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NONEXISTENCE OF POSITIVE SOLUTIONS FOR A
CLASS OF SEMILINEAR ELLIPTIC SYSTEMS

H. DANG, S. ORUGANTI AND R. SHIVAJI

ABSTRACT. We consider the system

−Δu = λ f(v); x ∈ Ω

−Δv = μ g(u); x ∈ Ω

u = 0 = v; x ∈ ∂Ω,

where Ω is a ball in RN , N ≥ 1 and ∂Ω is its boundary, λ, μ
are positive parameters bounded away from zero, and f, g are
smooth functions that are negative at the origin and grow
at least linearly at infinity. We establish the nonexistence of
positive solutions when λ μ is large. Our proofs depend on
energy analysis and comparison methods.

1. Introduction. Consider the system

(1.1)
−Δu = λ f(v); x ∈ Ω
−Δv = μ g(u); x ∈ Ω

u = 0 = v; x ∈ ∂Ω,

where Ω is a smooth bounded region in RN , ∂Ω is its boundary, λ,
μ ≥ ε0 where ε0 > 0, and f and g are smooth functions that grow at
least linearly at infinity. Such systems arise naturally as steady states
in reaction diffusion processes with unequal diffusion coefficients. It is
of great interest to find regions of the parameters involved (diffusion
coefficients) for which positive steady states cease to exist. If f(0) and
g(0) are positive, then the nonexistence of positive solutions to (1.1)
follows rather easily, see Appendix A. However the case when f(0) < 0
and g(0) < 0 is nontrivial.

The main purpose of this paper is to study this strictly semi-positone
case. While the case when Ω is any bounded region remains open,
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we establish such a nonexistence result when Ω is a ball. Namely, we
assume

(C1) f, g : [0,∞) → R are continuous, nondecreasing, f(0) < 0 and
g(0) < 0,

(C2) there exist positive numbers Ki and Mi, i = 1, 2 such that
f(z) ≥ K1z − M1 and g(z) ≥ K2z − M2 for all z ≥ 0,

and establish:

Theorem 1.1. Let (C1) (C2) hold, and let Ω be a ball in RN ,
N ≥ 1. Then there exists a positive number σ such that the system
(1.1) has no positive solutions for λ μ > σ.

When Ω is a ball and N > 1 by [8] all nonnegative solutions are
positive componentwise. Hence by [16] solutions are radially symmetric
and decreasing. The proofs of our main results rely heavily on this
property. We will prove Theorem 1.1 in Section 2.

For an existence result for positive solutions for classes of superlin-
earities satisfying (C1), λ = μ and λ small, see [10, 13]. Also see [11]
for a similar existence result for a class of p-Laplacian systems in an
annulus and [7] for a recent survey on semipositone systems. In the
single equation case, see [1, 4, 5] for nonexistence results and [1 4, 6,
9, 12, 14, 15] for existence results.

2. Proofs of main results. Without loss of generality we assume
that Ω is the unit ball in RN . Let (u, v) be a positive solution of (1.1).
Then u and v are radial, decreasing and satisfy

(2.1)

−(r(N−1)u′)′ = λ rN−1f(v); 0 < r < 1

−(r(N−1)v′)′ = μ rN−1g(u); 0 < r < 1
u′(0) = 0 = v′(0)
u(1) = 0 = v(1).

We first establish some preliminary results.

Lemma 2.1. There exists a positive constant C such that for λ μ
large, u(1/4) + v(1/4) ≤ C.
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Proof. Let λ1 be the principal eigenvalue of the −Δ with Dirichlet
boundary conditions and φ a corresponding positive eigenfunction.
First note that (1.1) and (C2) imply, see (A.6),

∫ 1

0

[
λ1 − λ μ

K1K2

λ1

]
vφ rN−1 dr

≥
∫ 1

0

μ

[
− λ

K2M1

λ1
− M2

]
φ rN−1 dr

and hence if λ μ is large enough, we have

∫ 1

0

λ μ

2
K1K2 vφ rN−1 dr ≤

∫ 1

0

λ μ

[
K2M1 +

M2λ1

λ

]
φ rN−1 dr.

