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GENERAL NONDIAGONAL
CUBIC HERMITE-PADE APPROXIMATION
TO THE EXPONENTIAL FUNCTION

CHENG-DE ZHENG AND REN-HONG WANG

ABSTRACT. General nondiagonal cubic Hermite-Padé ap-
proximation to the exponential function with coefficient poly-
nomials of degree at most n, m, s, [, respectively is considered.
Explicit formulas and differential equations are obtained for
the coefficient polynomials. An exact asymptotic expression
is obtained for the error function and it is also shown that
these generalized Padé-type approximations can be used to
asymptotically minimize the expressions on the unit disk.

1. Introduction. We consider approximations of e~* generated by
finding polynomials P,, @,,, Rs and S; so that

Enma(2) := Py(z)e”? 4 Qm(z)e” " + Ry(x)e™ " + Si(x)
(11) — O(l_nJr'ererlJr?))7

with P,, Qm, Rs, S; being algebraic polynomials of degree at most
n, m, s, l, respectively, and P, has leading coefficient 1. The approxi-
mation of e”* is given by

6nmsl(x) = . -

_ Qm
3P,
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or
sl b b\%  sa\3 s N2 ,an3
S (2) 1= w1 4|~ + (§)+(§) T (5) (%)
e
3Pn’
or
sl b b\? sa\3 o b B\2 a3
aml(x):—wd_f (5)+(§) +w1\l—§— (5) (%)
~ Qnm
3P,’

which is real and closest to 0, where

_ 3P,R,— Q2 p— 2@ = IP.Qm R, + 2TPRS,.

B 3pz N 27P3 '
—1+/3i —1—+/3i
Tty wE T

Obviously, d,msi(x) is the natural cubic generalization of the Padé
approximant —Q,,, /P, satisfying

(1.2) Po(z)e ™ + Qm(z) = O(z" ™+

and the nondiagonal quadratic Hermite-Padé approximant [3]
(= Qu+Q2 —4PuR, ) / (2P2)

satisfying

(13)  Pu(@)e * + Qu(z)e ™ + Ry(z) = O(a"tmH=+2),

Our primary aim is to derive the exact asymptotic formula for
{Enmsi}, the explicit formulae of {P,}, {Qm}, {Rs}, {Si}, {Enmsi}
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and to treat some minimization problems concerning related approxi-
mations on the unit disk in C.

Hermite considered the expression of the form
(1.4) T (x)e® + T q(z)e 1% 4+ - + T (x)e™® = O(z9),

where Ty, Ts, ..., T, are chosen polynomials so that ¢ is as large
as possible [4]. Included, of course, the expression of type (1.4)
are both the Padé approximations (1.2), the nondiagonal quadratic
Hermite-Padé approximations (1.3) and the general nondiagonal cu-
bic Hermite-Padé approximations (1.1). Since we do not treat ap-
proximations of the generality of (1.4), we are able to provide an
exact asymptotic formula of {E,;,s} and the explicit formulae for
{Pn}, {@Qm}, {Rs}, {Si}, {Enmsi} rather than the estimates included
in [4].

The general problem of Hermite-Padé approximation is the following;:

Given functions f1, f2, ..., fr, and integers &0, di, ..., d,, find poly-
nomials po, p1, ..., pr (deg (p;) < d;) so that
(1.5) Po(@) + p1(2) fr(z) + -+ pr(2) fr(2) = O(2),

where ¢ is as large as possible. Particularly some interesting cases
arise where the f; are related, for example, f; is the ith power (or ith
derivative) of a fixed f. The case of i = 1 is a Padé case and the case
of i = 2 is a quadratic function approximation.

Exact results concerning best rational approximation to the expo-
nential function, particularly the Meinardus conjecture, have attracted
much attention [2]. Theorem 4 can be viewed as a cubic version of this
conjecture on the disk. A linear version, due to Trefethen appeared in
[6]; a quadratic version on the disk given by Driver can be found in [3].
Virtually no completely worked out examples for higher-dimensional
approximations exist, and exp is a natural candidate for such a com-
plete analysis. This analysis constitutes the thrust of this paper.

2. Explicit formulae. We derive the cubic approximations from
the Padé approximation as follows.
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It is well known that if we set

n

=~ 1 [ k
Pn(a:)::m/o t"(t+x) et dt = n!Z(”JFZ )k,,

Qu () := —%/Ooot”(t— z)™e tdt = _nlz<”+’: k>( k') ;

k=0

then —Qm( )/ P () is the (n,m) Padé approximation of e~*. Also,
P, and Q,, satisfy (1.2) (see, for example, [1]) and

R - xn+m+1
Py(x)e ™ + Qu(z) = (=1)™*! —/ (1—w)"u"e ™ du
m! 0
(—=1)m™*in!

