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ALGEBRA OF DIFFERENTIAL FORMS WITH
EXTERIOR DIFFERENTIAL d3 = 0
IN DIMENSIONS ONE AND TWO

N. BAZUNOVA

ABSTRACT. In this paper, we construct the algebra of
differential forms with exterior differential satisfying d3 =
0 over an associative algebra with one and n generators
satisfying quadratic relations. Supposing d2 �= 0, we introduce
the second order differentials d2xi. We also assume that the
homomorphism defining a first order differential calculus is
linear in variables, and that there are no relations between the
terms (dxi)2 and d2xj . A graded q-differential algebra with
d3 = 0 is constructed by means of the Wess-Zumino method.
The commutation relations between generators xi, dxj , d2xk

of the algebra of differential forms in pairs and themselves
are found. In the case of the algebra with n generators, the
commutation relations between noncommutataive derivatives
∂i and generators d2xj also are found, and the consistency
conditions are described.

1. Introduction. An idea to generalize the classical exterior
differential calculus with d2 = 0 to the case dN = 0, N > 2, arises
in a recent series of papers [2 4, 6], where the different approaches to
this idea are developed, and these generalizations have been proposed
and studied. In the paper [5] such a generalization is provided by
the notion of graded q-differential algebra which is, according to the
definition given in [2], an associative unital N-graded algebra endowed
with a linear endomorphism d (q-differential) of degree 1 satisfying
dN = 0 and the graded q-Leibniz rule

(1) d(ωτ ) = d(ω)τ + qgr(ω)ω d(τ ),

where ω, τ are arbitrary elements of the algebra; gr(ω) is the grade of
an element ω; q is a primitive cubic root of unity.

In the paper [5], a q-differential calculus with d3 = 0 is constructed
on a classical smooth n-dimensional manifold. We construct the q-
differential calculus on an associative algebra generated by one variable
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x and on an associative algebra generated by n variables x1, x2, . . . , xn

satisfying quadratic relations xixj = Bij
klx

kxl, i, j, k, l = 1, . . . , n. Thus
we deal with noncommutative geometry.

For construction of generalized differential calculus with d3 = 0, we
apply the Wess-Zumino method [8]. Assuming that d2 �= 0, we have
to introduce the second order differentials d2xi. Supposing that there
are no relations between the terms (dxi)2 and d2xi and differentiating
the commutation relations relating the right and left structures of a bi-
module of first order differential forms AMA, we get the commutation
relations between xi and d2xj , and between dxk. The assumed and
obtained commutation relations completely determine a multiplication
law of the constructed algebra. Furthermore, in the case of algebra with
quadratic relations, diffrentiating the commutation relations between
dxi and differentiating three times the quadratic relations between gen-
erators xi, we obtain the Wess-Zumino-like consistency conditions. The
Yang-Baxter equation appears as a solution of the obtained quadratic
consistency conditions [8].

In Section 2, we consider the case of an algebra with one generator
and show that in this case we can construct the two different graded
q-differential algebras with d3 = 0.

In Section 3, we consider the case where the homomorphism ξ defining
a first order differential calculus is linear in variables. Our construction
of an exterior differential calculus with d3 = 0 naturally includes the
exterior calculus on the quantum plane, with d2 = 0, obtained by Wess
and Zumino in [8].

2. Algebra of differential forms in dimension one. In this
section, we construct a graded q-differential algebra with exterior
differential d satisfying d3 = 0 over an associative algebra with one
generator. Let A be the associative unital algebra generated by one
variable x. An arbitrary element of A is a polynomial in x of some
degree p, p ∈ N

(2) f = α0 + α1x
1 + · · ·+ αpx

p, α0, α1, . . . , αp ∈ C.

Let AMA be the bimodule freely generated as a right module by the
differential dx, i.e., every form ω ∈ AMA has a unique representation
ω = dxh, h ∈ A. Let d : A → AMA be a linear map satisfying the
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ordinary Leibniz rule

(3) d(fg) = d(f)g + fd(g), ∀f, g ∈ A.

