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LOCALLY EUCLIDEAN METRICS ON S? IN WHICH
SOME OPEN BALLS ARE NOT CONNECTED

YOUNG DEUK KIM

ABSTRACT. Let S? C R? be the 2-sphere with center O
and radius r. For all 0 < s < 1, we define a locally Euclidean
metric d* on S2 which is equivalent to the Euclidean metric.
These metrics are invariant under Euclidean isometries, and if
0 < s < 1 then some open balls in (S2,d*) are not connected.

1. Introduction. Let S? C R? be the 2-sphere with center
O = (0,0,0) and radius r > 0. We write dg to denote the Euclidean
metric on S2. A metric d on the set S? is called locally Euclidean if,
for all P € S?, there exists ¢ > 0 such that

d(Q,R) =dp(Q,R) forall Q,R¢€ By(P)=1{S¢eS?|dP,S)<t}.

As usual, two metrics d; and dy on the set Sf are called equivalent
if the identity mapping of (S2,d;) onto (S2,dy) is a homeomorphism.
Notice that the following trivial metric dr is locally Euclidean but not
equivalent to dp.

0 ifP=@Q

1 ifP#£Q.

In this paper we define a locally Euclidean metric d®, which is
equivalent to dg and invariant under Euclidean isometries. Notice
that the Euclidean metric dg is trivially locally Euclidean. In fact,
the metric d' will turn out to be the Euclidean metric dg. Every open
ball in (S2,dg) is connected. However, if 0 < s < 1, then some open
balls in (52, d*) are not connected.

dr(P,Q) = {

Suppose that 0 < s < 1. Let —P denote the antipodal point of
P €S2 Let

.1 (\/2—52—5
a = sin -_

5 ), where 0 < a < 7w/4.
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FIGURE 1. S2.

Notice that sin« is a decreasing function of s and hence so is a. We
are going to use this function « to define the new metric d* on S2. For
all P,Q € S2, let (see Figure 1)

#5(P.Q) = dr(P,Q) if ZPOQ <7 — 2«

T 2rs +de(—P,Q) if ZPOQ > 7 — 2a,
where « is defined as above. Notice that if s = 1 then d' = dg and
d'(P,—P) = 2r for all P € S2.

In the next section we will prove
Theorem 1.1. For all 0 < s <1, d* is a metric on S2.

Notice that if d*(P,Q) < 2rs then d*(P,Q) = dg(P,Q) for all
P,.Q € S%2. We write B;(P) to denote the open ball in (S2,d*) with
center P and radius ¢.

Suppose that P € S? and Q,R € B:,(P). Since d*(Q,R) <

d*(Q, P)+d*(P, R) < 2rs, we have d*(Q, R) = dg(Q, R). Therefore d*
is locally Euclidean for all 0 < s < 1.
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The following theorem which is proven in the next section implies
that d® is equivalent to dg for all 0 < s < 1.

Theorem 1.2. sdp(P,Q) < d*(P,Q) < dr(P,Q) for all P,Q € S2.

Not all locally Euclidean metrics on S?, which are equivalent to dg,

are invariant under Euclidean isometries. However, we can show

Proposition 1.3. d° is invariant under any Fuclidean isometry, for
all 0 <s<1.

Proof. Suppose that ¢ : S? — S? is an Euclidean isometry and
P,Q € S%. Notice that Z¢(P)O¢(Q) = LPOQ. If ZPOQ < 7 — 2a,
then

Suppose that ZPOQ > w — 2a. Since 2r = dg(P,—P) =
dg(p(P), d(—P)), we have ¢(—P) = —¢(P). Therefore

d*(¢(P), ¢(Q)) = 2rs + dp(—¢(P), #(Q))
=2rs+ dE(¢(_P)> ¢(Q)) =2rs+ dE(_P7 Q) = dS(P7 Q) o

Notice that the trivial metric dr is invariant under any Euclidean
isometry but not equivalent to dg.

Suppose that 0 < s < 1. Notice that v/2r%2 —r2s2 > rs. By the
following theorem, some open balls in (S2,d*) are not connected.

Proposition 1.4. Let 0 < s < 1 and 2rs <t < v/2r2 —r2s2 4+ rs.
Let P € S? be arbitrary. Then the open ball B (P) is not connected.