) " ntmtl —n/(n+m)z 1 1
A e (1+0(1).

as n + m — oo, uniformly for £ in any compact set of the plane.

If we further let

- 62w23+1 o] .
21)  Bue) =2 /(t—x)P( Je=2t gt —
s! x
=0
where
n—j .
_p(ntm—k—j5\[(s+k
2.2 =) 27k :
22) ni=y ()
and
:C23+1 sA — s mq’xj
23) Qule) = 2 [ (=) Qult)etdt = 2y B
T =0
where
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and
Re):= (-0 20 e {Pawet + Qi) e ar

(2.5) ' 2r_x]

D S

=0
where
T_::Sfj_ j(stm—=k=j\ (n+k k.

(26) =3 () ()

then (— @m + \/@n — 4]5n]?is)/(2.5n) is the nondiagonal quadratic

Hermite-Padé approximant [3] to e~®. Also, ]5n, ém and R, satisfy
(1.3) and

ﬁn(a:)e_% + va(x)e_gj + R, (x)
2s+1 n+m-+s+2

_ m-+s
(2.7) (=1) mls!
/ / (1—u)™u™e™ " (1—v)* " T e dy du.
Now let
(2.8)
3131—1—1 [e'e)
P,(x): = / —z)! Py(t)e 3t dt
313l+1

t
[Ty
= t—x) e 3tnl T dt
JOJ'

_3l+1n'/ooule_3uzpj u—l—x)Jdu (u—t—fﬂ)
= A

mn 7 . o) o
l+1 o Z Z( ) / Wt te=3u 4y,
j= 0 1=0
_gi+ ™ n! o pjz' (L+j— i)
o 1 Z il(j —d)! 3iHitl-i

7j=0 i=
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with
Y R
(2.10) a; = Z3Z_J pj( +Jl Z).

Note that P, is a polynomial of degree n with highest coefficient 1.
Let

62131+1 o0 = )
Qm(x) L= Il / (t — 117) Qm(t)67 tdt
(2.11) ppnlil roo o
e“*3 _ s Q‘t]
== Il /z (t—l')le 2tﬂ!2+12;—!dt

J=0

from (2.4). Substituting v = ¢t — « in (2.11) and using the Binomial
theorem and a Laplace transform, we obtain

mo
b;x*
_ I+1 s—1 2
(2.12) Qum(z) = —3T1n! 2 ; o
where
SN il
(2.13) bi ::quzz f( z )
Jj=t
Let
eac31+1

(2.14)
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Similar to above demonstration, we have

(2.15) Ry(z) = (—1)™n! 25— 3141 Z G
i=0
where
> I+ —i
j=t
Define S; by
(2.17)
3l+1 %) ~ _ N
Sl(il') = _l_' (t — x)le—t {Pn(t)e—% + Qm(t)e—t + Rs(t)} dt
*Jo

3l+1 o | n .
Z tl i(—z)le™ { e7%n! Z Pigi _g=tp)os+t
0 4!
=0
m S r
] | 95— N Iy
}: ™l 2 E:ﬂt dt

Jj=0

n! N Sy
— _31+1 ' ' / tl+y—ze—3t dt — 2S+1

/ tl+] 1, —2t dt—l— mgs—n Z / tl-’rj ’L —t dt

_ ol41l (—2)" |~ (l+j—i Dj s+1
=37 nl Z il Z j Jl+j+l—i 2°

i=0 ’ j=0

(i qj sn = (L +G—1
Z ( ; )2l+j+1i +(=1)"2 Z j Ti

=0
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where
(2.19)
S (l+5—1\  p Ry B AN
dz = _]. ’ T st .j -
( ) {]_0 ( ] >3l+]+12 ]go J l+j+1—1

Finally, let

(2.20)

s 3l+125+1
Eme(z): = (=1)mTsH ==

/E (:Z? _ t)left tn+m+s+2
0

1,1
. / / (1 —w)™u"e (1 —v)* o™ T e dy dv dt
0o Jo

m!s!i!

l+19s+1
3 2 n+m+s+143

_ m+s+1
(=1) mls! 1!

1 1 1
. / / / (1 _ u)m unefuvwz(l _ ’U)S ,UnerJrlefvwx
0 0 0

(1 —w) s 2emv gy doy duw

(2.21) (t = wz).
Now we may establish the basic theorem.

Theorem 1.