Following [1], we define a coordinate differential calculus over A by

(4) df = dx∂(f), ∀f ∈ A,

where the partial derivative ∂ is the linear map A → A such that

∂(x) = 1,(5)
∂(fg) = ∂(f)g + ξ(f)∂(g), ∀f, g ∈ A,

where ξ : A → A is a homomorphism defining a left module structure
of the bimodule AMA by means of the right module structure

(6) x dx = dx ξ(x).

Assuming that d2 �= 0, we introduce the second order differential d2x.
Let Ωξ(A) be the right free module over the algebra A generated by
the monomials (d2x)k(dx)l, k, l = 0, 1, . . . . Further, we shall call the
elements from Ωξ(A) differential forms. The module Ωξ(A) becomes
an N-graded module if we introduce the grade one and two to the
differentials of first and second order respectively and the grade zero
to the elements of algebra A. Then the module Ωξ(A) splits into
direct sum Ωξ(A) = ⊕∞

µ=0Ω
µ
ξ (A), where Ωµ

ξ (A) is a submodule of
homogeneous differential forms of degree µ, and µ = 2k + l.

Now we find commutation relations between x and d2x and between
dx and d2x. If we differentiate the commutation relation (6) supposing
that (1) holds, we get

d(x dx− dxξ(x)) = dx dx+ x d2x− d2xξ(x)− q dx dx∂(ξ(x)) = 0.

Since we assume that the terms dx dx and x d2x must cancel separately,
it follows that

dx dx = q dx dx∂(ξ(x)),(7)
x d2x = d2xξ(x).(8)
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The relation (7) has two solutions: (dx)2 = 0 and ∂(ξ(x)) = q−1.
Consider the second solution. Since ∂(x) = 1, from this solution we get

ξ(x) = q−1x.

Thus ξ is completely determined and we can rewrite (6) and (8) in
the form

x dx = q−1 dx x,(9)
x d2x = q−1 d2xx.(10)

The relation between dx and d2x can be obtained immediately from
(10) by the differentiation under the assumption that d3x = 0:

(11) dx d2x = qd2x dx.

Further, since ∂ and ξ are related by (5), the direct calculation gives
us that ∂(x3) = 0. It implies x3 = 0. Then an arbitrary element of
algebra A is a polynomial in x of degree ≤ 2, that is,

(12) f = α0 + α1x+ α2x
2,

and we have ∂3(f) = 0, for all f ∈ A. By direct calculation, we get
d3f = 0 for all f ∈ A and d3ω = 0 for all ω ∈ Ωξ(A). In fact,

d3f = d3x∂f + [3]qd2x dx∂2f + q3 dx dx dx∂3f = 0.

Here and later, we use the notion [k]q = 1+ q+ q2 + · · ·+ qk−1. In our
case, [3]q = 0.

In order to prove d3ω = 0, we calculate d3 of the form ωµ ∈ Ωµ
ξ (A)

ωµ =
∑

2k+l=µ

(d2x)k(dx)lfkl.

Using the equality

1 + q2 + · · ·+ q2l =
1− q2l+2

1− q2
,
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we get

d3((d2x)k(dx)lfkl) =
q3(2k+1)

(1− q2)3
(1− (q3)2(l−1)

− q2l(1− q2(l−1))[3]q)(d2x)k+3(dx)l−3fkl

+ q2k+l+2 (1− q2l)2

1− q2
[3]q(d2x)k+2(dx)l−1∂fkl

+ q2k+2l+1 1− q2l+l

1− q2
[3]q(d2x)k+1(dx)l+1∂2fkl

+ q2k+3l+3(d2x)k(dx)l+3∂3fkl = 0.

Extending d3 on the whole Ωξ(A), we get d3ω = 0 for all ω ∈ Ωξ(A).

Thus, if we define a multiplication law on the right-module Ωξ(A) by
the formulae

(13)
x3 = 0, xd2x = q−1d2xx,

x dx = q−1 dx x, dx d2x = qd2x dx,

then Ωξ(A) becomes a graded q-differential algebra with d3 = 0
generated by x, dx, d2x.

Consider the other solution of (7): (dx)2 = 0. This solution does not
give any restriction on the homomorphism ξ.