This implies

(2.2)
∫ 1

0

K1K2

2
v φ rN−1 dr ≤

∫ 1

0

[
K2M1 +

M2λ1

ε0

]
φ rN−1 dr.

Similarly,

(2.3)
∫ 1

0

K1K2

2
u φ rN−1 dr ≤

∫ 1

0

[
K1M2 +

M1λ1

ε0

]
φ rN−1 dr.

Adding (2.2) and (2.3),

(2.4)
∫ 1

0

(u + v) φ rN−1 dr

≤ 2
K1K2

∫ 1

0

[
K1M2 +

M1λ1

ε0
+ K2M1 +

M2λ1

ε0

]
φ rN−1 dr

= C0 (say),

and, since u and v are decreasing, we obtain

u

(
1
4

)
+ v

(
1
4

)
≤ C0∫ 1/4

0
φ rN−1 dr

= C.

Hence the result.
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Lemma 2.2. For λ μ sufficiently large, u(3/4) ≤ β2 or v(3/4) ≤ β1,
where β1 and β2 are the unique positive zeros of f and g, respectively.

Proof. Suppose u(3/4) > β2 and v(3/4) > β1.

Case 1. u(1/2) > ρ2 or v(1/2) > ρ1 where ρ1 = (β1 + θ1)/2 and
ρ2 = (β2 + θ2)/2 with θ1 and θ2 being the unique positive zeros of
F (z) =

∫ z

0
f(t) dt and G(z) =

∫ z

0
g(t) dt, respectively.

Now, if u(1/2) > ρ2, then

−(rN−1 v′)′ = μ rN−1 g(u) ≥ ε0 rN−1 g(ρ2) in J :=
(

1
4
,

1
2

)

and v(r) ≥ β1 on J̄ . Let w be the unique solution of

−(rN−1 w′)′ = ε0 rN−1 g(ρ2) on J

w = β1 on ∂J.

Then, by comparison arguments, v(r) ≥ w(r) = ε0 g(ρ2)w0(r) + β1 in
J̄ , where w0 is the unique (positive) solution of

−(rN−1 w′
0)

′ = 1 in J

w0 = 0 on ∂J.

In particular, there exists β̄1 > β1 such that v(5/12) ≥ w(5/12) ≥ β̄1

and hence v(r) ≥ β̄1 on J∗ = (1/3, 5/12). Then

−(rN−1(u − β2)′)′ = λ rN−1 f(v) ≥ λ rN−1 f(β̄1)

≥
(

λ f(β̄1)
C

)
rN−1 (u − β2) on J∗,

where C is as in Lemma 2.1. Since u − β2 > 0 on J̄∗, it follows that

(2.5)
λ f(β̄1)

C
≤ λ1(J∗),

where λ1(J∗) is the principal eigenvalue of (B.2) with (a, b) = J∗, see
Appendix B.
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Next consider

−(rN−1(v − β1)′)′ = μ rN−1 g(u) ≥ μ rN−1 g(ρ2)

≥
(

μ g(ρ2)
C

)
rN−1(v − β1) in J.

Since v − β1 > 0 on J̄ , it follows that (see Appendix B)

(2.6)
μ g(ρ2)

C
≤ λ1(J),

where λ1(J) is the principal eigenvalue of (B.2) with (a, b) = J .

Combining (2.5) and (2.6), we get

(2.7)
λ μf(β̄1)g(ρ2)

C2
≤ λ1(J∗)λ1(J).

But, in the above inequality, f(β̄1), g(ρ2) and C are fixed positive
constants. Hence, (2.7) cannot hold for large λ μ, a contradiction. A
similar contradiction can be reached for the case when v(1/2) > ρ1.

