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TRANSVERSALITY THEOREMS
FOR HARMONIC FORMS

KO HONDA

ABSTRACT. We prove that harmonic 1-forms and 2-forms
for generic metrics on a closed manifold M enjoy the standard
transversality properties with respect to the stratification
of ∧ kT ∗M which is induced from the action of O(n) on
∧ k(Rn)∗.

1. Introduction. This paper is motivated by the following (related)
questions on the regularity of the zero sets of solutions to Laplace’s
equation:

(A) The Dirichlet problem. Let Ω be a domain in Rn and ∆g be the
Laplacian on Ω with respect to the (Riemannian) metric g. Consider
the solution u to the equation ∆gu = 0, with Dirichlet boundary
condition u|∂Ω = f , where f is a fixed function on ∂Ω. Then is the
zero set of u regular for generic choices of g?

(B) Harmonic forms. Let M be a closed, oriented n-manifold and
∆g be the Laplacian (Laplace-Beltrami operator) on M with respect to
the (Riemannian) metric g. If g is a generic metric and ω is a harmonic
k-form with respect to the metric g (i.e., ∆gω = 0), is the zero set of
ω regular? Moreover, is the generic harmonic form ω transverse to the
various strata of

∧k
T ∗M under the action of SO(n)?1

We will call a harmonic form ω with respect to the metric g a g-
harmonic form. The goal of this paper is to prove affirmative results
for (A) and certain special cases of (B). On a closed, oriented n-manifold
M we prove transversality results for 1-forms and also for 2-forms
(provided n is even). Dually, we obtain transversality for (n − 1)-
forms on any n-manifold and (n− 2)-forms for n even. As we shall see,
4-manifolds exhibit unusual behavior in the dichotomy between the
self-dual (SD) (or anti-self-dual (ASD)) 2-forms and the non-SD (and
non-ASD) 2-forms. The following is a sampling of the results which are
proved:

Received by the editors on August 28, 2001, and in revised form on April 10,
2002.

Copyright c©2004 Rocky Mountain Mathematics Consortium

629



630 K. HONDA

Theorem 1.1. Let M be a closed, oriented 4-manifold with b+
2 (M) >

0, and Metl(M) be the space of Cl-Hölder metrics on M , for a suffi-
ciently large non-integer l. Let Q+ ⊂ H2(M ;R) × Metl(M) be the
Banach submanifold consisting of pairs ([ω], g), where g ∈ Metl(M)
and ω is a SD g-harmonic 2-form with [ω] �= 0. Then there exists a
dense open set U ⊂ Q+ such that if ([ω], g) ∈ U , then ω has regular
zeros. This means that the zeros of ω consist of disjoint circles for
generic g.

Theorem 1.2. Let M be a closed, oriented 4-manifold with
b±2 (M) > 0, and Metl(M) be the space of Cl-Hölder metrics on M ,
for a sufficiently large non-integer l. Then there exists a dense open
set U ⊂ H2(M ;R) × Metl(M) such that if (ω, g) ∈ U and ω is a g-
harmonic form representing its cohomology class [ω] ∈ H2(M ;R), then
ω is neither SD nor ASD, and ω has no zeros, has full rank away from
a submanifold of codimension 1, and is SD/ASD on a union of disjoint
circles.

Theorem 1.3. Let M be a closed, oriented 6-manifold with
H2(M ;R) �= 0, and Metl(M) be the space of Cl-Hölder metrics on M ,
for a sufficiently large non-integer l. If we fix a nonzero cohomology
class α ∈ H2(M ;R), then there exists a dense open set U ⊂ Metl(M)
such that if g ∈ U , then the g-harmonic 2-form ω ∈ α has no zeros, has
isolated points where it has rank 2, and, away from the rank 2 points,
has rank 4 on a submanifold of codimension 1.

In Theorem 1.3, by rank we mean the rank of a skew-symmetric
bilinear form.

A few words on Theorem 1.1: although this theorem on self-dual
2-forms was conceived and proven independently by the author, circa
1995, later conversations with Taubes and Eliashberg revealed that
this had been known to specialists for a long time, cf. Appendix to the
preprint [14], excised from the published version. The first detailed
proof appeared in LeBrun’s paper [10]. We include Theorem 1.1 here
because it is readily proved with the transversality machinery developed
in this paper. By now, Taubes has extensively studied properties of
holomorphic curves with respect to these self-dual harmonic 2-forms in



TRANSVERSALITY THEOREMS 631

a series of papers [16, 17, 18]. (Some very basic remarks can be found
in [7].)

In Theorem 1.2, the nonduality result is well-known (cf., Section 4.3.5
of [4]), and we prove the part of interest, namely the transversality. A
study of such non-SD/non-ASD forms appears in [8].

We remark here that the proofs of the transversality theorems are
rather nontrivial because of the harmonicity – one must work much
harder than in the case of closed forms, as was carried out by Martinet
in [11]. This is primarily due to the fact that a local metric perturbation
gives rise to global effects on the manifold. The key ingredient in
the proofs of the theorems, therefore, is the control afforded from
using the asymptotics of the Green’s function. The idea of using
Green’s functions appears in Uhlenbeck’s paper [19] on eigenfunctions
for generic metrics.

In Section 2, we study generic harmonic forms on compact manifolds.
After reviewing the basic setup of transversality theory in Section 2.1
and the crucial facts from the asymptotics of Green’s functions in
Section 2.2, we make the necessary computations in Sections 2.3, 2.4
and 2.5. Subsequently, 1-forms are treated in Section 2.6, SD 2-forms
on 4-manifolds (Theorem 1.1) in Section 2.7, the non-SD/non-ASD case
(Theorem 1.2) in Section 2.8, and 2-forms on 2n-dimensional manifolds
with 2n > 4 in Section 2.9. Section 3 is devoted to transversality results
for solutions to the Dirichlet Problem.

Remark 1.4. It appears at the moment that, if transversality still
holds for k-forms on an n-dimensional manifold with 2 < k < n − 2,
the proof would require substantially more work. This is due to two
complications. The first, and probably the less serious, is that the
orbits of the action of SO(n) on ∧ k(Rn) become more complicated.
The second is that the map iω, defined in Section 2.5, is not surjective,
and we need to consider all the points near the point at which we are
trying to perturb. This would require considerations similar to that of
Section 2.9, only much more involved.

2. Harmonic forms on compact manifolds. In what follows,
M will be a closed, oriented n-manifold and Metl(M) the space of
Cl-Hölder metrics on M , for sufficiently large l ∈ R+ − Z. Let
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P = Hk(M ;R) × Metl(M). Given (α, g) ∈ P , there exists a unique
g-harmonic form ω(α,g) in the class α by the Hodge theorem. This gives
rise to the natural map

(1) j : P → Ωk
m(M) × Metl(M)

which sends (α, g) to the corresponding (ω(α,g), g). Here Ωk
m(M) is the

space of Cm-Hölder k-forms with m sufficiently large.

Proposition 2.1. The map j gives an isomorphism of P with a
Banach submanifold Q of the Banach manifold Ωk

m(M) × Metl(M).

The proof will be given in the Appendix.

2.1 Transversality theory. We would like to prove that there is a
dense open set U ⊂ Q such that if (ω(α,g), g) ∈ U , then the harmonic
form ω(α,g) has regular zeros.

Let us describe the general transversality theory setup. We start with
the following “full” evaluation map:

(2)
ev : Q × M → ∧ kT ∗M

[(ω, g), x] �−→ ω(x).

Here ω is a g-harmonic form.

In subsequent sections, it will be shown that ev is regular, i.e.,
transverse to the zero section of ∧ kT ∗M , for appropriate k and n =
dim M . This means that, for [(ω, g), x] fixed,

(3) ev∗ : T(ω,g)Q × TxM −→ ∧ kT ∗
x M

is surjective whenever ω(x) = 0. If ev is regular, then by Proposition 2.2
below, there exists a dense Gδ-subset of Q for which ω has regular zeros.
Since transversality is an open condition on our Cl-function spaces with
l >> 0, this implies that there exists an open dense subset U ⊂ Q for
which ω has regular zeros.

Proposition 2.2. Let X be a Banach manifold, M, N finite-
dimensional manifolds, and f : X × M → N be a Cl-map for l
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sufficiently large. Suppose f is transverse to a submanifold Z of N .
Then for a dense Gδ-set in X, fx : M → N is transverse to Z, where
fx(m) = f(x, m).