The differentiation of the relations (8) gives us the equation

(d2x)2 = q4(d2x)2∂ξ(x),

from which two solutions follow. If we assume that (d2x)2 �= 0, then
we get the same condition on the homomorphism ξ:

ξ(x) = q−1x,

as we already obtained under the assumption (dx)2 �= 0 above. The
second solution, (d2x)2 = 0, does not give any restriction on ξ.

Under the assumption (dx)2 = (d2x)2 = 0 mentioned above, we get

(14) d3f = q2d2x dx∂2(f).
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Since we require that d3f = 0 for all f ∈ A, then ∂2f = 0. Hence
we obtain the additional condition x2 = 0, i.e., the algebra A contains
only linear functions

f = α0 + α1x.

By direct calculation, we get d3 = 0 for all ω ∈ Ωξ(A). Every form
from Ωξ(A) can be written under the conditions (dx)2 = (d2x)2 = 0 in
the following term

ω = d2x dxf11 + d2xf10 + dx f01, fij ∈ A, i, j = 0, 1.

Then we get

d3(ω) = d3(d2x dxf11 + d2xf10 + dx f01)
= d2(0 + q2d2x dx∂f10 + d2xf01)
= d(0 + q2d2x dx ∂f01) = 0

for arbitrary form ω ∈ Ωξ(A). Hence, on the bimodule of the differen-
tial forms, we can define the second multiplication law by the relations

(15)
x2 = (dx)2 = (d2x)2 = 0, x dx = dx ξ(x),
x d2x = d2x ξ(x), dx d2x = d2x dx ξ(x).

Then the bimodule Ωξ(A) becomes the algebra.

3. Algebra of differential forms on the quantum plane.
At the beginning of this section, we find all commutation relations
and consistency conditions in the case of algebra with n generators
satisfying the relations ”xixj = Bij

klx
kxl. Then these relations and

conditions are specified for the case of n-dimensional quantum plane.
Finally, we find a restriction which allows us to construct a graded
q-differential algebra with d3 = 0 in the case of a two-dimensional
quantum plane.

3.1 Commutation relations and consistency conditions. Now let
A be a unital associative C-algebra generated by the variables xi,
i = 1, . . . , n, satisfying the commutative relation

(16) xixj = Bij
klx

kxl or (δi
kδ

j
l −Bij

kl)x
kxl = 0.
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Let (AMA, d) be a first order coordinate differential calculus over
algebra A. Here AMA is the bimodule over A generated by the first
order differentials dxi, i = 1, . . . , n; the differential d is the linear map
A → AMA obeying the ordinary Leibniz rule

(17) d(fg) = d(f)g + fd(g), ∀f, g ∈ A.

The word “coordinate” means that the differential d is defined on the
elements of algebra by

(18) d(f) = dxi∂i(f), ∀f ∈ A, i = 1, . . . , n,

where the partial derivatives ∂i are linear maps A → A such that

(19) ∂i(fg) = ∂i(f)g + ξk
i (f)∂k(g), ∀f, g ∈ A, i, k = 1, . . . , n,

where ξ : A → An×n is a homomorphism to the algebra of (n × n)-
matrices over A acting linearly on the generators of A, that is,

(20) ξk
i (x

j) = Cjk
il xl,

where Cjk
il are numerical coefficients, i, j, k, l = 1, . . . , n, [7].

As follows from (17), (18) and (19), the left structure of the bimodule
AMA is defined by the formula

(21) xidxj = Cij
kldx

kxl, i, j, k, l = 1, . . . , n,

by means of the right free module structure.

We suppose that two Wess-Zumino consistency conditions [8] have to
be satisfied; namely, the linear condition

(22) (δi
kδ

j
l −Bij

kl)(δ
kl
st + Ckl

st ) dx
sxt = 0,

in the tensor form: (E12 − B12)(E12 + C12) = 0, appearing by the
differentiation of (16), and the quadratic condition

(23) (δi
kδ

j
l −Bij

kl)C
lr
stC

ks
uvdx

uxvxt = 0,

in the tensor form: (E12 − B12)C23C12dx1x2x3 = 0 appearing under
the multiplication the relations (16) by dxr from the right and the
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commutation dxr through to the left by the commutation relations
(21).

In order to construct a consistent differential calculus with the prop-
erties d3 = 0 and d2 �= 0, we have to introduce the second order differ-
entials d2xi of the generators xi [5].