E,msi(z) := Pn(I)673x + Qm(z)672x + Ry(x)e ™™ 4 Si(x)
— O(;Cn-&-m—&-3+l+3)7

where Epmsi, P, Qm, Rs and S; are given by (2.20), (2.8), (2.11),
(2.14) and (2.17), respectively.
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Proof. By (2.20) and (2.7)
l+13l+1 ’ l—t{p -2t A -t
E.ms(z) = (—1) - (z—t) e {Py(t)e " +Qm(t)e "+ R,(t) }dt
- Jo

3l+1 o
A

3l+1 [e’e} .
+ T/ (t —2)' Qm(t)e " dt

3l+1 oo

5 - z)! Ry(t)e ' dt — Z—

x

. /Oo(t —a)le By(t)e % + O (t)e + Ra(t))} di
0

=P, (2)e 3 + Quu(x)e ™" 4+ Ry(x)e™™ + S)(x).

With (2.21), the theorem has been proved. O

3. Asymptotics. We now turn to asymptotic estimate for {Ens}
defined in (2.20) as n + m — oco.

In order to give the asymptotic, we need the following lemma.

Lemma 1 [6].

1 1
/ (1—t)or 18P o=t dt ~ e~ (BY)/(a+B) / (1—t)r £8P gt
0 0

_ —Bn/(a+p) __(@D) (Bp)!
(a+B)p+ 1)V

where ap, Bp all are positive integers.

From the above lemma, we have the following relation as n+m — oo

1
(3.1) / (1 —w)™u"e " du = e~ (/nmz (4 o(1)).
0

(n+m+1)!

Now we can give the asymptotic estimates for {E;,s}.
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Theorem 2.

B (1,) _ (_1)m+s+ln! 2s+13l+1 P st43
(3.2) P T T m s + 1+ 3)!

.67(2m+3n+s+1)/(n+m+s+l+1)m (1 + 0(1))

as n+m — oo. The asymptotic is uniform on bounded subsets of C.

Proof. Applying (3.1) successively to the triple integral on the right-
hand side of (2.20), we have as n +m — oo,

(3:3)
1 p1 pl
/ / / (1 _ u)m unefuvw:c(l _ ,U)sanrerl
0o J0 JO

ceT V(1 — )t TR 2em 0T gy doy duw

1,1
_ / / (1 o ’U)S Un+m+167vwz(1 o ,w)l wn+m+s+2
0 Jo

—wx nim! —n/(n+m)vwx
- e me /(+ ) (1+0(1))dvdw

_ /1(1 )l b2 n!m! (n+m+1)!s!
0 (n+m+1! (n+m+s+2)!

. e—(n+m+1)/(n+m+s+1)'(1+n)/(n+m)wx (1 + 0(1)) dw

1mls! 1
o mmhst / (1 = w)l wrtmtst2gmws
(n+m+s+2)! J,
. o~ (mA2n)/(ntm+s+1)wa (1 + 0(1)) dw
n!m!s! Nn+m+s+2)!

C(ntmEs+2)! (n+m+s+1+3)

.e—(n+m+s+2)/(n+m+s+l+2)~(2m+3n+s+1)/(n+m+s+1)x (1 + 0(1))

I'm!s!i!
_ nlml!s e~ @mAdntstl)/(nbmtstid Dz (1 4 (1))

(n+m+s+1+3)!

(n+m — o0).



CUBIC HERMITE-PADE APPROXIMATION 1767

The asymptotic (3.2) follows immediately from (2.20) and (3.3). It
is easy to check directly from (2.20) that

n! 25+13l+1zn+m+s+l+3efm(2m+3n+s+l)/(n+m+s+l+1)
E,ms / :
nmsi () < m+m+s+1+3) )

is uniformly bounded on compact subsets of C as n +m — oo. The
uniformity of the asymptotic now follows from Vitali’s theorem [1].

Remark. For ray sequences in the Hermite-Padé table, that is, multi-
indices (n+ 1, m+ 1, s+ 1, [ + 1) that satisfy

l
(3.4) lim = = a, lim i G, lim —=7~, «a,f,v2>0,

n—oo M n—oo N, n—oo n
the asymptotic (3.2) can be written

m-+s+1 s+19l+1
(-1) n!2°73 ntm-+s+i+3

(3.5) Bumsi (®) = < s T 14 3]

e~ (RatBE)[(at Byl (1 4 (1))

as n — oo. Note that when o + 2 = v, the exponential term on the
right-hand side of (3.5) loses its dependence on  and reduces to e~ *.