For a well-written account of Proposition 2.2, consult Section 4.3 of
[4].

Consider the following “partial” evaluation map

(4) evx : Q −→ ∧ kT ∗
x M,

which maps (ω, g) �→ ω(x). In other words, this is the evaluation map
with x ∈ M held constant. In our present situation, it suffices to show
that

(5) (evx)∗ : T(ω,g)Q −→ ∧ kT ∗
x M

is surjective whenever ω(x) = 0, that is, it is not necessary to let x
vary in M . The following lemma shows that we are not sacrificing any
extra degrees of freedom by restricting to (evx)∗.

Lemma 2.3. (evx)∗(T(ω,g)Q) = ev∗(T(ω,g)Q × TxM).

Proof. If ṽ ∈ TxM , then extend ṽ to a vector field V on M . If φt is
the 1-parameter family of diffeomorphisms generated by V , then

(6) ev∗((ω, g), x)(0, ṽ) = LV ω(x) =
d

dt
φ∗

t ω(x)
∣∣∣∣
t=0

,

where LV is the Lie derivative in the direction of V . Finally, we observe
that φ∗

t ω is harmonic for the metric φ∗
t g.

2.2 Green’s functions. We now start to compute (evx)∗(T(ω,g)Q).
Consider the family (ωt, gt) ∈ Q, t ∈ (−ε, ε), ε > 0 small, with
(ω0, g0) = (ω, g). Since ∆gt

ωt = 0, by differentiating the equation
with respect to t at t = 0, we see that if (v, h) ∈ T(ω,g)Q, then

(7) ∆gv +
d

dt
(∆g+th)

∣∣∣∣
t=0

ω = 0.
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Here, we will often write gt = g + th, where h ∈ Cl(Sym2T ∗M)
is dgt/dt|t=0. This presents no loss of generality since (1) all our
computations concern gt only up to first order in t and (2) g + th
is a (positive definite) metric, provided t is sufficiently small.

Conversely, we have the following:

Claim 2.4. If (v, h) satisfies Equation 7, then (v, h) ∈ T(ω,g)Q.

Proof. First note that d/dt(∆g+th)|t=0ω is an exact form. Indeed,

(8)
d

dt
(∆g+th)

∣∣∣∣
t=0

ω =
d

dt
(dd∗g+th + d∗g+thd)

∣∣∣∣
t=0

ω = d

(
d

dt
(d∗g+thω)

∣∣∣∣
t=0

)
,

since dω = 0. Now recall the Hodge decomposition, which states that

(9) Ωk(M) = dΩk−1(M) ⊕ d∗Ωk+1 ⊕Hk
g ,

where Hk
g is the set of g-harmonic k-forms. In particular,

d

dt
(∆g+th)

∣∣∣∣
t=0

ω

is L2-orthogonal to Hk
g , and there is a unique solution v ⊥ Hk

g which
solves Equation 7 with fixed h. Here ⊥ refers to L2-orthogonality. Since
for each g+th there must exist a (g+th)-harmonic form ωt in the same
cohomology class as ω, this unique solution v ⊥ Hk

g must necessarily
arise as dωt/dt

∣∣
t=0

. All other solutions v′ to Equation 7 with fixed h
differ from v by a g-harmonic form, and clearly (v − v′, 0) ∈ T(ω,g)Q.

In order to write Equation 7 in integral form, i.e., to invert Equation 7
and solve for v, we make use of the Green’s function G(x, y). We now
collect some facts that we need on the Green’s function. They will be
presented without proof; see [2, 12] for Laplacians on functions - the
generalization to forms is straightforward. Let πi, i = 1, 2, be the ith
projection of M × M onto M , and let ∆ ⊂ M × M be the diagonal.
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Proposition 2.5. There exists a section Gg(x, y) of π∗
1(∧ kT ∗M) ⊗

π∗
2(∧ kT ∗M) over M × M − ∆, called the Green’s function, with the

following properties:

1. If g is of class Cl with l >> 0, then Gg of class Cl on M ×M −∆.

2. Gg(x, y) = Gg(y, x).

3. If the k-form ω of class Cl is L2-orthogonal to ker∆g, then∫
M

〈Gg(x, y), ∆gω(y)〉gdvg(y) = ω(x).

Here 〈, 〉g is the fiber metric on ∧ kT ∗M induced from g, dvg(y) is the
volume form for the metric g with respect to the variable y, and the
dyi terms get paired with respect to 〈, 〉, while the dxi terms are left
untouched.

4. If ω ∈ ker ∆g, then∫
M

〈Gg(x, y), ω(y)〉gdvg(y) = 0.

Recall the Green’s operator G̃g : (Hk
g)⊥ → (Hk

g)⊥ which is the
bounded inverse of ∆g : (Hk

g)⊥ → (Hk
g)⊥, where (Hk

g)⊥ is the L2-
orthogonal complement of Hk

g . Then on (Hk
g)⊥, integrating against the

Green’s function is the same as applying the Green’s operator.

Lemma 2.6. Let Hk
g be the space of harmonic k-forms for the metric

g. Then (v, h) ∈ T(ω,g)Q and v ⊥ Hk
g if and only if

(10) (evx)∗((v, h)) = v(x) = ±
∫

M

〈dd∗Gg(x, y), ∗(Dh∗)ω(y)〉gdvg(y).

Here Dh∗g or Dh∗ is shorthand for d/dt(∗g+th)|t=0.

Proof. By Equation 7 and Proposition 2.5, if (v, h) ∈ T(ω,g)Q and
v ⊥ Hk

g , then we have

(11)

(evx)∗((v, h)) = v(x) = −
∫

M

〈Gg(x, y),
d

dt
(∆g+th)

∣∣∣∣
t=0

ω(y)〉gdvg(y).
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We compute v(x):

v(x) = −
∫

d

dt
〈Gg(x, y), ∆g+thω(y)〉gdvg(y)

= −
∫

d

dt
{〈dGg(x, y), dω(y)〉g+〈d∗g+thGg(x, y), d∗g+thω(y)〉g}dvg(y)

= −
∫

d

dt
〈∗g+thd ∗g+th Gg(x, y), ∗g+thd ∗g+th ω(y)〉gdvg(y)

= −
∫
〈∗gd ∗g Gg(x, y), ∗gd (Dh∗g)ω(y)〉gdvg(y)

= ±
∫
〈∗d ∗ d ∗ Gg(x, y), (Dh∗)ω(y)〉gdvg(y),

keeping in mind that dω = 0, d∗gω = 0. This yields Equation 10.

On the other hand, if we define v according to Equation 10, then the
steps can be reversed so that v satisfies Equation 11. Observe that

d

dt
(∆g+th)

∣∣∣∣
t=0

ω

is exact from the proof of Claim 2.4 and is therefore in (Hk
g)⊥. Then

v = G̃g

(
d

dt
(∆g+th)

∣∣∣∣
t=0

ω

)
,

and, equivalently, v ⊥ Hk
g and

∆gv =
d

dt
(∆g+th)

∣∣∣∣
t=0

ω.

The lemma then follows from Claim 2.4.

Remark 2.7. Perturbations (v, h) satisfying Equation 10 have the nice
additional property that v is exact. Suppose we can show that, given
(ω, g) ∈ Q,

∧ kT ∗
x M = {v(x) | (v, h) satisfies Equation 10},
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whenever ω(x) = 0. This would then imply a stronger transversality
result, namely the regularity of:

(12)
evα : Metl(M) × M −→ ∧ kT ∗M,

(g, x) �−→ ω(x),

where ω is the g-harmonic representative of the class α ∈ Hk(M ;R).
We will use the following evaluation map in Section 2.6:

(13)
evα,x : Metl(M) → ∧ kT ∗

x M,

g �→ ω(x),

where ω is the g-harmonic representative in α.

Although we do not have a good grasp of Gg(x, y) in general, we can
still take advantage of the asymptotics of Gg(x, y) near the diagonal
∆. This is because the perturbations h of the metric g we will be using
are the ones supported arbitrarily close to x.

Conventions. We use multi-indices I = (i1, · · · , ik) to write

ωI = ω(i1,··· ,ik) = ωi1 ∧ · · · ∧ ωik
.

Also, we will often omit the ∧ symbol in expressions for forms.