Let ΩC(A) be the free right unital associative module over the algebra
A generated by all monomials composed from powers of dxi, d2xi,
i = 1, . . . , n. If we attribute the grade 0 to any element of A and the
grade 1 and 2 respectively to the differentials dxi and d2xi, then the
module ΩC(A) becomes an N-graded module.

The commutation relations between xi and dxj are defined by (21).
Now we find four sorts of commutation relations: among the first order
differentials dxi; between xi and d2xj ; between dxi and d2xj ; among
the second order differentials d2xi.

Assume that the differential d satisfies the graded q-Leibniz rule (1)
and that there are no relations between dxi and d2xj . Differentiating
(21), we get commutation relations among the first order differentials
and between xi and d2xj at once. In fact,

d(xidxj − Cij
kldx

kxl) = dxi dxj + xid2xj

− Cij
kld

2xkxl − qCij
kl dx

k dxl

= 0.

From this equality we have two kinds of commutation relations, sup-
posing that the terms dxi dxj and xi d2xj must cancel separately

dxi dxj = qCij
kl dx

k dxl,(24)

xi d2 xj = Cij
kl d

2 xk xl.(25)

The first differentiation of (25) gives, at once, the commutation
relations between the first and second order differentials

(26) dxi d2 xj = q2Cij
kl d

2 xk dxl.

The second differentiation of (25) gives the commutation relations
among second order differentials (26)

(27) d2 xi d2 xj = qCij
kl d

2 xk d2 xl.
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Now we have five sorts of commutation relations: (21), (24), (25),
(26) and (27), where the last four are obtained from the relations (21)
by the differentiation. If we define a multiplication law on the ΩC(A) by
these commutation relations, then the module ΩC(A) becomes a unital
associative algebra generated by xi, dxi, d2xi, i = 1, . . . , n. Obviously,
the bimodule AMA is embedded into the algebra ΩC(A).

Consider the commutation relations (24). By the differentiation
of (24), we get the Wess-Zumino-like consistency condition for the
operator C

d(dxi dxj − qCij
kl dx

k dxl) = (δi
kδ

j
l − qCij

kl) (δ
k
s δ

l
t + Ckl

st ) d
2xs dxt = 0,

supposing that the relations (26) hold, or in the tensor form

(28) (E12 − qC12)(E12 + C12) = 0.

The third differentiation of (16) gives the consistency condition

(29) (E12 −B12)(E12 + C12)(−E12 + qC12) = 0.

Now, one can see that the conditions (28) and (22) imply the condi-
tion (29).

As it follows from the paper [4], another two sorts of commutation
relations exist: between the derivatives and the variables

(30) ∂jx
i = δi

j + Cik
jl x

l∂k,

and between the derivatives and the first order differentials

(31) ∂j dx
i = (C−1)ikjl dx

l∂k.

The relations (30) follow from the Leibniz rule (17) if we consider
both ∂j and xi as operators. The relations (31) can be obtained from
the assumption ∂jdx

i − Dik
jl dx

l∂k = 0, where the tensor D is to be
determined. Multiplying the lefthand side of the last equation by xr

from the right side and using (21) and (31), we see that the equality

(∂j dx
i −Dik

jl dx
i∂k)xr = Dir

stC
su
jv x

v(∂u dxt −Dtm
up dx

p∂m) = 0
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requires D = C−1.

For construction of the consistent differential calculus with d3 = 0,
we add the relations between the derivatives and the second order
differentials

(32) ∂jd
2xi = (C−1)ikjl d

2xl∂k

to the commutation relations obtained.

These relations can be obtained if we assume that

∂jd
2xi −Kik

jl d
2xl∂k = 0.

Then we find the tensor K by multiplying this equation by xr from the
right side and commuting xr through to the left by the commutation
relations (25) and (30). Then we have

(∂j d
2xi −Kik

jl d
2xl∂k)xr

= (C−1)irjt d
2xt + (C−1)irstC

su
jv x

v∂ud
2xt

−Kir
jt d

2xt −Kir
stC

su
jv (C

−1)tpubx
v d2xb∂p

= (C−1)irstC
su
jv x

v(∂j d
2xt − (C−1)tpub d

2xb∂p) = 0,

if and only if K = C−1.

