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CONVOLUTION AND FOURIER TRANSFORM
OVER THE SPACES K, p > 1

BYUNG KEUN SOHN AND DAE HYEON PAHK

ABSTRACT. We introduce the space K, r,p > 1 that is

the vector space of all C°°-functions f such that ekmp@"‘f
vanishes at infinity for all @« € N™ and its dual IC; p- For

f,g € IC;7 api K € Z, k < 0, we study the linear fur’lctional
f ®gon ICp, i defined by

(f®g,9)=(f=),(g),p(x+1)), ¢&€EKpk

Also, we show a representation theorem and an inversion
formula for the usual distributional Fourier transform over
the spaces IC;7 v k€Z k<O

1. Introduction. For spaces of functions and distributions we
use the notations and terminology of Horvath [3]. In particular, Sk
is the space of all infinitely differentiable functions f on R™ such that

(1+ |x|2)k60‘f(x) vanishes at infinity for all « € N™.
We denote K, p > 1, the space of all functions ¢ € C*°(R") such
that
vi(@) = sup e |DY(x)| < oo, k=1,2,...,

where D* = (i='9/0x1)™" --- (i71'0/02,)"" and |a| = a; + - + an.
The space K, with semi-norm vy, kK = 1,2,... is a Frechet space and
the space of C'°°-functions with compact support D is a dense subset
of K,. By K}, we mean the space of continuous linear functionals on
Kp. For further details, we refer to [4].

We introduce the spaces K, x(R™), p > 1, that are defined as the
vector spaces of all functions f defined on R™ which possess continuous
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partial derivatives of all orders and satisfy the condition that if « € N™
and € > 0, then there exists C'= C(f, a,e) > 0 such that

el 19o f(2)] < e,

for |z| > C(f, v, €).

In what follows, we shall write KCp, 5, instead of K, x(R™) and always
assume p > 1. For every o € N", we define on K, ;, the semi-norms

Gh.a(f) = max 1" |0° f(2)).
rER"
The space K, equipped with the countable family of semi-norms is a
locally convex space. The space of C'*°-functions with compact support
D is a dense subspace of KCp, .. By IC;’ x» Wwe mean the space of continuous
linear functionals on KCp, .

In this paper, we will study convolution and Fourier transform over
K, as in the case over & in [1] and [2]. We will prove that for
fr9 € K opiy @ € Kpi, kK € Z, k < 0, the linear functional f ® g
defined by

(fog,0)={f(x),(g(), ¢ +y)), ¢€Kpr,

/

has sense as the application of the functional f € K} ,,; to (g(y),
o(x +y)) € Kparg. We will also show a representation theorem for
the usual distributional Fourier transform over the space ’C;;,Iw ke Z,
k < 0. Its inversion formula is also obtained, which enables us to prove
that IC;J’QP . 18 a commutative convolution algebra with a unit element.

2. Convolution over K;J’ka. First we will prove that for f,g €
Kook @ € Kpks k € Z, k <0, the linear functional f ® g defined by

(1) (f®g,0)=(f(2),(9(y), o(z +y)))
has sense as the application of the functional f € K;,ka to (g(y),
¢(z +y)) € Kpark. It is also obtained that f ® g € K, ;.

We define the convolution f ® g over K 5, on Ky by (1).

For the proof of the above results, we need the following several
lemmas.
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Lemma 2.1. Let x € R" be a fized vector, ¢ € Ky, k€ Z, k < 0.
Then ¢(x +y) € Kp vk

Proof. Since ¢ € K, for all e > 0 and o € N, there exists
A(¢,a,€) > 0 such that

M 0%(2)] <,

for |z| > A(¢,a,e). Then, since k < 0, if we take B(¢,a,e,2) =
A(¢p, a, €) + |x|, then for |y| > B(d, a, e, x),
T 9% gz + y)| = 2 RV e kltul” Ghlatul” | 9o g (4 4 g
2R =) M) ke ul” |90 (5 4 )|
2) < 2By =2l +y1") Gl +ul” |90 o 4+ )|
_ e—2pk\z|p eklw-‘:—y\p |5a¢(x+y)|

_op p
<62k‘$|6.