We then have the following:

Proposition 2.8. Let g0 be the flat metric on Rn. Then
(14)

Gg0(x, y) =

⎧⎨⎩
∑

I=(i1,··· ,ik)
i1<···<ik

cn/|x − y|n−2 · dxI ⊗ dyI , if n > 2∑
I=(i1,··· ,ik)

i1<···<ik

cn log |x − y| · dxI ⊗ dyI , if n = 2,

where cn is a dimensional constant.

For an arbitrary metric g, pick local geodesic coordinates U ⊂ Rn for
g, centered at x = 0. Then we have the following, which is Theorem 2.2
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of [12] (some ingredients are also found in [13]) and roughly states that
Gg and Gg0 are asymptotic near the diagonal:

Proposition 2.9. On a sufficiently small U , Gg(0, y) has the form:

(15) Gg(0, y) = Gg,2−n(y) + Gg,4−n(y) + · · ·

+

{
Gg,−2(y) + Gg,0(y), n even,

Gg,−1(y) + Gg,log(y) + Gg,0(y), n odd,

where

1. Gg,2−n(y) = Gg0(0, y),

2. Gg,i(y) are k-forms whose coefficients have a singularity at y = 0
of the type Pi+s(y)/|y|s, where Pi+s(y) is a polynomial in y1, · · · , yn of
degree i + s,

3. Gg,log has coefficients with logarithmic singularities about y = 0,

4. Gg,0(y) is bounded, and

5. the coefficients of all the Gg,∗(y) are sufficiently differentiable away
from y = 0.

In what follows we write F (y) = c−1
n Gg0(0, y) for g0 flat.

2.3 Computation of dd∗F (y) for g flat. The goal of Sections 2.3,
2.4 and 2.5 is to assemble the preliminary computations to deter-
mine {v(x)|(v, h) satisfies Equation 10} ⊂ (evx)∗(T(ω,g)Q), whenever
ω(x) = 0. In Section 2.3, we compute the left-hand term of the inner
product in the integrand of Equation 10 for the flat metric g. In Sec-
tion 2.4 we compute the right-hand term ∗(Dh∗)ω(y), and in Section 2.5
we compute the space {∗(Dh∗)ω(y)|h ∈ Sym2T ∗

y M} ⊂ ∧kT ∗
y M , where

Sym2T ∗
y M is the second symmetric power of T ∗

y M . With Proposi-
tion 2.9 in mind, these ingredients will be put together starting with
Section 2.6.

Consider Rn with the standard inner product 〈, 〉. Given a nonzero
y ∈ Rn, we define a linear map Ry : Rn → Rn which maps
y �→ (1 − n/k) y and v �→ v for v ⊥ y. The map Ry is nearly a
reflection along the hyperplane {x ∈ Rn|〈x, y〉 = 0} and is one when
n = 2k. Using the inner product we identify Rn 
 (Rn)∗, and then
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naturally extend Ry to ∧ ∗Ry : ∧ ∗(Rn)∗ → ∧ ∗(Rn)∗ by mapping
v1 ∧ · · · ∧ vk �→ Ryv1 ∧ · · · ∧ Ryvk.

Proposition 2.10. 〈dd∗F (y), ·〉 = (C/|y|n)∧ ∗Ry, where C is a
nonzero constant.

Proof. There are two cases: either n > 2 and k ≥ 1, or n = 2
and k = 1. The difference is due to the different forms of the Green’s
functions. Throughout the proof, C denotes a nonzero constant which
may vary from line to line.

Case n > 2, k ≥ 1. We compute:

dd∗F (y) =
∑

I=(i1,··· ,ik)
i1<···<ik

dxI ⊗ dd∗
(

1
|y|n−2

dyI

)(16)

= C
∑

I=(i1,··· ,ik)
i1<···<ik

dxI ⊗
{(

k

|y|n − n

|y|n+2
(y2

i1 + · · · + y2
ik

)
)

dyI

(17)

+
∑

j=1,··· ,k
i �=i1,··· ,ik

(−1)j+k

(
− n

|y|n+2
yij

yi

)
dyi1 · · · d̂yij

· · · dyik
dyi

}
.

(18)

Claim 2.11. dd∗F (y) is invariant under the action of A ∈ SO(n).

Proof of claim. We first define the action of A ∈ SO(n) to be:

(19) A∗(dd∗F (y)) =
∑

I

A∗
xdxI ⊗ A∗

y

(
dd∗
(

1
|y|n−2

dyI

))
,

where A∗
x is the pullback with respect to the coordinates x and A∗

y is
with respect to the coordinates y. Since d and ∗ commute with A∗, we
have

(20) A∗(dd∗F (y)) =
∑

I

A∗
xdxI ⊗ dd∗

(
1

|y|n−2
A∗

ydyI

)
.
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Finally, we compute that
∑

I A∗
xdxI ⊗ A∗

ydyI =
∑

I dxI ⊗ dyI (check
this!), which proves the claim.

It therefore suffices to choose y = (y1, 0, · · · , 0), so that

(21) dd∗F (y1, 0, · · · , 0) =
C

|y|n
∑

I=(i1,··· ,ik)
i1<···<ik

ξ(I)dxI ⊗ dyI ,

where

ξ(i1, · · · , ik) =
{

1 − n/k if i1 = 1
1 otherwise.

Case n = 2, k = 1. We compute likewise that

(22) dd∗F (y) = C ·
∑

i

dxi⊗
{(

1
|y|2 −

2
|y|4 y2

i

)
dyi−

∑
j �=i

2
|y|4 yiyjdyj

}
.

Choosing y = (y1, 0), we specialize to

(23) dd∗F (y1, 0) =
C

|y1|2 (−dx1 ⊗ dy1 + dx2 ⊗ dy2).

This proves Proposition 2.10.

2.4 Computation of ∗(Dh∗). Consider the family of metrics
gt = g+ th. In this section we compute ∗(Dh∗)ω(y), which is a term on
the right-hand side of Equation 10. (Recall that Dh∗ = d/dt(∗gt

)|t=0.)
Given an oriented orthonormal basis (e1, · · · , en) for T ∗

y M with respect
to g = g0, we first find a convenient oriented basis (e1(t), · · · , en(t)) for
T ∗

y M which satisfies:

1. ei(0) = ei,

2. ei(t) is smooth in t,

3. the basis is orthonormal with respect to gt, up to first order in t.

Claim 2.12. If 〈ei, ej〉g+th = δij + thij, then ei(t) = ei −
(1/2)t

∑
j hijej suffices.
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Proof. We easily compute

〈ei(t), ej(t)〉gt
=
〈

ei − 1
2
t
∑

l

hilel, ej − 1
2
t
∑
m

hjmem

〉
gt

(24)

= δij + thij − 1
2
t

(∑
l

hilδlj +
∑
m

hjmδmi

)
= δij ,(25)

up to first order in t.

Proposition 2.13. Let ω =
∑

i1,··· ,ik
ωi1···ik

ei1 · · · eik
be a fixed k-

form on M . Then

(26)

∗(Dh∗)ω = C ·
{ ∑

i1,··· ,ik,j

(
hi1jωji2···ik

+ · · · + hikjωi1···ik−1j

)
ei1 · · · eik

− 1
2
tr(h) · ω

}
.

Here, C is a nonzero constant.

Proof. For a 1-form ω we will compute

(27) ∗(Dh∗)ω = C ·
{∑

i,j

hijωjei − 1
2
tr(h)ω

}
,

leaving the harder verifications to the reader.

With ei(t) as in Claim 2.12, we write ω =
∑n

i=1 ωi(t)ei(t). Then

∗gt
ω =

∑
i

(−1)i−1ωi(t)e1(t) · · · êi(t) · · · en(t).

Using ėi = −1/2
∑n

j=1 hijej from Claim 2.12 (a dot over a function or
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form η indicates dη/dt|t=0), we compute

(Dh∗)ω =
d

dt
(∗gt

ω)
∣∣∣∣
t=0

=
∑

i

(−1)i−1 d

dt

{
ωi(t)e1(t) · · · êi(t) · · · en(t)

}
=
∑

i

(−1)i−1ω̇ie1 · · · êi · · · en+
∑
i,j �=i

(−1)i−1ωie1 · · · ėj · · · êi · · · en

=
∑

i

(−1)i−1ω̇ie1 · · · êi · · · en+
∑
i,j �=i

(−1)i 1
2
ωi · {hjje1 · · · êi · · · en

+(−1)i−j−1hjie1 · · · êj · · · en

}
.