Finally, in the paper [4], the authors show that the commutation
relations among the derivatives

∂i∂j = F lk
ji ∂k∂l

lead to the two conditions of consistency

(E12 + C12)(E12 − F12) = 0,(33)
C12C23F12 = F23C12C23.(34)

Comparing (22) and (33), we can easily see that if F is equal to B,
then (33) holds.

The equation (34) is a Yang-Baxter equation. Another two Yang-
Baxter equations appear if we multiply the commutation relations (16)
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and (24) from the right side by dxr and d2xr, respectively, and using the
corresponding commutation relations commute dxr and d2xr through
to the left

(δi
kδ

j
l −Bij

kl) : x
k xl dxr = (δi

kδ
j
l −Bij

kl) : C
l r
st C

ks
uv dx

u xv xt = 0,(35)

(δi
kδ

j
l − Cij

kl) dx
k dxl d2 xr = (δi

kδ
j
l − Cij

kl)q
2Clr

stC
ks
uv d

2xu dxv dxt = 0.
(36)

We get the Yang-Baxter equation

(37) B12C23C12 = C23C12B23,

as a solution of (35). In detail,

δi
kδ

j
l C

lr
stC

ks
uv dx

u xv xt = Bij
klC

lr
stC

ks
uv dx

u xv xt =⇒
Cjr

st C
is
uvB

vt
ab dx

u xa xb = Bij
klC

lr
stC

ks
uvδ

v
aδ

t
b dx

u xa xb =⇒
Cjr

st C
is
uvB

vt
ab dx

u xa xb = Bij
kl : C

l r
sb C

ks
ua dxu xa xb,

or in the tensor form

C23C12B23 = B12C23C12.

By the same way as a solution of (36), we get the following Yang-
Baxter equation:

(38) C12C23C12 = C23C12C23.

3.2 Exterior calculus on the quantum plane. Now we consider all
commutation relations and consistency conditions obtained above in
the case of the quantum plane, which is the associative unital algebra
generated by the variables xi, i = 1, . . . , n, satisfying the commutation
relation xixj = qxjxi, i < j, which can be rewritten by means of the
R̂-matrix

(39) xixj =
1
q
R̂ij

klx
kxl or (δi

kδ
j
l −

1
q
R̂ij

kl)x
kxl = 0,
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where

R̂ij
kl = δi

kδ
j
l (1 + (q − 1)δij) +

(
q − 1

q

)
δi
kδ

j
l θ(j − i),

θ(j − i) =
{ 1 if j > i,

0 if j ≤ i,

i.e., we have B = q−1R̂. As was shown in [4], the consistency condition
(22) holds if one chooses the values qR̂ or q−1R̂−1 for the tensor C, i.e.,

(40) (E − q−1R̂)(E + qR̂) = 0 or (E − q−1R̂)(E + q−1R̂−1) = 0,

respectively, where E is the unit matrix, q−1 and q are the eigenvalues
of the R̂-matrix.

We show that the consistency condition (28) is satisfied only for the
value C = qR̂. Here we make use of the identities

(41) R̂2 = E + (q − q−1)R̂ and R̂−1 = R̂+ (q−1 − q)E.

If C = qR̂, we have

(42) (E − q2R̂)(E + qR̂) = (1− q3)E − (q2 − q + q4 − q2)R̂.

As q is the cubic root of unity, the coefficients are equal to zero.

However, if C = q−1R̂−1, then

(43)
(E − R̂−1)(E + q−1R̂−1) = (−2q−1E − R̂)(q−2E + q−1R̂)

= (q − 1)(E + qR̂).

Therefore we can only choose C to be qR̂.

In our case, the three Yang-Baxter equations (34), (37) and (38)
reduce to the single equation

(44) R̂12R̂23R̂12 = R̂23R̂12R̂23,

as well as in [4].
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By means of R̂-matrix, we rewrite all commutation relations obtained
in section 3.1. Now we have

xidxj = qR̂ij
kl dx

k xl, xid2xj = qR̂ij
kld

2xkxl,

dxi dxj = q2R̂ij
kl dx

k dxl, dxid2xj = R̂ij
kld

2 xk dxl,

∂i∂j =
1
q
R̂lk

ji∂k∂l, d2xid2xj = q2R̂ij
kld

2xkd2xl,

∂j dx
i =

1
q
(R̂−1)ikjl dx

l∂k, ∂jd
2xi =

1
q
(R̂−1)ikjld

2xl∂k.