Therefore, for each fixed vector z € R", ¢(z +y) € Kp ork. a

Lemma 2.2. Ifg € K;)’ka and ¢ € Kp withk € Z, k <0, then,
for allme N™,

(3) 9" (9(y), o(x +y)) = (9(y), 0" d(x + y)).

Proof. We will prove (3) by induction on |m|. Assume |m| = 1.
For each fixed + € R"™ and each fixed ¢ = 1,2,...n, set h; =
(hi,lahi,%-” 7hi,n) € R" given by hi,i = AI,L' 7§ 0 and hi,j = 0 for
j # i. Now consider

o). 0o+ y 1) — (9l0): 6+ )}

— gl o 9 1) = {9l0), O, (0),

K2

where

)
s (z +y).

Onal) = 5 {0z +y+hi) — (e -+ )} -
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We will prove that 6, , — 0, in Cp 2y for |h;| — 0, which assures that

7]
8.731'

0 Pz + y)>~

’ 8.731'

(9(y), 9z +y)) = <g(y)

First, we will check that 0y, »(y) € K 2rx. For all « € N™ and y € R",

0
OP(x +y+ hi) = 8%p(x +y) + Ay . 0%¢(x +y)
Az, ' (92
+ / (Azi = &) 55 0%(x +y + tig) dE,
0 Ou;
where ti,f = (ti71,£, ti727£, - 7ti,n,£) with tiJ"& = §forj =7 and ti7j,£ =0

for j # i. Therefore,

2

0%, 2 (y) = / (Az; =€) 92 0%¢(x +y +t;¢)dE.
0 i

Since ¢ € Kp, given € > 0 and o € N7, there exist A(¢,a,e) > 0
such that if |z| > A(¢, a, €), then

0? o
9.2 0%¢(2)

K2

P
eklel <e.

Now, for |t| < |hs| < 1,

82

(2

(4) 2kl

62

(3

P r P P
262 kly| " k|z+y+t]| ek\x+y+t\

Since ¢ € K, i, we have that for [t| <1 and |z +y + t| > A(¢, @, €),

»| 02
eklz+y+t| ﬁa(’(]ﬁ(m—ky#—t)‘ <e
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If we let B(¢,a,e,z) = A(d, v, ) + |x| + 1, since k < 0, we have that
for |y| > B(¢, o, e, x), (4) is less than or equal to

2" klyl? o —klz+y+t? 22k(Jy|” = (27) " oty +tP) o

e<e
P p__ p__ p
< 2Ryl =lyl” = lz+t)7) o
_9P )
— o2 klatt|P

_9P P p P p
< PRI+

_92P. _92p P
Se 2 k}e 2 k|w\ c.

807 for |y| > B(qb,a,s,x),

=2k o —2%k|z|?

Aii
1920, L (y)] < / Ax; —€)d¢
5 |0%0n, . (y)] A | ( )

Al‘i _92p _92p P
| |e21662k|ac\57

2

and thus 0y, »(y) € Kpork. On the other hand, for |y| < B(¢,a,¢,x)
and |y| <1,

82
6—y-26 ¢(I+y+t)‘ < M,

2

P P
2 kYl

for some constant M;. Setting My = max{Mj, 6*22%6*22%‘1'?6} and
taking into account (5), for all y € R™,

e2pk\y|p| “0 ( )l < é; / wl( X; g)dg
0 hi,x\U)| = o Az,
Axi
- ‘ 2 ‘ 2”2)

which tends to 0 as |h;| — 0. This proves the conclusion for |m| = 1.
Now, the result of this lemma follows by induction on |m]|. O

Lemma 2.3. Ifg € K, 4.0 € Ky, k € Z, k < 0, then
(9(y), d(x +y)) € Kpark.

Proof. From Lemma 2.2, one has that (g(y), ¢(x + y)) is smooth. Tt
remains to prove that, for any m € N™ and any ¢ > 0, there exists
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B > 0 such that if |z| > B, then e2*I1*I"|0™(g(y), d(z + y))| < e. In
fact, from Lemma 2.2 and [3, Remark of Proposition 2, p. 97] there
exist a positive constant C' and a nonnegative integer r such that

(6) (g, )| < Co??%i Tk, (9),

for ¢ € Kp 1.