Proof. Let P € S?, U = B} (P) and V = B}_,,,(—P). We will show
that U and V are nonempty disjoint open sets in (52, d*) whose union
is Bf(P). Notice that P € U, —P € V, hence U and V are nonempty
by Theorem 1.2. Since d* is equivalent to dg = d', U and V are open
sets in (52, d*).
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If Qe UNV, then 4r? = dp(P,—P)? = dp(P,Q)? + dr(Q,—P)* <
t2 + (t — 2rs)? < 4r%. This is a contradiction. Therefore UNV = @.

Suppose that @ € B (P). If d*(P,Q) = dg(P,Q), then dg(P,Q) < t.
If d°(P,Q) # dg(P,Q), then dp(—P,Q) = d*(P,Q) — 2rs < t — 2rs.
Therefore Bf(P) CUUYV.

If @ € U then, by Theorem 1.2, we have Q € B;(P). Suppose that
Q€ V. Sincedg(—P,Q) < t—2rs < v/2r?2 —r2s2—rs, by Lemma 2.1 in
the next section, we have Z(—P)OQ < 2a. Therefore, ZPOQ > m—2«
and d°(P,Q) = 2rs + dg(—P,Q) < t. Hence, Q € Bj(P). Thus,
UuV C Bj(P). O

This paper is motivated by the Poincaré conjecture. In his work
on the Poincaré conjecture, the author was interested in discontinuous
functions from (S%,dg) to the closed interval [0,a]. Any countable-to-
one function from (S%,dg) to [0,a] is discontinuous. Let B be the
closed unit ball in R3 and dg the Euclidean metric on B3. Define
locally Euclidean metrics on the set B as on S2. Using the metric d*
on S2, the author [1] constructed a family of pseudo metrics on B3.
Some of these pseudo metrics are locally Euclidean metrics which are
equivalent to dg, and in which some open balls are not connected. As
an application of this construction, the author obtained a result on
countable-to-one functions from (5%, dg) to [0, a], see [1] for details.

2. Proof of theorems. In this section we prove Theorem 1.1 and
Theorem 1.2. Recall that 0 < a < w/4. If ZPOQ > m — 2a, then
L(=P)OQ =7 — LPOQ < 20 < w — 2 and hence

Since dg(P,Q)? = 2r? — 2r?cos ZPOQ, dg(P,Q) is an increasing
function of ZPOQ@ on the interval 0 < ZPOQ@ < w. We will make use
of the following lemma.

Lemma 2.1. If ZPOQ = 7—2a, then dg(P,Q) = V2r2 — r2s2+rs.
If ZPOQ =2« then dg(P,Q) = vV2r? — r2s2 —rs.
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Proof. Suppose that ZPOQ = m — 2a. Since 0 < a < w/4 and

) L 2-25v2—52  [(V2—s2+s\’
cos“a=1—-sin“a=1-— = ,
4 2
we have
NG
(2) cosa:fsﬂ.

Therefore dp(P,Q) = 2rcosa =1 (V2 —s2 +5) = V2r2 —r2s2 + rs.

Note that
(3) drg(P,Q) —dg(—P,Q) = 2r(cosa —sina) = 2rs.

Suppose that ZPOQ = 2a. Since Z(—P)0Q = m—2a, from equation
(3), we have

drg(P,Q) =dr(—P,Q) —2rs = /2r2 —r2s2 + rs — 2rs

=/2r2 —r2s52 — s, O

We will also make use of the following lemma.
Lemma 2.2. If P,Q,R,S € S? and ZPOQ + ZROS > 2a, then

d5(P,Q) + d&(R, S) > V2T 127 — 1s.

Proof. Notice that we may assume ZROS < ZPOQ. Due to
Lemma 2.1, we may assume that 0 < ZROS < ZPOQ < 2«a. Since
0 <a<7/4, we have 0 < LZROS < ZPOQ < 7 /2. Cousider the great
circle on S? through the two points P and ). On this great circle, there
exist two points Sy and S7 such that ZQ0OS, = ZQ0S; = ZROS,
ZPOQ + £Q0Sy = £ZPOSy and ZPOQ — ZQ0OS; = LZPOS, see
Figure 2.
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FIGURE 2. dg(Q, So) = de(Q,S51) =de(Q, St) = dg(R,S).