Now, since ω̇ =
∑n

i=1(ω̇iei + ωiėi) = 0, we have:

∗(Dh∗)ω = (−1)n−1 1
2

∑
i,j

ωihijej +
∑
i,j �=i

(−1)i 1
2

× ωi

{
(−1)n−ihjjei + (−1)n−i−1hjiej

}
= (−1)n−1

∑
i,j �=i

1
2

(ωihjiej − ωihjjei) + (−1)n−1 1
2

∑
i,j

ωihijej

= (−1)n−1

⎧⎨⎩∑
i,j

hijωjei − 1
2
tr(h)ω

⎫⎬⎭ .

In particular,

Corollary 2.14. If ω =
∑

i,j ωijeiej is a 2-form on M , then

(28) ∗(Dh∗)ω = C

{∑
i,j,k

(hikωkj + ωikhkj) eiej − 1
2
tr(h) · ω

}
.

2.5 Computation of iω(y). In this section we compute the image
of the map

(29) iω(y) : Sym2T ∗
y M −→ ∧ kT ∗

y M, h �−→ ∗(Dh∗)ω(y),
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for certain values of k and n, using Proposition 2.13. Here ω is a k-form
and Sym2T ∗

y M is the second symmetric power of T ∗
y M .

k = 1. If ω(y) = 0, then Im iω(y) = 0. If ω(y) �= 0, then
Im iω(y) = T ∗

y M by using Equation 27.

k = 2. Let ω =
∑

i,j ωijei ∧ ej be a 2-form which has been
normalized so that ωji = −ωij . Then we associate to ω(y) the skew-
symmetric matrix A whose ij-th entry is ωij(y). To the variation in
the metric h(y), we associate the symmetric matrix H = (hij(y)). By
Corollary 2.14, ∗(Dh∗)ω(y) corresponds to the skew-symmetric matrix
{H, A} − (1/2)tr(H) · A, where {H, A} = HA + AH. Hence, in terms
of matrices, iω(y) becomes

(30)
iA : S −→ A,

iA(H) = {H, A} − 1
2
tr(H) · A,

where S is the set of symmetric n × n matrices and A is the set of
skew-symmetric n × n matrices.

Consider C ∈ O(n). If B = CtAC, then we can write iB(H) =
CtiA(CHCt)C, where CHCt ∈ S. Therefore, it suffices to compute iA
for representatives A of each orbit of A under the action of O(n) by
conjugation.

Let J =
(

0 −1

1 0

)
. We will use the convention that a blank matrix

entry signifies a matrix block consisting of all zeros. The following is
an exercise in linear algebra:

Fact 2.15. Suppose n = 2m. Then an n×n skew-symmetric matrix
A can always be put into the form

(31)

⎛⎜⎜⎝
λ1J

λ2J
. . .

λmJ

⎞⎟⎟⎠
with λi ≥ 0, i = 1, · · · , m, via an orthonormal change of basis.

If A has the form as in Equation 31 with λi ≥ 0, i = 1, · · · , m,
then it is said to be in normal form, and will be denoted by A =
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(λ1, λ2, · · · , λm). Note that we may take all λi to be nonnegative, since
we are allowing conjugation by elements in O(n), rather than SO(n).
If λi > 0 for all i = 1, · · · , m and λi �= λj for all i �= j, then A is said
to be of generic type.

We can make a further simplification when n �= 4:

Claim 2.16. If n �= 4, then Im iA = Im {·, A}. Here {·, A} maps
H �→ {H, A}.

Proof. Provided n �= 4, if we take H = I, then we obtain A ∈ Im iA.
By taking H = I we also have A ∈ Im {·, A}. The equality follows
from the linearity of the two maps.

The situation for n = 4 is quite different (n = 4 is the only anomaly),
and this is the first indication of the differences between n = 4 and
n > 4.

We have the following useful rule:

Rule 2.17. Let A = (λ1, · · · , λm) be in normal form, where n = 2m.
If λi �= λj, then Im {·, A} contains

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
λi∗ ∗

. . .
∗ λj∗

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here ∗ is an arbitrary 2 × 2 block which is consistent with the skew-
symmetry of A. The ∗’s are placed in the (i, i)-th, (i, j)-th, (j, i)-th,
and (j, j)-th 2 × 2 blocks. On the other hand, if λi = λj > 0, then
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Im {·, A} will contain

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
∗ X

. . .
−Xt ∗

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here X is a 2 × 2 block of the form
(

c −d

d c

)
, with c, d ∈ R.

k = 2, n = 4. We have the following four possibilities for the 4 × 4
matrix A in normal form:

(1) A1 = 0.

(2) A2 = (λ, 0), λ > 0.

(3) A3 = (λ, λ), λ > 0.

(4) A4 = (λ1, λ2), where λ1, λ2 > 0, and λ1 �= λ2.

We can easily compute Im iA for each of the four cases, with the help
of Rule 2.17.

(1) Im iA1 = 0.

(2) Im iA2 =
{(

A B

−Bt 0

)∣∣∣ A=2×2 skew-symmetric matrix,
B=2×2 matrix

}
. Hence,

dim Im iω(y) = 5 and Im iω(y) = (∗ω(y))⊥.

(3) Im iA3 =

{( 0 −a b c

a 0 −c b

−b c 0 a

−c −b −a 0

)∣∣∣∣∣ a, b, c ∈ R

}
. Hence, if ω(y) is SD,

then Im iω(y) is the space of ASD 2-forms.

(4) Im iA4 =
{(

λ1A B

−Bt −λ2A

) ∣∣∣∣A = 2×2 skew-symmetric matrix
B = 2×2 matrix

∣∣∣∣}.

Just as in (2), dim Im iω(y) = 5 and Im iω(y) = (∗ω(y))⊥. Observe
that iω(y) is not surjective even if ω(y) is of generic type - this is in
sharp contrast with the cases n ≥ 6.

k = 2, n ≥ 6. Using Rule 2.17, it is easy to prove the following:



646 K. HONDA

Proposition 2.18. If an n × n skew-symmetric matrix A with
n = 2m even is of generic type (i.e., A = (λ1, · · · , λm), λi > 0 for
i = 1, · · · , m, and λi �= λj if i �= j), then Im iA = Im {·, A} = A.

k = 2, n = 6: The following are the possible types of orbits, where
A is in normal form:

(1) A = 0. Im iA = 0.

(2) A = (λ, 0, 0). Im iA =
{( ∗ ∗ ∗

∗
∗

)}
.

(3) A = (λ, λ, 0). Im iA =
{( ∗ X ∗

−Xt ∗ ∗
∗ ∗ 0

)}
.

(4) A = (λ1, λ2, 0), where λ1 �= λ2. Im iA =
{( ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ 0

)}
.

(5) A = (λ1, λ1, λ2), where λ1 �= λ2. Im iA =
{( ∗ X ∗

−Xt ∗ ∗
∗ ∗ ∗

)}
.

(6) A = (λ1, λ2, λ3), where all the λi are distinct. Im iA = A.

2.6 Harmonic 1-forms. In this section we prove the following
theorem:

Theorem 2.19. Let M be a closed, oriented n-dimensional manifold
with H1(M ;R) �= 0. Fix a nonzero cohomology class α ∈ H1(M ;R).
Then there exists a dense open set U ⊂ Metl(M) for which every g-
harmonic form ω in the class α has regular zeros, if g ∈ U . Hence a
generic harmonic 1-form ω in a fixed cohomology class α has isolated
zeros.

Remark 2.20. Provided all the zeros of ω are isolated, the number of
zeros of ω, counted with sign, is the Euler characteristic of M .

Before we begin the proof of Theorem 2.19, we state (without proof)
an important result of Aronszajn [1]:
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Theorem 2.21.

1. (“Weak” Unique Continuation) Let L be a second order linear
elliptic operator with Cl coefficients, for sufficiently large l. Suppose
Lu = 0 on a domain Ω and u = 0 on a nonempty open subset of Ω.
Then u = 0 on all of Ω.

2. (“Strong” Unique Continuation) Let L be a second order linear
elliptic operator with C∞ coefficients. Suppose Lu = 0 on a domain Ω,
u(x) = 0, and all the partial derivatives of all orders vanish at x. Then
u = 0 on all of Ω.