Here C and r depend on g but not on ¢. First, we will show that this
lemma holds for ¢ € D(R"). Since D C K, x, by (6), for any m € N"
and ¢ € D,

9T (g(y), bl + )]

="M (g(y), 07 d(w + )|

< Co??é ;Ié% ezpklm\pezpkly\”‘a;na;sdy(x + )|

< C max "M, o,

0<s<r e
where M, o, = max,cgn |0 ¢(z)|. Since k < 0, this lemma holds
for ¢ € D. Next, since D is a dense subset of ICp, i, for ¢ € KCp 1, there
exists a sequence {¢;} C D with ¢; — ¢ in K, 1, as j — oco. Hence for
any £ > 0 and any o € N, there exist jo = jo(e,a) € N such that
z|P1qa €
max e"*"[07{¢;(2) — ¢(2)}| < 30

ZER’VL
for j > jo. So, for any ¢ > 0 and any @ € N", if j > jo =
max{jo(e,m+ as)}, s=0,1,...r,

O {(g(y), b (x + ) — (9(y), dla + y))}|
< C max max e2 k=" 2"klyl”

- 0<s<r yeR™

x [0y 0 {oj(z +y) — ¢z +y)}
= C max max e klzl?  2Pklyl? o—klzt+yl? klo+y|”

0<s<ryeR"
(7) x |0t {gi(x +y) — oz + y)}
= C max max P |zlP+27[y|" —|ztyl”) gklatyl”

0<s<r yeR™

x oMt { gz +y) — bz +y)}|

k|z|P | am—+as . —
< C’Org?gr max e |0 {6;(2) — o(2)}

A
ST
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Also, since (g9(y), ¢j, (x+y)) € Kp 20k, for any € > 0 and m € N7, there
exist A(e,m, ¢j,) such that

H 107 (g(y), du @+ )] < 5.

for |x| > A(e,m, ¢j,). Hence taking B = A(e,m, ¢,,), for |z| > B,
then, by (7) and the above fact,
M0 g(y), o + )]
< M0 g (y), 6 (@ + )]
+ MO (g(y), ol + ) — 0 (g (y), djo ( + 1))}

P
2 2
Thus the result follows. O

Lemma 2.4. Assume thatk € Z, k <0, g € K;,Zpk and ¢; — 0 in
Ky for j — 00, Then (g(y), é;(z + 1)) — 0 in Kpang as j — o,

Proof. By (6) in the proof of Lemma 2.2 above,
0™ (g(y), @@ + )| < C max qormera. (5)
From the above fact the result of this lemma follows immediately. o
Now, we conclude that
Theorem 2.5. If f,g € K, 51, k € Z, k <0, then f® g€ K,

Proof. Let {¢;} C KCpr such that ¢; — 0 in K, as j — oo. By
Lemmas 2.1 and 2.3

(f@g,05) = (f(2),{9(), ¢j(z +y)))

has sense, and by Lemma 2.4 and f € K, 5,1, (f ® g, ¢;) tends to zero
as j — o0. m]
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3. Fourier transform over ;k. In this section, we will state a

representation theorem for the usual distributional Fourier transform
over the space K i, k € Z, k < 0. Its inversion formula is also obtained,
which enables us to prove that IC;_VQP . 1S a commutative convolution
algebra with unit element.

If we only replace (1 + |x\2)k and Sy, by €*1*I” and K, 1, respectively,
we can show exactly like Theorem 2.1 in [2] the following representation
theorem for the usual distributional Fourier transform over the space
Kok, k € Z, k <0, 1ie,let f €K ,, ke Z k<0 Then for all
¢ € Kp, the Parseval equality

(£, F8) = (T(y(a),eiov), 9(¥)),

follows, where T (4) ci=v) is the member of K}, given by

(T 60) = [ (7)) oly) d

and F¢ denotes the classical Fourier transform of ¢, namely,
(Fo)(t) = [ o(y)e™dy, teR"
Rﬂ,

Hence the usual distributional Fourier transform is represented over
IC;JC, ke Z, k<0, for each y € R™, as the application of the functional
f €K, to the function z — e e Ky, v € R", ie.,

(F)y) = (f(z), ™), yeR"

Theorem 3.1. Let f be a function defined on R" such that e¥1*!” f(z)
is integrable on R™ for some k € Z, k < 0. Then the linear functional
over Ky 1 given by

(8) Ty, 0) = | f(@)p(x)dz, ¢ €Kpp,

R'IL

: /
is an element of KC, ..
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Moreover, the distributional Fourier transform of Ty given by equa-
tion (8) agrees with the classical Fourier transform of the function f.