Fixing @, rotate the arc QSy clockwise toward the arc Q.S; in the
time interval [0, 1], see Figure 2. Let QS; be the rotating arc at time
t. Notice that ZPOS; is a continuous function on [0, 1],

/POSy = /ZPOQ + /QOSy = /POQ + /ROS > 2a

and
/P0OS, < 2a.

Therefore, by the intermediate value theorem, there exists Sy € S?

such that ZPOSt = 2« for some T € [0, 1]. From Lemma 2.1, we have

dg(P,St) = v2r?2 —r2s? —rs. Since dg(Q, St) = dg(R,S), we have
dp(P,Q)+de(R,S) = dp(P,Q) + dr(Q, St) > de(P, St)

=/2r2 —r2s2 —rs. O

We will need the following theorem, see [2, Chapter VII] for a proof.

Theorem 2.3. For P,Q € S2, let p(P,Q) = ZPOQ. Then p is a
metric on SZ.
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Now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that d° is nonnegative. Since
/ZPOP = 0, we have d*(P,P) = dg(P,P) = 0 for all P € S2. If
d*(P,Q) =0, then dg(P,Q) = d*(P,Q) = 0 and hence P = Q.

Suppose that P,Q € S%. If ZPOQ > 7 — 2a, then

d*(Q,P) =2rs+dr(—Q, P)
=2rs+dg(Q,—P)
=2rs+dr(—P,Q)
=d*(P,Q).

If /ZPOQ < 7 — 2a, then d*(Q, P) = dg(Q, P) = dg(P,Q) = d*(P, Q).

Suppose that P,Q,R € S2. If ZPOQ, ZQOR, /ROP < 7 — 2aq,
then the triangle inequality of d® is trivial from that of dg.

Suppose that only one angle, e.g. ZPOQ, is greater than m1—2«. Then
d*(Q,R) = dg(Q, R) and d*(R,P) = dg(R, P). Since Z(—P)OQ =
™ — ZPOQ < 2a, from Lemma 2.1, we have

d*(Q,R) + d°(R, P) = dp(Q, R) + dp(R, P)
>\/2r2 —r2s2 4 rs
> dp(—P,Q) +2rs
=d°(P,Q).
By Theorem 2.3, Z(—P)OQ + ZQOR + ZROP > Z(—P)OP = .
Since ZQOR < 7 — 2a, we have Z(—P)OQ + ZROP > 2«. Hence,

from Lemma 2.2, we have dg(—P, Q) + dg(R, P) > v2r2 — r2s2 — rs.
Therefore,

d*(P,Q) + d*(R,P) = 2rs + dp(—P,Q) + dp(R, P)

> 2rs +/2r2 —r2s2 —rs
=d*(Q, R).

Similarly we can show that d*(P, Q) + d°*(Q, R) > d°(R, P).
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If two angles, e.g., ZPOQ and ZQOR, are greater than m — 2«, then
dS(P7 Q) =2rs+ dE(_P> Q) =2rs+ dE(P7 _Q)
dS(Qv R) =2rs+ dE'(_Qa R)
d°(R,P) =dg(R, P).
Therefore the triangle inequality of d® is trivial from that of dg.

If all of the three angles are greater than m — 2«, then from equation
(1), we have

d*(P,Q) + d*(Q, R) = 4rs + dp(~P, Q) + dp(—Q, R)
=drs+dg(P,—Q) +dg(—Q, R)
> 4rs+dg(P, R)
> 4drs+dg(—P, R)
> d°(P, R)
= d&*(R, P).

Similarly we can show that d°(Q,R) + d°(R,P) > d°(P,Q) and
d*(R, P) +d*(P,Q) > d*(Q, R).

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let P,Q € S%. We may assume that
/ZPOQ > m—2a and s # 1. Let ZPOQ = 7m — 23. Notice that
0<fB<a<mr/4and cosx —sinz is decreasing on 0 < x < w/4. Since
dr(P,Q) = 2rcos 3 and dg(—P,Q) = 2rsin g3, from equation (2), we
have

dr(P,Q) — d*(P,Q) =dg(P,Q) — 2rs —dg(—P,Q)

=2rcos — 2rs — 2rsin 3
= 2r(cos B —sin 3 — s)
> 2r(cosa —sina — s)
=0

d°(P,Q) — sdg(P,Q) =2rs+dg(—P,Q) — sdg(P,Q)
=2rs+2rsin 3 — 2rscos 3
= 2rs(1 — cos B) + 2rsin 8
> 0. O
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