat torsion-free groups of finite rank whose quasi-endomorphism
ring is quasi-Frobenius. To formulate one of these easier, call a sequence
0 → B

α→ G quasi-A-cobalanced if, for every φ ∈ HA(B), there is
a nonzero integer m and a map ψ ∈ Hom (G,A) with ψ|B = mφ.
Moreover, if X is a subset of an abelian group A, then X∗ = {α ∈ E |
α(X) = 0}, while S∗ = {a ∈ A | Sa = 0} if S is a subset of E [10].

Theorem 3.5. The following are equivalent for a quasi-flat torsion-
free abelian group A such that QE is right and left Noetherian.

a) i) Every A-generated subgroup of A is QA-solvable.

ii) QE is a quasi-Frobenius ring.

b) i) A is quasi-fully faithful.

ii) If U is a pure subgroup of An for some n < ω, then U/SA(U) is
torsion if and only if RA(A/U) = 0.

iii) If I is a pure left ideal of E, then I = X∗ for some subset X of
A.

c) i) A is quasi-flat.

ii) An exact sequence 0 → B
α→ G such that B/RA(B) is QA-

solvable and has finite A-rank is quasi-A-cobalanced if and only if
α(RA(B)) = α(B) ∩RA(G).

Proof. a) ⇒ b) and c). In order to show c) i), it suffices to ver-
ify that Tor E

1 (E/I,A) is torsion for all right ideals I of E. Since
QE is a quasi-Frobenius ring, QI is the right annihilator of a finite
subset {α1, . . . , αn} of QE. The fact that QE/E is torsion allows
to assume {α1, . . . , αn} ⊆ E. Observe that I ⊆ rE(α1, . . . , αn) and
re(α1, . . . , αn)/I is torsion. Define a map λ : A → An by λ(a) =
(α1(a), . . . , αn(a)) whose kernel is denoted by K. Then HA(K) =
rE(α1, . . . , αn), and the exact sequence 0 → HA(K)/I → E/I →
E/HA(K) → 0 induces Tor E

1 (HA(K)/I,A) → Tor E
1 (E/I,A) →

Tor E
1 (E/HA(K), A) in which the first term is a torsion group. There-
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fore, it is enough to show that the last term has this property, too. For
this we consider the commutative diagram

0 w Tor E
1 (HA(A)/HA(K), A) w TAHA(K)

u

θK

w TAHA(A)

u

� θA

0 w ker λ w A

which yields Tor E
1 (HA(A)/HA(K)) ∼= ker θK . But ker θK = ker θSA(K),

and the latter is torsion by a).

The first step in the proof of c) ii) is to assume that G = An

for some n < ω. The exact sequence 0 → B
α→ An induces an

exact sequence 0 → QHA(B)
QHA(α)→ QHA(An) of right QE-modules.

There is a map ψ : QHA(An) → QE with ψQHA(α) = QHA(φ)
since QE is self-injective. Choose a nonzero integer m such that
mψ(HA(An)) ⊆ E. Then mψHA(α) = HA(mφ). Apply TA to obtain
TA(mψ)TAHA(α) = TAHA(mφ). Then

mφθB = θATAHA(mφ) = θATA(mψ)TAHA(α) = θATA(mψ)θ−1
A αθB.

Since B = SA(B)∗ is torsion, mφ = θATA(mψθ−1
A α).

For the general case, consider an exact sequence 0 → B
α→ G such

that B = B/RA(B) is a QA-solvable group of finite A-rank and
α(RA(B)) = α(B) ∩ RA(G). This sequence induces the sequence
0 → B

ᾱ→ G where G = G/RA(G). Let σ : G → AI be any
monomorphism. By Theorem 3.2, I may be chosen to be finite since
quasi-Frobenius rings are right and left Artinian. Observe that A is
quasi-fully faithful because of the already established equivalence in
Corollary 3.4 a). Every map φ : B → A induces a map φ̄ : B → A. By
the first part of this proof, there are a map ψ : AI → A and a nonzero
integer m such that mφ̄ = ψσᾱ. If π : B → B is the projection map,
then ᾱπ = α and φ̄π = φ. Thus, ψσα = mφ.

Conversely, assume that 0 → B
α→ G is quasi-A-cobalanced. Since

α(RA(B)) ⊂ RA(G), consider b ∈ B such that α(b) ∈ RA(G)). If
φ ∈ Hom (B,A), then there are a nonzero integer m and a map
ψ ∈ Hom (G,A) such that mφ = ψα. Then mφ(b) = ψα(b) = 0,
and b ∈ RA(B).
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To verify b) it remains to show ii) and iii) because of Corollary 3.4.
For the former, consider a pure subgroup U of An for some n < ω.
If RA(A/U) = 0, then there is a map α : An → AI for some index-
set I with kerα = U . Since QE is right and left Noetherian, I may
be chosen to be finite by Corollary 3.3. Hence, U is the kernel of
a homomorphism between the A-solvable groups An and AI . By [7,
Theorem 3.1], U/SA(U) is torsion since A is quasi-flat.