4. An exact minimization. We wish to uniformly minimize over
D:={zeC: |z <1},

(4.1) Wimst (2) .= hn(2)e ™% + t,,(2)e™ % 4+ ug(2)e ™ + vy(2),

where hy,, t,, us, v; being algebraic polynomials of degree at most
n, m, s, | respectively; and h, has highest coefficient 1. In the case
when the positive integers n, m, s, | satisfy (3.4), we can prove the
following results.

Firstly, we have

Theorem 3. Suppose (3.4) holds. Then, for |z| =1, as n — oo,
(4.2)

‘Enmsl <z+ (20 + B+ 3)/(0‘+5+”y+1))‘ N : nl s+l g+l

n+m+ s+ 1+ 3 n+m+ s+ I+ 3)!
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Proof. This follows from Theorem 2 and the observation that

k n+m-+s+I1+3
z+ ~ zn+m+s+l+3ek/z
n+m+s+1+3 ’

—k(z+k)/(n+m—+s+1+3) ~ esz

)

and the fact that, for |z| = 1, k € R, |e*(1/272)| = 1.

Let
Sy (2a+[+3)/(a+F+~v+1)
B n+m+s+1+3 ’
43) PiE) = Pa(="). Qiu(2) = Qu(2"),
Ri(z) = Rs(2"),  S7(2) = Si(z7).
Let || - || p denote the supremum norm on D.

Now we need the following lemma.

Lemma 2 [5]. Let real numbers \y < Ay < -+ < A, and
positive integers mi, Mo, ..., m, be such that mi; + mg + --- +
my, =r. Let f1(z), fa(2),... 7f,,(z) denote eM? zeM® .. yma—lehz,

)\2z ze’\ .’zﬂ’la 1 /\zz . . )\z )\z ...,Zm“_l )\z re-

spectwely If le|+|ea]+- - +|cm1\ > 0 \cT my+1|+ e 1\+|cr| >0,
N denotes the zero number of function ¢ f1(z) + cafa(z)+ -+ fr(2)
in the region Q ={z: £ <Imz <n}. Then

P VRS BN Ve V) Ut B

— 1.
21 - - 2T

By this lemma, we can prove the main result of this section.

Theorem 4. (a)

[P (2)e™ + Qr(2)e™ + Ri(2)e ™ + S{(2)]|
n! 2s+l 3l+1
(n+m+s+1+3)

~
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sy = min ||k (2)e7% + 4, (2)e 7 + ug(z)e 7 + UZ(Z)HD,

where h, t, u, v being algebraic polynomials of degree at most n, m, s, I,
respectively; h = z" + -, then

n! 2s+1 3l+1

*

mmsl S o Em s+ 14 3)!

Proof. Part (a) is just a restatement of Theorem 3. Observe that P}
has leading coeflicient 1.

To prove part (b) we use the fact that a nonzero expression of the
form

(4.3) $1(2)e73% + ¢o(2)e™* + ¢3(2)e ™% + ¢du(2),

where ¢1, ¢2, ¢3, ¢4 are polynomials, the sum of whose degrees is k,
can have at most k+ 3 zeros in D. This is a winding number argument
and is proved in Lemma 2 with v =4, { = -1, n = 1, A\ = =3,
Ao=—-2,A3=—-1, Ny, =0and r =k + 4. Thus

mmet 2 100 |P(2)e™ + Qr(2)e™™ + Ri(2)e™ + 57(2)]-

If this were not the case, we could find h € 7,,, t € 7, u € 7,5, v € 7
with h having leading coefficient 1 so that, for |z| =1,

’he_‘?’z +te™? fue 7 + ’U‘ < ’P;e_?’z +Qhe F+ RieF+ Sf

By Rouché’s theorem this would imply that

(44)  (h=PHe ¥+ (t—Qh)e >+ (u—Ri)e "+ (v—5f)

has at least n + m + s + [ + 3 zeros in D. However, since h — P}
has degree at most n — 1, the sum of the degrees of the coefficient
polynomials in (4.4) is at most n + m + s + { — 1, and we have
contradicted the above result from Lemma 2. |
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We note that if the positive integers n, m, s and [ satisfy (3.4), then
we have

HPne_?’Z + Qme %* + Rye % + Sl||D

+1 ql+1
L mrrs o20+6+3)/ (a+B+7+1)

(n+m+s+1+3)!

and so, up to a small constant, the cubic Hermite-Padé approximant
is optimal in the sense of Theorem 4. The trick of shifting the center
of the approximation to make the error curve have an asymptotically
constant norm on D is due to Braess [2] who used it to get the right
constant in Meinardus’s conjecture.