We now prove Theorem 2.19:

Proof of Theorem 2.19. We will prove the regularity of the map evα,x

given in Equation 13. Suppose that ω(x) = evα,x(g)(x) = 0. Without
loss of generality, take geodesic normal coordinates about x = 0; this
identifies T ∗

y M 
 (Rn)∗ for all y near 0. According to Equation 10,
the perturbation v(0) of ω(0) corresponding to the perturbation h of
the metric g has the form

(32)
(evα,x=0)∗(g)(h) = v(0)

= ±
∫

M

〈dd∗Gg(0, y), ∗(Dh∗)ω(y)〉gdvg(y).

Here, h(y) is of class Cl for l >> 0, and c−1
n Gg(0, y) ∼ F (y) asymptot-

ically, as y → 0.

For k = 1 we showed the following:

• 〈dd∗0F (y), ·〉g0 = (C/|y|n)Ry for the flat metric g0 and the adjoint
d∗0 of d with respect to g0.

• ∗(Dh∗)ω(y) : (Rn)∗ → (Rn)∗ is surjective, whenever ω(y) �= 0.

By the “Weak” Unique Continuation theorem, there exists a sequence
of points yi → 0 for which ω(yi) �= 0. Suppose η ∈ (Rn)∗. By the
surjectivity of iω(yi) (since ω(yi) �= 0), there exists a variation hi(yi) of
the metric at yi for which ∗(Dhi(yi)∗)ω(yi) = η. By taking a sequence
of functions f(y) with small support approaching hi(yi) · δyi

(y) (here
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δyi
(y) is the delta function with support at yi), we obtain:

(33) lim
f→hi(yi)·δyi

(evα,x=0)∗(g)(f)

= lim
f→hi(yi)·δyi

±
∫

M

〈dd∗Gg(0, y), ∗(Df∗g)ω(y)〉gdvg(y)

(34) = ±〈dd∗Gg(0, yi), η〉.

The following claim implies that 〈dd∗Gg(0, yi), η〉 ∈ Im (evα,0)∗(g)
for all η ∈ (Rn)∗.

Claim 2.22. Let φ : V → W be a linear map with W finite-
dimensional. If {wi}∞i=1 is a sequence in φ(V ) ⊂ W which converges
to w ∈ W , then w ∈ φ(V ).

Proof. This is a restatement of the fact that φ(V ) is a subspace of W
and that all vector subspaces of a finite-dimensional vector space are
closed.

By taking a subsequence, we may assume further that yi → 0 and
yi/|yi| → β. Now, as yi → 0, we have:

(35)
〈dd∗Gg(0, yi), η〉g
|〈dd∗Gg(0, yi), η〉g| →

〈dd∗0F (yi), η〉g0

|〈dd∗0F (yi), η〉g0 |
=

Rβ(η)
|Rβ(η)| ,

by Proposition 2.9. Since 〈dd∗Gg(0, yi), η〉g ∈ Im (evα,0)∗(g) for all
η ∈ (Rn)∗, it follows from Claim 2.22 that Rβ(η) ∈ Im (evα,0)∗(g) for
all η ∈ (Rn)∗. Finally, since Rβ is an isomorphism, we have proved
that Im (evα,0)∗(g) = T ∗

x=0M . Theorem 2.19 follows from Remark 2.7
and the discussion of Section 2.1.

2.7 SD/ASD harmonic 2-forms on a 4-manifold. We will now
prove Theorem 1.1. Note that we may substitute ASD 2-forms for SD
2-forms with the same result.

Proof of Theorem 1.1. Consider the evaluation map

(36)
ev+ : Q+ × M → ∧+,

((ω, g), x) �→ (ω(x), (g, x))
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where ∧+ → Metl(M) × M is the universal vector bundle whose fiber
∧+

g T ∗
x M over the point (g, x) ∈ Metl(M) × M is the set of g-SD 2-

forms at x. Recall that Q+ is the set of pairs (ω, g) where g ∈ Metl(M)
and ω is an SD g-harmonic form with [ω] �= 0. (Here we are viewing
Q+ ⊂ Ω2

m(M) × Metl(M).)

We will show that ev+ is transverse to the zero section of ∧+, i.e.,

(37) (ev+,x)∗ : T(ω,g)Q
+ → ∧+

g T ∗
x M

is surjective, whenever ω(x) = 0.

The two necessary and sufficient conditions for (v, h) ∈ T(ω,g)Q
+ are:

A. ∆g(v) + d/dt(∆g+th)|t=0ω = 0,

B. ∗g+th(ω + tv) = ω + tv, up to first order in t.

Differentiating (B), we obtain that v = ∗gv + d/dt(∗g+th)|t=0ω. At a
point x where ω(x) = 0, this gives v(x) = ∗gv(x). Hence, in order to
determine (ev+,x)∗ at (ω, g) when ω(x) = 0, it suffices to compute
the v(x)’s as in Equation 10, and project onto ∧+

g T ∗
x M , i.e., take

v(x) + ∗gv(x).

Take geodesic normal coordinates about x = 0 and identify T ∗
y M 


(R4)∗ for all y near 0. We have the following:

(i) 〈dd∗0F (y), ·〉g0 = (C/|y|4)Ry for g0 flat. Here d∗0 is the adjoint
of d with respect to g0.

(ii) If ω(y) �= 0 is SD, then Im iω(y) = ∧−(R4)∗.

(iii) If y �= 0, then Ry swaps SD forms and ASD forms, i.e.,
Ry : ∧±(R4)∗ ∼→ ∧∓(R4)∗.

The rest of the proof proceeds in the same fashion as the proof of
Theorem 2.19. Let (ω, g) ∈ Q+ with ω(0) = 0. Since [ω] �= 0, there
exists a sequence yi → 0 such that yi

|yi| → β and ω(yi) �= 0 by the
“Weak” Unique Continuation theorem. Combining (ii) and (iii), we
obtain Ryi

(Im iω(yi)) = ∧+(R4)∗. Now, using a limiting argument
as in Theorem 2.19 (and Claim 2.22), Im (ev+,x)∗ ⊃ Rβ(∧−(R4)∗),
implying the surjectivity of (ev+,x)∗.

Remark 2.23. An SD form ω is nondegenerate at all points x where
ω(x) �= 0. This is because ω2(x) = ω(x) ∧ ∗ω(x) > 0, if ω(x) �= 0.
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Hence if b+
2 (M) > 0, we can construct an SD harmonic form which is

nearly symplectic, that is, is nondegenerate away from a collection of
disjoint circles.

Let (ω0, g0), (ω1, g1) be regular points in Q+ with respect to the
evaluation map ev+ given by Equation 36. (In particular, [ω0], [ω1] are
nonzero cohomology classes.) Define

(38) P (Q+) =
{
γ : [0, 1] → Q+|γ(0) = (ω0, g0); γ(1) = (ω1, g1);

γ is of class Cl for l >> 0
}

.

We write γ(t) = (ωt, gt). Consider

(39)
ẽv+ : P (Q+) × M × [0, 1] → ∧+,

(γ, x, t) �→ (ωt(x), (gt, x)).

The following is the one-parameter family version of Theorem 1.1:

Theorem 2.24. There exists a dense open set U ⊂ P (Q+) such that
if γ ∈ U and γ(t) = (ωt, gt), then {(x, t) ∈ M×[0, 1]|ωt(x) = 0} gives a
cobordism inside M×[0, 1] between the zeros of ω0 and the zeros of ω1.

Proof. By Proposition 2.2, it suffices to show that (ẽv+,x,t)∗ :
TγP (Q+) → ∧+

gt
T ∗

x M is surjective whenever ωt(x) = 0. Since [ωt] �= 0
from the definition of Q+, the proof of Theorem 1.1 gives enough
perturbations (vt, ht) of (ωt, gt) at the point t such that {vt(x)|(vt, ht) ∈
T([ωt],g)Q

+} = ∧+
gt

T ∗
x M . It is easy to incorporate (vt, ht) into a one-

parameter family, thereby proving the surjectivity of (ẽv+,x,t)∗.

2.8 Non-SD/ASD harmonic 2-forms on a 4-manifold. In this
section assume that M is a closed, oriented 4-manifold with b+

2 (M) > 0
and b−2 (M) > 0. If the intersection pairing on H2(M ;R) is definite,
then all the harmonic 2-forms are automatically SD or ASD, and the
considerations of Section 2.7 apply instead.