Proof. For ¢ € Ky, 1,

(o)l < [ e e palete g )| do

o
<aea(®) [ e o)) de

From the hypothesis, the continuity of T follows immediately. The
equality
(FTy)(y) = (Tr(x),e'?) = . (z)e"™ da
concludes the proof. ni

Now, in order to obtain an inversion formula for the Fourier transform
over the space Kp 1, we need the following lemmas. We denote by
C(a; R) the n-tube

[a1—R,a1+R]x---x[an—R,a,+R]|, a=(a1,...,a,) €R", R>0.

By applying the methods used by Zemanian [5] in the proof of

kla|?

k
Lemma 3.5-1 and only replacing (1+ |z|%)" by e in Lemma 2.2

in [2], we can obtain the following Lemma 3.2.

Lemma 3.2. Let p € Ky and f € K, wherek € Z, k <0,z € R".
Then, for any Y > 0,

/ o, 000y = (. [ o S ).

Lemma 3.3. Let ¢1,...,¢, € D(R), v = (z1,...,2,) € R,
t=(t1,...,tn) € R. Then, for any k € Z, k <0, one has

1 - inYt;
W_H/R”j]:‘[lgbj(xj +tj) Slntj dt — ¢1(x1)¢n(xn)

inKpr asY — +o0.
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k
Proof. If we only replace (1+ |x|2) by e*1#I” we can first prove

exactly like Lemma 3.1 in [2] that for ¢ € D(R™), and p € N, a € R,
a<0,Y >0, then

Uy (z) = % /: (t + ) Sinth dt € Ky,
and
9) max e |DP (W () — o(a)}] — 0.
for Y — +o0.
Now note that, since k < 0, for any (z1,...,z,) € R,
eklzl? — k(@ +aa® 4tz ) )’
< ek (/Vn(lzy|+zz|++zn])”
< exp <7]€(2;)ﬁ"1 (|o1 [P + |2o]? + -+ + |$np)>
= exp (ML{,/);_I |$1|p)
X exp (MLV); |m2p) -~ exp (ML{/);A |xn|p>.
Consider
a0 | [ 1_1 63(a +19) T dt = 61(00) - on(a) )|
for © = (z1,22,... ,2,) € R" and p = (p1,p2,... ,pn) € N™. Writing,

forj=1,2,... ,n,

1 [ sinYt;
Uiy (x;) = ;/ @5 (wj + t5)— " dt,
. y
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it follows that (10) can be written as
exp (M) [V Wy y (21)082 Wa y (22) -+ - 02 W,y v (2:)

— 07  d1(1)05% a(22) - - - aﬁ"%(fﬂnﬂ ‘

= eklal” | [0V W1y (21)052 Wa y (z2) - - - P Wy, y ()

— O Py (21)052 Vg y (wg) -+ OL" U,y (T0,)

+ 07 ¢ ( )3p Vo (z2) 00" W,y (Tn)
— 01" ¢1(21)05° P2 (x2) -+ Op" Uy (2
+ 07 P1(21)05% pa(22) - - - O Wy y (0,

1

T )

)

+ OV 1 (21) 052 po(x2) - - O 1 rm1 (20— 1) OB Wy ()
- aijl (bl ($1)8§2¢2($2) T 6571 ¢’I’L*1(‘T’I’L*1)an7 an(xn)] ‘

< exp (’“%1 " )9 (s (o0) = 1 (0)
X exp (’“(L{/);l x2p> 05> Wy y (a2) - - - exp <ML€/);1 Ixnl”>
e (P2 e oreon
¢ exp <% 3”05 (Vv (52) — 6l
- exp (MLV)%H |xn|p> O,y ()
S <"~‘<%1 "))

pyn—1
<exp (22—l )of (o)