5. Differential equations. The coefficient polynomials are linked
by the following fourth-order differential equations.

Theorem 5.

(a) —6nP,_1(z) = P!'(x) — 6P (z) + 11P/(z) — 6P, (z).
(b) —6nQu—1(z) = Q1 (2) — 201 (x) — QL () +2Q ().
(¢) —=6nRs_1(x) = RY"(x)+2RY (z) — R!(xz) — 2R, (x).
(d) —6nS;_1(z) = S/"'(x) + 65" (x) + 118 (x) + 6S](z).

Proof. We suppress the variable = in the coefficient polynomials and
start with the relation

(5.1) Ppe™ + Qe + Rye™™ + S = Oz TmHetits),
Then

(52) (P7; - ?)‘Prz)e_ggC + (Q;n - 262m)e_23C + (R; - Rs)e_x + Sll
— O($n+m+s+l+2).

Adding triple (5.1) to (5.2) gives

(5.3) Pre " +(Qr, + Qm)e > + (R, + 2R,)e™" + 5] 4 35
— O(In+m+s+l+2)
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and differentiating again gives

(5.4)
(P =3P)e™* +(Q = Q= 2Qm)e ™ +(R{+ R, —2R,)e™" +5'+35;
_ O($n+m+s+l+1).

Now adding twice (5.3) to (5.4) gives

(5.5)

(P! —Pe 3 +(Q! +Q.,)e > +(R! +3R.+2R,)e”*+ 5] +55,+6S;
_ O(xn+m+s+l+1).

and differentiating yields

(5:6) (P = AP +3P,)e™ + Q= Qi — 2Q,)e ™
+ (RY +2RY — R. —2R)e " + S]" + 55/ + 65|
_ O(xn—i-m—i-s-i-l).

Finally, adding (5.5) to (5.6) and differentiating yields

(5.7)

(P — 6P + 11 — GPL)e™ + (QU — 2Q) — Qlp +2Q}, )~
+ (R +2R" — R/ —2R.)e " + 8" + 65" + 115/ + 6S]
_ O(xn+m+s+l—1).

Since the degrees of the coefficient polynomials in (5.7) are at most n—1,
m—1, s—1 and [ — 1, respectively, we see that up to a constant multiple
of —6n, (5.7) must equal P, _1e73*4+Q,, 1”2+ Ry 1 %+S;_1. (Here
we have appealed to uniqueness, as in the proof of Theorem 1.)

6. Numerical examples. The following table gives the values of
coefficient polynomials and the error at = = 1.
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n m s l dm (1) — (1/e)

1 1 1 2 1.39975 x 10—°
1 1 5 1 —6.45200 x 102
2 2 2 4 9.89194 x 10~ 11
3 3 2 3 1.49192 x 10~ 11
3 3 6 3 2.94625 x 10~17
3 3 4 5 —5.68769 x 10717
4 4 4 4 —3.41816 x 10~ '8
4 4 4 9 —1.70369 x 10~2°
5 5 5 1 —2.30800 x 10~
6 6 5 6 5.73937 x 10728
6 6 6 7 8.39593 x 10731
7 7 7 6 1.80156 x 1034
8 8 8 4 9.92927 x 10~4
8 8 8 8 —4.53470 x 10742

REFERENCES

1. P.B. Borwein, Quadratic Hermite-Padé approximation to the exponential
function, Constr. Approx. 2 (1986), 291-302.

2. D. Braess, On the conjecture of Meinardus on rational approximation of e*,
I1, J. Approx. Theory 40 (1984), 375-379.

3. K. Driver, Nondiagonal quadratic Hermite-Padé approximation to the expo-
nential function, J. Comp. Appl. Math. 65 (1995), 125-134.

4. Ch. Hermite, Sur la généralisation des fractions continues algébriques, Ann.
Mat. Pura Appl. (2A) 21 (1883), 289-308.

5. G. Pélya and G. Szegd, Problems and theorems in analysis, I, Springer-Verlag,
Berlin, 1972.

6. L.N. Trefethen, The asymptotic accuracy of rational best approzimation to e*
on a disk, J. Approx. Theory 40 (1984), 380-383.

DEPARTMENT OF M ATHEMATICS, DALIAN JIAOTONG UNIVERSITY, DALIAN, 116028,
P.R. CHINA
E-mail address: chdzheng.student@sina.com

INSTITUTE OF MATHEMATICS SCIENCE, DALIAN UNIVERSITY OF TECHNOLOGY,
DALIAN, 116024, P.R. CHINA