Before discussing genericity results for non-SD/ASD harmonic 2-
forms, we first explain the stratification of ∧ 2(R4)∗ under the action
of SO(4), where R4 
 (R4)∗ via the inner product on R4. Since rank
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is invariant under the action of SO(4), we let Vi = {ω ∈ ∧ 2(R4)∗ |
rank ω = i}. In particular, V0 = {0}. Note that V4 has two substrata,
namely the SD 2-forms and the ASD 2-forms, which we denote V4,+ and
V4,−, respectively. For convenience, we assemble the relevant data in a
chart. In the chart, {e1, e2, e3, e4} is an orthonormal basis for (R4)∗.

Stratum Typical Element Dim Orbit Dim Stratum
V0 0 0 0
V2 λe1e2 4 5

V4,± λ(e1e2 ± e3e4) 2 3
V4 − (V4,+ ∪ V4,−) λ1e1e2 + λ2e3e4, 4 6

λ1 �= ±λ2

We prove the following key theorem:

Theorem 2.25. Consider the evaluation map ev given by Equa-
tion 2. There exists a dense open set U ⊂ Q−D, where D = {(ω, g) ∈
Q| ∗ω = ±ω}, such that if (ω, g) ∈ U , then (evx)∗ : T(ω,g)Q → ∧ 2T ∗

x M
is surjective for all x ∈ M . Moreover, U contains Q′ = {(ω, g) ∈
Q − D | g is of class C∞}.

Proof. Let (ω, g) ∈ Q′. We can write ω = ω+ + ω− with ω+ SD and
ω− ASD, and ω± �≡ 0. The set of points where ω is SD is the zero set
of ω−. Since ω± are harmonic, by the “Weak” Unique Continuation
theorem, ω is SD or ASD away from a dense open subset of M . The
locus {x|ω(x) �= 0} is also a dense open subset of M . In what follows,
take geodesic normal coordinates y on a suitably small ball Dn about
x = 0, and identify T ∗

y M 
 (R4)∗ over Dn.

Case 1. Suppose ω(0) ∈ V4 − V4,±. Then ω(y) ∈ V4 − V4,± for all
y ∈ Dn, after possibly shrinking Dn, and Im iω(y) = (∗ω(y))⊥, a five-
dimensional subspace of ∧ 2(R4)∗. Now, taking a sequence yi → 0 with
yi/|yi| → β,

(40) 〈dd∗G(0, yi), Im iω(yi)〉g → (∗0Rβ(ω(0)))⊥0 ,

with ∗0, g0, ⊥0 with respect to the inner product at y = 0. But the
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subspaces (∗0Rβ(ω(0)))⊥0 do not approach the same five-dimensional
space from the various directions parametrized by S3 = {β ∈ R4 |
|β| = 1}. Using the limiting argument from the proof of Theorem 2.19,
(evx=0)∗ must be surjective.

Case 2. Suppose ω(0) ∈ V4,+. Since rank is upper semi-continuous,
we may assume that ω(y) ∈ V4 for all y ∈ Dn. Moreover, ω(y) ∈
V4 − V4,± on a dense open subset of Dn, and (evx=0)∗ is surjective by
the same argument as in Case 1.

Case 3. Suppose ω(0) ∈ V2. We may assume that ω(y) ∈ V2 ∪ (V4 −
V4,±) for all y ∈ Dn. Im iω(y) = (∗ω(y))⊥ is still five-dimensional, and
(evx=0)∗ is surjective as in Case 1.

Case 4. Suppose ω(0) ∈ V0. Here we use the condition that the metric
g is of class C∞, and hence ω is also of class C∞ by the standard
elliptic theory. We argue by contradiction. Suppose (evx=0)∗ is not
surjective. Then, for y in a dense open set of Dn, ω(y) ∈ V2∪(V4−V4,±)
and 〈dd∗G(0, y), Im iω(y)〉 = 〈dd∗G(0, y), (∗ω(y))⊥〉 must be a five-
dimensional subspace of ∧ 2(R4)∗, independent of y. Since ω is C∞,
we are able to write

(41) ω(y) = ωr(y) + h.o.,

where ωr(y) =
∑

i,j pij
r (y)dyidyj with pij

r (y) a homogeneous polynomial
of degree r, and ‘h.o.’ is the remainder consisting of terms of degree
> r in y. The “Strong” Unique Continuation theorem (Theorem 2.21)
ensures that there exists some r < ∞ for which ωr(y) �= 0.

Now, take a sequence yi → 0 such that yi/|yi| → β, β ∈ S3, and
ω(yi) ∈ V2∪(V4−V4,±). If ∗,⊥, d∗ are with respect to g and ∗0,⊥0, d

∗0

are with respect to the flat metric g0, then we have:
(42)

〈dd∗G(0, yi), Im iω(yi)〉g → Rβ((∗0ωr(β))⊥0) = (Rβ(∗0ωr(β)))⊥0,

since ω(y) is dominated by ωr(y) near y = 0, and the homogeneity of
ωr(y) implies that ωr(ty) is a multiple of ωr(y). Therefore,

(43) Rβ(∗0ωr(β)) = f(β)ω̃0,
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where ω̃0 is (nonzero and) constant and f is a function of β ∈ S3.

Next, observe that the coefficients of |y|2Ry are polynomials of
degree 2. Then we can write:

(44) |y|2Ry(∗0ωr(y)) =
∑
i,j

f ij
r+2(y)dyidyj ,

where f ij
r+2 is a homogeneous polynomial of degree r + 2 in y. By

combining Equations 43 and 44, we obtain:

(45) |y|2Ry(∗0ωr(y)) = fr+2(y)ω̃0,

with fr+2(y) homogeneous in y. Hence

∗0ωr =
fr+2(y)
|y|2 Ry(ω̃0) = fr+2|y|2〈dd∗0F (y), ω̃0〉g0 ,(46)

ωr = fr+2|y|2〈dd∗0F (y), ∗0ω̃0〉g0 .(47)

Note that ωr �= 0.

We readily calculate that

(48) d(〈dd∗0F (y), η〉g0) = d

(
C

|y|4 Ry(η)
)

= 0,

for all constant 2-forms η. (Here C is a nonzero constant.) Coupled
with the fact that dω = 0 and d ∗ω = 0 imply dωr = 0 and d ∗0 ωr = 0,
we obtain:

dωr = 0 =⇒ d(fr+2|y|2) ∧ Ry(∗0ω̃0) = 0(49)
d(∗0ωr) = 0 =⇒ d(fr+2|y|2) ∧ Ry(ω̃0) = 0.(50)

Now, if 0 �= ξ ∈ (R4)∗, 0 �= ζ ∈ ∧ 2(R4)∗, and ξ ∧ ζ = 0, then ζ is
decomposable and ξ lies on the 2-plane given by ζ. If ξ∧∗ζ = 0 as well,
then ξ also lies on a 2-plane orthogonal to ζ, a contradiction. Therefore,
d(fr+2|y|2) = 0 and fr+2 = 0, contradicting the nonsurjectivity of
(evx=0)∗.

We have now shown that for all (ω, g) ∈ Q′, (evx)∗ is surjective at
all points x ∈ M . Since the surjectivity of the derivative is an open



654 K. HONDA

condition, we can cover {(ω, g)}×M with a finite number of open sets
Ui × Vi, i = 1, · · · , l. Then ∩l

i=1Ui is still open and (evx)∗ is surjective
at all points of (∩l

i=1Ui) × M .

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. This immediately follows from Theorem 2.25
and the table before Theorem 2.25, since the evaluation map ev, when
restricted to U × M , is transverse to all the strata.

2.9 Harmonic 2-forms on even-dimensional manifolds. We
will prove the following theorem, which has Theorem 1.3 as a special
case.

Theorem 2.26. Let M be a closed, oriented n-manifold, where
n = 2m > 4 is even. Fix a nonzero cohomology class α ∈ H2(M ;R).
Then there exists a dense open set U ⊂ Q′′ = Metl(M) on which (evα)∗
given by Equation 12 is surjective at all points in U × M .

Proof. Suppose for the moment that we have already proved the
following proposition.

Proposition 2.27. Starting from any (g, x) ∈ Q′′ × M with
corresponding g-harmonic 2-form ω ∈ α, we can find an arbitrarily
small perturbation g + h ∈ Q′′ of g so that the corresponding (g + h)-
harmonic form ω + v ∈ α has generic type at x.

Proposition 2.27 implies the following lemma:

Lemma 2.28. Let S be the set of g ∈ Q′′ for which the g-harmonic
form ω ∈ α is of generic type on a dense open set in M . Then S is
dense in Q′′.