(e 1|”)ap" ()

p(%

X exp (’“L\,/);_l |an) P (W, y (20) — obn(xn))‘.
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By (9) and taking oo = k(2°)" "'/ ¢/m, it follows that

) mages (210 ) 08 (i (2) - a5 — o

IS

as Y — 400, for 1 < j <mn. Also, for 1 < j <n,

R e
ggﬁexp TWA |8j (‘I’j,Y(fj)”

< maxexp (P& 1) o (w3 (25) — b5(2)
_%_eﬁ Xp on J j J,Y L AR

k(2p n—1 .
TheRe (% |le”) 105 (95(2))1-

Since ¢; € D(R™), there exists a @; > 0 such that

Taking into account (11), there exists a P; > 0, 1 < j < n, such that

max exp
T;ER

xﬂp) 07 (65 (x,))] < Q.

K22 D e
max exp W\Iﬂ 1057 (v (25))] < Py,

for any Y > 0, and so,
Qep(V1y (21)V2 vy (22) - Vo v (Tn) — @1 (21)P2(22) - - Pn(wn))

% |x1|p) 07 (W1 y-(21) — d(22)] - Pr -+ P

k 9P n—1
+ @1 - ax exp (% |332|p>
X |05 (Way (22) — dp2(x2))| - P3--- P,

k 9p n—1
+"'+Q1"'Qn—1'méel)1(%exp< ( ) |Inp)

X |8£ﬂ(\lln,Y(xn) - ¢n(mn))|

< max exp
T1ER

By using (11), we obtain the result. o
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Theorem 3.4. Let f € K ,, k € Z, k < 0, and set by

F(y) = (Ff)), y € R". Then for any é1,6s,... ¢ € D(R),
t=(trts,... .tn) € R", and §(t) = ¢ (tr)¢a(t2) -+ du(tn), one has

.00 = tim (e [ P o).

Y —+4+o0

Proof. Applying Fuming’s theorem, Lemma 3.2 and Lemma 3.3,

<ﬁ /cm;m Fly)e™™ dy. ¢><t>>

- <(271r)" /C(O;n (f(z), e™¥)e "™ dy, ¢(t)>
/n o(t) dt /C(o;y)<f(x), (Y it gy
- ! /C(O Y) (f(@), €0) dy - p(t)e "™ dt
(2m)" /C(O;Y) ¢ dy R $(t)e™ " dt>

<
- <f(:c), (271)71 /C(O;y) @0 gy IEIERACS dt>
<

n

o
ra) o [ TLosta )™ ar)
’Vlj ]

)

as Y — 4oo. m]

Let f,9 € K}, o4, k € Z, k < 0 and F(y) = G(y), for any y € R",
where F(y) = (Ff)(y), and G(y) = (Fg)(y). Then, using Lemma 3.3,
we have

(f(x), d1(z1)P2(22) - - () = (9(2), P1(z1)P2(22) - - - P (T0)),

for all ¢1, 9, ¢, € D(R). Let ¢ € D(R™). By [3, Proposition 1,
p. 369], there exists a sequence whose terms are products of the form
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bi, @iy - Gi,, being @i, € D(R), for j =1,2,... ,n and i; € N, which
converges to ¢ € D(R™). Since convergence in D implies convergence
in K, v, it follows that (f, ¢) = (g, ¢) for any ¢ € D(R™). Since D is
dense in ICp org, it follows that f =g in ’C;;,zpk- Also, for all y € R™,

(F(f29)) = ((f®g)(x), ™)

(). (gla). =)

(f(t),e)(g(x), ")
= F(y) - G(y).

Hence it follows that for f,g,h € K} 50y, k € Z, k <0,

f®g=g&f

and
felgeh) =(fegeh

in K}, 5pp,- Furthermore the Dirac delta belongs to K, 5, and
feéi=6xf="

This shows that ’C;J,ka’ k € Z, k < 0 is a commutative convolution
algebra with unit element.
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