3.3 Algebra of differential forms on the two-dimensional quantum
plane. In the case of the two-dimensional quantum plane, we denote
x1 = x, x2 = y. Since in the two-dimensional case the R̂-matrix is
equal to 


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q


 ,

we rewrite explicitly all commutation relations of Section 3.2:

x dx = q2 dx x, x d2x = q2 d2xx,

x dy = q dy x+ (q2 − 1) dx y, x d2y = q d2yx+ (q2 − 1) d2x y,

y dx = q dx y, y d2x = q d2x y,

y dy = q2 dy y, y d2y = q2 d2y y,

dx dy = q dy dx, d2x d2y = q d2y d2x,

dx d2x = qd2x dx,

dx d2y = d2y dx+ (q − q−1)d2x dy,

dy d2x = d2x dy,

dy d2y = q d2y dy, ∂x∂y = q−1∂y∂x,

∂x dx = q−2 dx∂x, ∂x d2x = q−2 d2xx,

∂x dy = q−1 dy∂x, ∂x d2y = q−1 d2y ∂x,

∂y dx = q−1 dx∂y ∂y d2x = q−1 d2x∂y

+ (1− q−2) dy∂x, + (1− q−2) dy∂x,

∂y dy = q−2 dy ∂y, ∂y d2y = q−2 d2y∂y.
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The direct calculation of d3f shows that the requirements (dx)3 = 0
and (dy)3 = 0 imply d3f = 0. In fact, all the terms except (dx)3 and
(dy)3 cancel by using appropriate commutation relations.

We add these two requirements to the commutation relations ob-
tained by defining the multiplication law on the graded algebra ΩC(A).
This algebra splits into the direct sum ΩC(A) = ⊕∞

k=0Ω
k
C(A) of its sub-

spaces of homogeneous elements of grade k.

Let Fµ
2k be any monomial of grade 2k on second order differentials

(45) Fµ
2k = (d2x)m1(d2y)m2 ,

where k ≥ 1, m1 +m2 = k, µ is the multi-index entirely determined by
(m1,m2). Then the even form ωe ∈ Ω2k

C (A) can be written as

ωe = Fµ
2kf00 + F ν

2(k−1)(dx dx f11 + dx dyf12 + dy dy f22)

+ F η
2(k−2) dx dx dy dy h22,

and the odd form ω0 ∈ Ω2k+1
C (A) as

ω0 = Fµ
2k(dx f10 + dy f01) + F ν

2(k−1)(dx dx dy h21 + dx dy dy h12).

Differentiating ωe and ω0, we get

d(ωe) = q2kFµ
2k(dx∂x + dy∂y)f00

− q2k−1F ν
2(k−1)((d

2x dx+ dx dx dy∂y)f11

− (qd2x dy + d2y dx)f12 + (d2y dy + qdx dy dy∂x)f22)

− q2(k−2)F η
2(k−2)(q

2d2x dx dy dy + d2y dx dx dy)h22,

d(ω0) = q2kFµ
2k((d

2x+ qdx dx∂x)f10 + dx dy(q∂yf10 + ∂xf01)
+ (d2y + qdy dy)f01)

+ q2(k−1)F ν
2(k−1)((−d2x dx dyqd2y dx dx)h21

+ dx dx dy dy(q∂x h12 + ∂y h21)
+ (qd2x dy dy − q2d2y dx dy)h12),

respectively. Hence, one can easily see that the differential d is a linear
endomorphism of degree 1.
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The direct calculation gives d3(ω) = 0 for all ω ∈ ΩC(A).

Thus we have proven the following:

Proposition 1. The algebra ΩC(A) of differential forms with the
requirement (dx)3 = (dy)3 = 0 is a graded differential algebra with
respect to the exterior differential d satisfying the q-Leibniz rule, i.e.,
d3f = 0 for all f ∈ A, d3ω = 0 for all ω ∈ ΩC(A).
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