Proof of Lemma 2.28. We will exhibit a g ∈ S arbitrarily close to
g0 ∈ Q′′. Pick a countable dense subset of M , say {xi}∞i=1. Let V0 � g0

be a closed ball in Q′′ of small radius, centered about g0. We pick a
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closed ball Vi ⊂ Vi−1 and an open ball Ui � xi inductively, as follows:
Given xi, there exists a point gi ∈ Vi−1 such that the gi-harmonic
ωi ∈ α is of generic type at xi. Then there exists Vi × Ui � (gi, xi),
on which ω(x) is of generic type, since the generic type condition is an
open condition.

Now let g ∈ ∩∞
i=1Vi, which is nonempty because of completeness. By

our construction, the g-harmonic ω ∈ α is of generic type on a dense
open subset ∪∞

i=1Ui of M . This proves Lemma 2.28.

By Lemma 2.28, for any g ∈ S and x ∈ M , there exist points
yi → x such that the g-harmonic ω ∈ α is of generic type at yi.
According to Proposition 2.18, iω(yi) = ∧ 2T ∗

yi
M . Therefore, by using

the approximation technique from Section 2.6, it follows that (evα,x)∗
is surjective for all x ∈ M and g ∈ S.

We now argue as in the last paragraph of Theorem 2.25. The
surjectivity of (evα,x)∗ is an open condition on Q′′×M . Combining this
with the compactness of M , we obtain that the condition “(evα,x)∗ :
TgQ

′′ → ∧ 2T ∗
x M is surjective for all x ∈ M” is an open condition on

Q′′. But S is dense, so hence there is an open dense set U ⊂ Q′′ for
which (evα,x)∗ is surjective for all x ∈ M . This completes the proof of
Theorem 2.26.

Proof of Proposition 2.27. Let us now proceed to show that ω can be
perturbed at x so that (ω + v)(x) has generic type. If ω(x) = 0, pick
a point y arbitrarily close to x such that ω(y) �= 0 – such a sequence
exists by the “Weak” Unique Continuation theorem. If ω(x) �= 0, pick
a point y arbitrarily near x such that rank ω(y) ≥ rank ω(x). This is
possible because the rank is upper semi-continuous. Using the notation
introduced in the paragraph after Fact 2.15 for matrices in normal
form, we represent ω(y) by the matrix (λ1, · · · , λs, 0, · · · , 0), after an
orthonormal change of basis. Here the λi > 0 are not necessarily
distinct.

Then, by Rule 2.17, Im iω(y) contains an element η of higher rank
than ω(y), if ω(y) does not have maximal rank already. For example,
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Im iω(y) contains any element of the form

(51)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗

. . .
∗ ∗
∗ 0 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As before, ∗ is an arbitrary 2 × 2 matrix block, consistent with the
skew-symmetry of the matrix. Now form ω′(x) = ω(x) + tRyη. Recall
that, using the approximation technique from Section 2.19, Ryη ∈
Im (evα,x)∗ at g ∈ Q′′, so there exists a perturbation g+th of the metric
g which gives rise to ω′(x), up to 1st order in t. Since Ryη preserves
the rank of η, rank Ryη > rankω(x) and rankω′(x) > rankω(x) for
small enough t. Continue this process until we obtain a harmonic
form ω′′ ∈ α (for a metric g′′ close to g) such that the representation
ω′′(x) ↔ (λ1, · · · , λm) has λi all nonzero.

The next step is to perturb ω′′(x) until the λi become distinct, while
keeping them nonzero. Using our notation for matrices in normal form,
let Js be the 2s × 2s matrix (1, · · · , 1), and let (λ1Jk1 , · · · , λrJkr

)
denote the n×n matrix (λ1, · · · , λ1, λ2, · · · , λ2, · · · , λr, · · · , λr), where
λi appears ki times and 2

∑r
i=1 ki = n. After an orthonormal change

of basis, we write ω′′(x) = (λ1Jk1 , · · · , λrJkr
). Let

(52)

λ =

⎧⎪⎨⎪⎩BAB−1

∣∣∣∣∣∣∣A = (λ1Jk1 , · · · , λrJkr
),

λi �= λj , λi > 0, B ∈ O(n),

k1 ≥ · · · ≥ kr, 2
r∑

i=1

ki = n

⎫⎪⎬⎪⎭ .

λ is the stratum consisting of orbits of skew-symmetric matrices of the
form A = (λ1Jk1 , · · · , λrJkr

). Before perturbing, we make the following
dimensional computations, Lemmas 2.29 and 2.30.

Lemma 2.29. dim λ = dim O(n) −∑r
i=1 k2

i + r.

Proof of Lemma 2.29. Let A = (λ1Jk1 , · · · , λrJkr
). Then the
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dimension of the orbit of A is given by:
(53)
dim O(n) ·A = dim O(n)−dim Stab(A) = dim O(n)−dim ker(ad(A)),

where ad(A)(B) = [A, B] = AB − BA. Let us write B = (Bij), where
Bij is a 2ki × 2kj block. Then [A, B] = 0 gives

(54) λiJki
Bij = λjBijJkj

.

One computes that if i = j, then Bii ∈ gl(ki,C), and if i �= j, then
Bij = 0. Thus,

ker(ad(A)) 
 (gl(k1,C) ⊕ · · · ⊕ gl(kr,C)) ∩ o(n)(55)
= u(k1) ⊕ · · · ⊕ u(kr),(56)

where gl(s,C), o(s), and u(s) are Lie algebras of Gl(s,C), O(s), and
U(s), respectively. Then

(57) dim ker(ad(A)) = k2
1 + · · · + k2

r ,

and

(58) dim λ = dim O(n) · A + r = dim O(n) −
r∑

i=1

k2
i + r.

Lemma 2.30. dim Im iA = dim O(n) −∑r
i=1 k2

i + n/2.

Proof of Lemma 2.30. Using Rule 2.17, one computes that

Im iA =

⎛⎜⎜⎝
A1 ∗ ∗ ∗
∗ A2 ∗ ∗
∗ ∗ . . . ∗
∗ ∗ ∗ Ar

⎞⎟⎟⎠ , with Ai =

⎛⎜⎜⎝
∗ X X X
X ∗ X X

X X
. . . X

X X X ∗

⎞⎟⎟⎠ ,

where ∗ is an arbitrary block of the correct size consistent with the
skew-symmetry, and X is a 2× 2 block of the form

(
c −d

d c

)
. Therefore,

(59)

dim Im iA = dim O(n)−2
r∑

i=1

ki(ki − 1)
2

= dim O(n)−
r∑

i=1

k2
i +

n

2
.
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Lemmas 2.29 and 2.39 prove that if r < n/2, then dim Im iA >
dim Λ, for A ∈ Λk1,··· ,kr

. We now claim that there exists a small
perturbation of (ω′′, g′′) to (ω′′′, g′′′) such that ω′′′(x) ∈ Λl1,··· ,ls with
dim Λl1,··· ,ls > dim Λk1,··· ,kr

, as long as not all ki = 1, i.e., ω′′(x) is
not already of generic type. Indeed, pick y arbitrarily close to x such
that ω′′(y) ∈ Λm1,··· ,mp

with p ≥ r and
∑p

i=1 m2
i ≤ ∑r

i=1 k2
i . Then

dim Im iω′′(y) > dim Λk1,··· ,kr
. This means that there exists η such

that ω′′(x)+ tRyη exits Λk1,··· ,kr
, as well as avoids other Λk′

1,··· ,k′
r′ with

dim Λk′
1,··· ,k′

r′ ≤ dim Λk1,··· ,kr
, by dimension count.

Therefore, we can perturb in stages until we finally obtain (ω̃, g̃)
close to (ω, g) with ω̃(x) of generic type. This concludes the proof of
Proposition 2.27.

A consequence of Theorem 2.26 is the general principle that a har-
monic 2-form, as regards generic transversality issues, behaves just like
an ordinary closed 2-form, which, in turn, behaves like an ordinary 2-
form with no differential condition. (See Martinet [11] for a study of
generic closed forms.)

Corollary 2.31. Fix a nonzero cohomology class α ∈ H2(M ;R).
Then there exists a dense open subset of Q′′ = Metl(M) on which the
g-harmonic 2-form ω in the class α has no zeros.