Case 2. u(1/2) ≤ ρ2 and v(1/2) ≤ ρ1. Then β2 < u ≤ ρ2 and
β1 < v ≤ ρ1 on J1 = [1/2, 3/4]. Then, by the mean value theorem,
there exist C1, C2 ∈ J1 such that |u′(C2)| ≤ 4ρ2 and |v′(C1)| ≤ 4ρ1.
Since −(rN−1 u′)′ ≥ 0 on [1/2, 3/4), it follows that

− rN−1 u′(r) ≤ −CN−1
2 u′(C2) on J2 = [1/2, C2),

and so

|u′(r)| ≤ CN−1
2

rN−1
|u′(C2)| ≤ 1

(1/2)N−1

(
3
4

)N−1

4 ρ2 on J2.

Similarly, |v′(r)| ≤ 4(3/2)N−1 ρ1 on J3 = [1/2, C1). Hence, there exists
r0 ∈ [1/2, 3/4) such that

|u′(r0)| ≤ C̃, |v′(r0)| ≤ C̃,

where C̃ = 4 (3/2)N−1 max(ρ2, ρ1). Now define

E(r) = u′(r)v′(r) + λ F (v(r)) + μ G(u(r)).
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Then

E′(r) = − 2(N − 1)
r

u′v′ ≤ 0

and hence E ≥ 0 on [0, 1] since E(1) = u′(1)v′(1) ≥ 0. But

(2.8) E(r0) ≤ C̃2 + λ k1 + μ k2,

where k1 = F (ρ1) and k2 = G(ρ2). But F (ρ1) < 0 and G(ρ2) <
0. Hence (2.8) implies that E(r0) < 0 for λ μ large, which is a
contradiction. Thus Lemma 2.2 is proven.

Proof of Theorem 1.1. Assume that λ μ is large enough so that both
Lemmas 2.1 and 2.2 hold. First we take the case when u(3/4) ≤ β2.
Then

−(rN−1v′)′ = μ rN−1 g(u) ≤ 0 on J3 =
(

3
4
, 1

)
,

v

(
3
4

)
≤ C, v(1) = 0.

Thus by comparison arguments v(r) ≤ w̃(r), where w̃ is the solution of

−(rN−1 w̃′)′ = 0 on J3 =
(

3
4
, 1

)

w̃

(
3
4

)
= C, w̃(1) = 0.

But w̃(r) = C/(
∫ 1

3/4
s1−N )

∫ 1

r
sN−1 ds decreases from C to 0 on [3/4, 1]

and hence there exists r1 ∈ (3/4, 1) (which is independent of λ μ) such
that w̃(r1) = β1/2. (Here we assume without loss of generality that
β1/2 < C. If not, we can choose r1 such that w̃(r1) = β1/N0 where N0

is large enough so that β1/N0 < C.) Hence, v(r1) ≤ β1/2 and

−(rN−1(β2 − u)′)′ = −λ rN−1f(v) ≥ −λ rN−1f

(
β1

2

)

≥ λ

[
− f

(
β1

2

)]
rN−1 (β2 − u)

β2
on J4 = (r1, 1).
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Since β2 − u > 0 on J̄4, we have (see Appendix B)

(2.9)
λK̃1

β2
≤ λ1(J4),

where K̃1 = −f(β1/2) and λ1(J4) is the principal eigenvalue of (B.2)
with (a, b) = J4.

By comparison arguments v(r) ≤ w̃(r), where w̃(r) is as before, and
in particular, there exists r2 (independent of λ μ) ∈ (3/4, 1) such that
v(r2) < β1/2. (Again, without loss of generality, we assume β1/2 < C.)
Then

−(rN−1 u′)′ = λ rN−1 f(v) ≤ 0 on J5 = (r2, 1)
u(r2) ≤ C, u(1) = 0.

Hence, by comparison arguments, we obtain

u(r) ≤ w1(r) =
C∫ 1

r2
s1−N ds

∫ 1

r

s1−N ds

which satisfies

−(rN−1 w′
1)

′ = 0 on J5

w1(r2) = C, w1(1) = 0.