Conversely, assume that U/SA(U) is torsion and observe that the
inclusion U ⊆ An induces an exact sequence 0 → HA(U) → HA(An) →
M → 0 where M is submodule of HA(An/U). Since U is pure in
An, the additive group of M is torsion-free. Furthermore, QM is
isomorphic to a submodule of QEm for some m < ω since finitely
generated modules over a quasi-Frobenius ring are reflexive. If this
embedding is denoted by α, then one can find a nonzero integer k such
that kα(A) ⊆ Em. The monomorphism kα induces the exact sequence

0 → Tor E
1 (Em/kα(M)) ∆→ TA(M)

TA(kα)→ TA(Em). Since A is quasi-
flat, and TA(Em) is torsion-free, tTA(M) = im ∆, and TA(M)/tTA(M)
is isomorphic to a subgroup of Am. Consider the induced diagram

TAHA(U)

u

θU

w TAHA(An)

u

� θAn

w TA(M)

u

θ

w 0

0 w U w An
w An/U w 0

in which the induced map θ is an epimorphism whose kernel is torsion
by the Snake-Lemma since U/SA(U) is torsion. But the fact that An/U
is torsion-free yields ker θ = tTA(M). Thus An/U ∼= TA(M)/tTA(M)
is isomorphic to a subgroup of Am.

For the proof of iii), consider a pure left ideal I of E and choose
β1, . . . , βs ∈ E such that QI = lQE(β1, . . . , βs). In particular, Iβi = 0
for i = 1, . . . , n. If γ ∈ E satisfies γ(βa(A) + · · · + βs(A)) = 0, then
γ ∈ QI ∩ E = I by the Z-purity of I in E.

b) ⇒ a). Observe that the kernel of every map α : An → A satisfies
RA(An/ kerα) = 0. Thus, kerα/SA(kerα) is torsion by b ii) and A
is quasi-flat by [7, Corollary 3.1]. An application of [7, Theorem 3.1]
yields that the class of torsion-free QA-solvable groups is closed with
respect to A-generated subgroups. This shows a) i).
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In order to establish a) ii), by part a) of Corollary 3.4, it remains to
show that every left ideal I of QE is the left annihilator of some finite
subset of QE. Let J = E∩I and choose QE-generators α1, . . . , αt ∈ J
of I. Define a map λ : A → At by λ(a) = (α1(a), . . . , αt(a)). For
α ∈ J , find a nonzero integer m and r1, . . . , rt ∈ e with mα = Σt

i=1riαi.
Therefore, α(kerλ) = 0 and kerλ ⊆ J∗ ⊆ ker(α1)∩· · ·∩ker(αt) = kerλ.
Since J is the annihilator of some subset of A, one has J = J∗∗ by
[10], and so J = (kerλ)∗. However, the quasi-flatness of A guarantees
that kerλ/SA(kerλ) is torsion. Thus, J = V ∗ where V = SA(kerλ).
Choose β1, . . . , βs ∈ HA(V ) which generate QHA(V ) as a right QE-
module. This is possible since QHA(V ) ⊆ QE and the latter is a
right Noetherian ring. Then W = Σs

j=1βiE is a finitely generated
E-submodule of HA(V ) such that HA(V )/W is torsion as an abelian
group. It remains to show that I is the left annihilator of β1, . . . , βs in
QE.

If α ∈ I, then mα ∈ J for some nonzero integer m, and mα(V ) = 0.
But this is only possible if mαβi = 0 for all i = 1, . . . , s. Conversely,
if β ∈ QE satisfies ββi = 0 for all i, then there is a nonzero integer
k1 with k1β ∈ e. Consequently, k1β ∈ lE(W ) = lE(HA(V )), and so
k1β ∈ V ∗ = J . This shows β ∈ I.

c) ⇒ a). By [7, Theorem 3.1], it remains to show ii). Let I be a
right ideal of QE and φ : I → QE a QE-module morphism. Choose
a finitely generated right ideal J of E with I = QJ . This is possible
in view of the fact that QE is right Noetherian. Since A is quasi-flat,
the first term in the sequence 0 → Tor E

1 (E/J,A) ∆→ TA(J) ι→ TA(E) is
torsion where ι : J → E denotes the inclusion map. Because J is finitely
generated, there is a nonzero integer m such that mφ(J) ⊆ E. Thus
mφ induces a map TA(mφ) : TA(J) → TA(E). Since Tor E

1 (E/J,A) is
torsion and TA(E) is torsion-free, im ∆ ⊆ kerTA(mφ). Consequently,
TA(mφ) induces a map TA(mφ) : TA(J)/im ∆ → TA(E). By c)
one can find a nonzero integer l and a map λ : TA(E) → TA(E)
such that lTA(mφ) = λῑ where ῑ : TA(J)/im ∆ → TA(E) is the
monomorphism induced by TA(ι). If π denotes the projection of TA(J)
onto TA(J)/im ∆, then ι = ῑπ and TA(mφ) = TA(mφ)π. Consequently,
the E-module map δ = φ−1