Remark 2.32. Any symplectic form ω on a closed, oriented, even-
dimensional manifold M is intrinsically harmonic, i.e., there exists a
metric g on M for which ω is harmonic. This suggests that we may
be able to study generic harmonic two-forms as degenerate symplectic
forms, and conversely symplectic geometry from the point of view of
harmonic forms. The following question arises naturally: is it possible
to use results on generic harmonic 2-forms to construct symplectic
forms on M?

3. The Dirichlet problem. Using a setup similar to that for
harmonic forms on a compact manifold, one can prove an analogous
theorem for solutions to the Dirichlet problem. We refer the reader
to [5] for standard facts on the Dirichlet problem. Let Ω ⊂ Rn be a
bounded domain with a smooth boundary ∂Ω. The following is well-
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known:

Fact 3.1. There exists a unique solution u to the Dirichlet problem
∆gu = 0, u|∂Ω = f , where ∆g is the Laplacian with respect to the
Cl-metric g with l � 0, l �∈ Z, and f is a fixed Cl-function on the
boundary.

Let Metl(Ω) be the space of Cl-metrics on Ω, i.e., defined and Cl

on some open set containing Ω. This is a Banach manifold, which we
also view as {(u, g)|∆gu = 0, u|∂Ω = f} ⊂ Cm(Ω) × Metl(Ω), m >> 0,
m �∈ Z. We shall prove the following theorem:

Theorem 3.2. Fix a Cl-function f �≡ 0 on ∂Ω. Then there is a
dense open set in Q = Metl(Ω) for which the solution to the Dirichlet
problem ∆gu = 0, u|∂Ω = f , has regular zeros inside Ω.

Remark 3.3. No claims are being made about the behavior of zeros
as we approach ∂Ω.

Proof. Consider the evaluation map:

(60) ev : Q × Ω → R, ((u, g), x) �→ u(x).

We will show that ev is regular, i.e., ev∗((u, g), x) is surjective (nonzero),
whenever u(x) = 0.

As before, computing ev∗((u, g), x) is equivalent to differentiating the
conditions ∆gt

ut = 0, ut|∂Ω = f , where gt = g + th and ut = u + tv,
up to 1st order in t. Differentiating, we get

(61)
d

dt
(∆gt

ut)
∣∣∣∣
t=0

= ∆gv +
d

dt
(∆g+th)

∣∣∣∣
t=0

u = 0,

and v|∂Ω = 0.

Next, we convert Equation 61 into an integral involving the Green’s
function.

Fact 3.4. If Ω is a bounded domain with C∞-boundary ∂Ω, then a
Green’s function G : Ω × Ω → R satisfying G(·, ∂Ω) = G(∂Ω, ·) = 0
exists.
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As before, we can write

v(x) = −
∫

Ω

G(x, y)
d

dt
(∆g+th)

∣∣∣∣
t=0

u(y) dvg(y)(62)

= ±
∫

Ω

G(x, y)(∗d(Dh∗)) du(y) dvg(y),(63)

using d ∗ du = 0. Here Dh∗ = d/dt(∗g+th)|t=0.

Pick geodesic normal coordinates on a small open disk U about x = 0.
For perturbations h of g with support inside U , we have

(64) v(0) = ±
∫

U

G(0, y)(∗d(Dh∗))du(y)dvg(y).

Fact 3.5. G(0, y) is asymptotic to

(65) F (y) =
{

cn/|y|n−2, if n > 2;
cn log |y|, if n=2,

as y → 0. Here cn is a nonzero constant. The derivatives of G(0, y)
are also asymptotic to the derivatives of F (y) as y → 0.

Now set ω(y) = du(y), and write ω =
∑

i ωi(t)ei(t). We can choose
an orthonormal basis ei(t) = ei − (1/2)t

∑
j hijej on U for gt = g + th,

where {ei} is an orthonormal frame with respect to g. Then,

v(0) = ±
∫

U

G(0, y)d(Dh∗)du(y)

(66)

= ±
{∫

U

d(G(0, y)(Dh∗)du(y)) −
∫

U

dG(0, y) ∧ (Dh∗)du(y)
}(67)

= ±
∫

∂U

G(0, y)(Dh∗)du(y) ±
∫

U

〈dG(0, y), ∗(Dh∗)du(y)〉gdvg(y)

(68)

= ±
∫

U

〈dG(0, y), ∗(Dh∗)du(y)〉gdvg(y),

(69)
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since we are taking h with small support near x.

If du is identically 0 near y, then u is constant near y, and u must
be constant on all of Ω by the Unique Continuation theorem. For u
constant, Theorem 3.2 is trivially true. Therefore assume that u is not
constant. Then there exist points yi → 0 such that du(yi) �= 0. When
du(yi) �= 0, idu(yi) is surjective, and, just as in the case of harmonic
1-forms, a limiting argument proves the surjectivity of ev∗((u, g), x).
This concludes the proof of Theorem 3.2.
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Appendix

We give a proof of Proposition 2.1. Let Metl be the set of Cl-Hölder
metrics on M , U ⊂ Metl be a small open set containing g0, Ωk

j be
the set of Cj-Hölder k-forms on M , and Hk

g0
be the set of g0-harmonic

k-forms. Then consider the map

(70)
Ψ : Ωk

m × U −→ Ωk
m−2/Hk

g0
,

(ω, g) �−→ [∆gω].

If ω ∈ Ωk
m, then ∆gω ∈ Ωk

m−2, provided l >> m, since |∆gω|m−2 ≤
C|ω|m. Here | · |j is the Hölder j-norm and C is a constant. Since ∆gω
can be expressed in terms of derivatives of g and ω up to 2nd order, it
follows that Ψ is smooth.

Claim. Suppose Ψ(ω0, g0) = 0. Then DΨ(ω0, g0) : Ωk
m × Tg0Metl →

Ωk
m−2/Hk

g0
is surjective and has a bounded right inverse.

Proof. DΨ(ω0, g0) maps (v, h) �→ ∆g0v + d/dt∆g0+th|t=0ω0. We use
the following Hölder estimate, which can be found, for example, in [6]:

(71) |G̃g0v|m ≤ C|v|m−2,
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where v ∈ Ωk
m−2 and G̃g0 is the Green’s operator for ∆g0 . In particular,

if v is L2-orthogonal to Hk
g0

, then ∆g0 ◦ G̃g0(v) = v. Since Equation 71
implies that v ∈ Ωk

m−2 ⇒ G̃g0v ∈ Ωk
m, we see that DΨ(ω0, g0) is

surjective. The Hölder estimate also immediately implies the existence
of a bounded right inverse L : Ωk

m−2/Hk
g0

→ Ωk
m ×Tg0Metl which maps

[v] �→ (G̃g0v, 0).

Using the Claim, we define:

(72)
Π : Ωk

m × Tg0Metl −→ Hk
g0

× Tg0Metl,

(ω, g) �→ (projg0(ω), g),

where projg0 is the L2-projection onto Hk
g0

. Π is the quotient map of
Ωk

m × Tg0Metl by the image of L. By identifying a small neighborhood
of g0 ∈ Metl with a neighborhood of 0 ∈ Tg0Metl, we have:

(73) (Ψ, Π) : Ωk
m × U → (Ωk

m−2/Hk
g0

) ×Hk
g0

× U.

Now, D(Ψ, Π)(ω0, g0) is an isomorphism, and the Inverse Function
theorem for Banach spaces (see [9]) implies that (Ψ, Π) is a local
diffeomorphism near (ω0, g0). The zero set Q|N(ω0,g0) of Ψ, restricted
to an open neighborhood N(ω0, g0) of (ω0, g0), is therefore a Banach
submanifold locally isomorphic to an open ball in Hk

g0
× U .

It remains to show that Q|N(ω0,g0) = {(ω, g) ∈ N(ω0, g0)|∆gω = 0}.
Clearly, Q|N(ω0,g0) ⊃ {(ω, g) ∈ N(ω0, g0)|∆gω = 0}. The inclusion in
the other direction follows from the fact that each slice of Q|N(ω0,g0)

with g held constant (g near g0) has the same dimension as dim Hk
g ,

since dim Hk
g is independent of g by Hodge theory.

ENDNOTE

1. Note that the action of SO(n) on ∧ kRn and the metric g on M induce
an action of SO(n) on ∧ kT ∗M and hence a stratification ∧ kT ∗M = �αNα into
submanifolds Nα related to the orbit type. These submanifolds Nα are fiber-
subbundles of ∧ kT ∗M , and we can consider whether the section ω of T ∗M is
transverse to the fiber-subbundle Nα.
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