Arguing as before there exists r3, independent of λ μ, ∈ (r2, 1) such
that u(r3) ≤ w1(r3) ≤ β2/2 < C. Hence,

−(rN−1(β1 − v)′)′ = −μ rN−1 g(u) ≥ −μ rN−1 g

(
β2

2

)

≥ μ

[
− g

(
β2

2

)]
(β1 − v)

β1
on J6 = (r3, 1).

Since β1 − v > 0 on J̄6, it follows that (see Appendix B)

(2.10)
μK̃2

β1
≤ λ1(J6),
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where K̃2 = −g(β2/2) and λ1(J6) is the principal eigenvalue of (B.2)
with (a, b) = J6. Hence, combining (2.9) and (2.10), we have

(2.11)
λ μK̃1K̃2

β1β2
≤ λ1(J4)λ1(J6),

a contradiction for λ μ large.

A similar contradiction can be reached for the case v(3/4) ≤ β1.
Hence, Theorem 1.1 is proven.

Appendix

A. Consider the system

(A.1)
−Δu = λ f(v); x ∈ Ω
−Δv = μ g(u); x ∈ Ω

u = 0 = v; x ∈ ∂Ω,

where Ω is a smooth bounded region in RN , ∂Ω is its boundary and
λ, μ are nonnegative parameters. Let f, g : [0,∞) → R be continuous,
and assume that there exist σ1 > 0, σ2 > 0, ε1 > 0 and ε2 > 0 such
that

(A.2) f(v) ≥ σ1v + ε1, for all v ∈ [0,∞)

and

(A.3) g(u) ≥ σ2u + ε2, for all u ∈ [0,∞).

Then we prove:

Theorem A. Let (A.2) (A.3) hold. Then the system (A.1) has no
positive solutions if λ μ > λ2

1/(σ1σ2) where λ1 is the first eigenvalue of
the −Δ with Dirichlet boundary conditions.

Proof. Multiplying the first equation in (A.1) by a positive eigenfunc-
tion, say φ, corresponding to λ1 and using (A.2), we obtain

−
∫

Ω

Δu φ dx ≥
∫

Ω

λ (σ1v + ε1) φ dx.
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That is,

(A.4)
∫

Ω

u λ1 φ dx ≥
∫

Ω

λ (σ1v + ε1) φ dx.

Similarly using the second equation in (A.1) and (A.3), we obtain

(A.5)
∫

Ω

v λ1 φ dx ≥
∫

Ω

μ(σ2u + ε2) φ dx.

Combining (A.4) and (A.5), we obtain

(A.6)
∫

Ω

[
λ1 − (λ μ)

σ1σ2

λ1

]
v φ dx ≥

∫
Ω

μ

[
λ

σ2ε1

λ1
+ ε2

]
φ dx.

Inequality (A.6) clearly leads to a contradiction if λ μ > λ2
1/(σ1σ2).

Hence the result.

Remark. Note that in the case when (A.2) (A.3) is satisfied with
ε1 = ε2 = 0, (A.6) gives a contradiction if λ μ > λ2

1/(σ1σ2). Hence this
nonexistence result holds in this case as well.

B. Assume that there exists z ≥ 0, z �≡ 0, on Ī where I = (a, b) and
a constant σ such that

(B.1) −(rN−1 z′)′ ≥ σ rN−1 z; r ∈ I.

Let λ1 = λ1(I) > 0 denote the principal eigenvalue of

(B.2)
−(rN−1 φ′)′ = λ rN−1 φ; r ∈ (a, b)

φ(a) = 0 = φ(b),

where 0 < a < b ≤ 1.

Then we prove:

Theorem B. Let (B.1) hold. Then σ ≤ λ1(I).

Proof. Multiplying (B.1) by φ(> 0), an eigenfunction corresponding
to the principal eigenvalue λ1(I), and integrating by parts (twice) we
obtain

(B.3)
∫ b

a

[σ − λ1(I)] rN−1z φ dr ≤ bN−1 φ′(b)z(b) − aN−1 φ′(a)z(a).
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But φ′(b) < 0 and φ′(a) > 0. Hence the right-hand side of (B.3) ≤ 0,
and thus σ ≤ λ1(I).
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