E HA(λ)φE : E → E has the property

δι = φ−1
E HA(λ)HATA(ι)φJ = φ−1

E HA(λῑπ) = φ−1
E HA(lTA(mφ)π)φJ

= φ−1
E HA(lTA(mφ))φJ = l[φ−1

E HATA(mφ))φJ ] = l[mφ].
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But δ induces a QE-module morphism δ̃ : QE → QE such that
δ̃ | E = δ. Observe that δ̃ | J = l[mφ] | J implies δ̃ | I = lmφ.
Since multiplication by lm is a central automorphism of QE, the map
(ml)−1δ̃ is a QE-module morphism extending φ.

Corollary 3.6. The following are equivalent for a torsion-free group
of finite rank:

a) i) A-generated subgroups of A are QA-solvable.

ii) QE is a self-injective ring.

b) i) A is quasi-flat.

ii) An exact sequence 0 → B
α→ G of torsion-free abelian groups of

finite rank such that B/RA(B) is QA-solvable is quasi-A-cobalanced if
and only if α(RA(B)) = α(B) ∩RA(G).

While every quasi-A-cobalanced sequence 0 → B
α→ G always satisfies

α(RA(B)) = α(B) ∩ RA(G), the converse may fail if B/RA(B) is not
QA-solvable of finite A-rank as the next result shows. Therefore, the
finiteness condition on the A-rank of B/RA(B) cannot be removed from
part c) of Theorem 3.5.

For an abelian group G, the symbol G∗ denotes the left E-module
Hom (G,A) while M∗ = Hom E(M,A) whenever M is a left E-module.
There is a natural map ψG : G→ G∗∗ which is defined by [ψG(g)](φ) =
φ(g) for all g ∈ G and φ ∈ G∗. If A is slender, ψP is an isomorphism if
P is an A-projective group of nonmeasurable cardinality.

Proposition 3.7. Let A be a slender torsion-free abelian group of
nonmeasurable cardinality. An exact sequence 0 → ⊕ωA → G exists
with RA(G) = 0 which is not quasi-A-cobalanced.

Proof. Consider the right E-module QE which is the union of an
ascending chain {Un}n<ω given by Un = {(1/n!)E | 0 < n < ω}.
Since each of these submodules is isomorphic to E, the module QE
has projective dimension 1.

We consider the free module F = ⊕∞
i=1E with basis {ei | 0 < i < ω}

and define epimorphism π : F → QE by π(ei) = (1/i!)1A for
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i = 1, 2, . . . . If x = e1r1 + · · · + enrn ∈ kerπ with r1, . . . , rn ∈
E, then Σn

i=1(1/i!)ri = 0. Therefore, rn = −Σn−1
i=1 (n!/i!)ri, and

x = Σn−1
i=1 ri(ei − (n!/i!)en). Since π(ei − (n!/i!)en) = 0. Therefore,

rn = −Σn−1
i=1 (n!/i!)ri and x = Σn−1

i=1 ri(ei − (n!/i!)en). Since π(ei −
(n!/i!)en) = 0, one obtains that P = kerπ is countably generated.
But QE has projective dimension 1, so P is projective, and there
exists a P ′ with P ⊕ P ′ ∼= ⊕ωE. Consequently, an exact sequence
0 → P1

σ→ P2 → QE → 0 such that P1
∼= ⊕ωA and P2 is

projective. Applying TA to this sequence induces the exact sequence

Tor E
1 (QE,A) ∆→ TA(P1)

TA(σ)→ TA(P2) → QA → 0. Since TA(P1) is
A-projective, it is reduced; and imD = 0 because Tor E

1 (QE,A) is
divisible. In particular, TA(σ) is a monomorphism. Identifying ⊕ωA
with TA(P1) and setting G = TA(P2), one obtains the exact sequence
0 → ⊕ωA

α→ G→ QA→ 0 in which α = TA(σ).

Assume that this sequence is quasi-A-cobalanced. It induces the exact
sequence 0 = (QA)∗ → G

α∗→ (⊕ωA)∗−Ext (QA,A). Since Ext (QA,A)
is a torsion-free divisible group, and (⊕ωA)∗/imα∗ is torsion, α∗ is
onto. Thus α∗ is an isomorphism, and a commutative diagram exists

0 w (⊕ωA)∗∗ w
α∗∗

G∗∗
w 0

0 w ⊕ωA

u

� ψ⊕ωA

w
α G

u

� ψG

w QA w 0
with exact rows in which ψ⊕ωA and ψG are isomorphisms since ⊕ωA
and G are A-projective groups of nonmeasurable cardinality. It yields
QA = 0, which is not possible.
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