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CLASSICAL OPERATORS ON MIXED-NORMED
SPACES WITH PRODUCT WEIGHTS

DOUGLAS S. KURTZ

ABSTRACT. We prove norm inequalities for a variant of
the Hardy-Littlewood maximal function on weighted mixed-
norm spaces. These results are applied to singular integral
operators, including the double Hilbert transform.

1. Introduction. Let f be a locally integrable function on Rn. We
define the Hardy-Littlewood maximal function Mf of f by

Mf (x) = sup
1
|Q|

∫
Q

|f (y)| dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x. In
1930, Hardy and Littlewood proved that this operator is bounded on
Lp for 1 < p ≤ ∞. This result has been generalized in many directions.
Fefferman and Stein [4] proved a vector-valued version:

(1.1)( ∫
Rn

( ∞∑
j=1

|Mfj (x)|q
)p/q

dx

)1/p

≤ C

(∫
Rn

( ∞∑
j=1

|fj (x)|q
)p/q

dx

)1/p

for 1 < p, q < ∞. A key element of their proof is a weighted-norm
inequality:

( ∫
Rn

|Mf (x)|p w (x) dx

)1/p

≤ C

( ∫
Rn

|f (x)|p Mw (x) dx

)1/p

which holds for any p > 1. If there is a constant C > 0 so that
Mw (x) ≤ Cw (x), which is known as the A1 condition, then we have

( ∫
Rn

|Mf (x)|p w dx

)1/p

≤ C

( ∫
Rn

|f (x)|p w dx

)1/p

= ‖f‖p,w .
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Muckenhoupt [11] characterized the weights for which the Hardy-
Littlewood maximal function is bounded on Lp

w, 1 < p < ∞, by
introducing the Ap condition:

( ∫
Q

w (x) dx

)( ∫
Q

w (x)1−p′
dx

)p−1

≤ C |Q|p .

The smallest such C is called the Ap norm of w, denoted by ‖w‖Ap
.

See, for example, Chapter IV in [8] and Chapter V in [17]. These
results were unified by Andersen and John [1] who proved

(1.2)
( ∫

Rn

( ∞∑
j=1

|Mfj (x)|q
)p/q

w (x) dx

)1/p

≤ C

(∫
Rn

( ∞∑
j=1

|fj (x)|q
)p/q

w (x) dx

)1/p

for 1 < p, q < ∞ and w ∈ Ap.

The purpose of this paper is to study such operators on weighted
mixed-norm spaces. Mixed-norm spaces were developed by Benedek
and Panzone in [2]. Consider the space Rd = Rn × Rm. Let w be
a nonnegative, locally integrable function; we call such a function a
weight. Let 1 ≤ p, q < ∞. We say a measurable function f is in the
weighted Lp (Lq)-space, Lp (Lq (w)), if the norm

‖f‖Lp(Lq(w)) =
( ∫

Rn

( ∫
Rm

|f (x, y)|q w (x, y) dy

)p/q

dx

)1/p

is finite.

We consider weights that satisfy a condition we call Ap (Aq) that
generalizes the Ap condition; see Definition 2. Our condition Ap (Aq)
reduces to the well-known Ap condition on two-parameter rectangles
R = Q × Q′ when q = p. It is interesting to note that the Ap (Aq)
spaces do not satisfy the nesting properties that the Ap spaces do, as
we discuss below.

The Hardy-Littlewood maximal function is a supremum of averages
over cubes. The strong maximal function is an average over oriented



OPERATORS ON MIXED-NORMED SPACES 271

rectangles. We consider a second variant, more adapted to mixed-norm
spaces, defined in terms of rectangles that are products of cubes. We
will call this operator the strong maximal function.

Definition 1. Let f be a measurable function on Rn × Rm and
(x, y) ∈ Rn × Rm. Define the strong maximal function, MSf , by

MSf (x, y) = sup
R�(x,y)

1
|R|

∫
R

|f (s, t)| ds dt,

where R = Q × Q′ and Q ⊂ Rn and Q′ ⊂ Rm are cubes.

Our main result characterizes the weights w, which can be written as
a product of weights u (x), x ∈ Rn, and v (y), y ∈ Rm, for which this
maximal function is bounded on Lp (Lq (w)). The following theorem is
a weighted version of a result found in [7].

Theorem 1. Let 1 < p, q < ∞ and w (x, y) = u (x) v (y). Then
there is a constant C, independent of f and depending only on the
Ap (Aq) norm of w, such that

( ∫
Rn

( ∫
Rm

|MSf (x, y)|q w (x, y) dy

)p/q

dx

)1/p

≤ C

( ∫
Rn

( ∫
Rm

|f (x, y)|q w (x, y) dy

)p/q

dx

)1/p

if, and only if, w ∈ Ap (Aq).

We observe that the constant C is bounded below by the Ap (Aq)
norm of w, an easy consequence of the definitions, and above by a
constant that depends only on the Ap (Aq) norm of w. However, the
techniques employed only show an upper bound that is a power of the
Ap (Aq) norm of w, and not necessarily the Ap (Aq) norm itself, as in
the case of the Hardy-Littlewood maximal function.

If p = q = ∞, the norm inequality for MS holds if, and only if,
the weight is strictly positive almost everywhere or equal to 0 almost
everywhere. If p = q = 1, it is known that MS satisfies a weak-type
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inequality if, and only if, the weight satisfies an A1 condition (defined
by MS in place of M). For p = 1 and 1 < q < ∞, a version of
inequality (2) of Theorem 1 of [4] holds. No such norm inequality
holds for q < p = ∞ or 1 = q < p. See [17, pp. 51 and 75]. These
results remain open when w is not a product weight.

Since the strong maximal function is known to bound the maximal
function in the x variable, setting v = 1, we obtain Lp (Lq) versions of
the vector-valued inequalities (1.1) and (1.2). See [1] and [4].

The proof of Theorem 1 is based on extrapolation techniques devel-
oped by Garcia-Cuerva and Rubio de Francia in [14] and Chapter IV in
[8, pp. 433 450]. These techniques allow us to obtain weighted norm
inequalities for singular integral operators studied in [5] and [6]. In
particular, we characterize the product weights for which the double
Hilbert transform defines a bounded operator on Lp (Lq (w)), general-
izing the result in [7].

The paper is divided into four sections. In the second section, we
discuss the weights in Ap (Aq). An extrapolation result is proved in
Section 3 and used to prove Theorem 1. Applications to singular
integral operators are derived in Section 4.

2. Ap (Aq) weights. Let w be a nonnegative, locally integrable
function defined on Rd = Rn × Rm. We will be interested in the
following generalization of the Ap condition.

Definition 2. We say that a nonnegative function w is in Ap (Aq),
1 < p, q < ∞, if

(2.1)( ∫
Q

( ∫
Q′

w (x, y) dy

)p/q

dx

)( ∫
Q

( ∫
Q′

w (x, y)1−q′
dy

)p′/q′

dx

)p−1

≤ C |Q × Q′|p ,

where Q ⊂ Rn and Q′ ⊂ Rm are cubes (of possibly different edge
lengths). We call the smallest such constant the Ap (Aq) norm of w,
and denote it by ‖w‖Ap(Aq).
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It follows immediately from the definition that w ∈ Ap (Aq) if, and
only if, w1−q′ ∈ Ap′ (Aq′) and ‖w1−q′‖Ap′ (Aq′ ) = ‖w‖1/(p−1)

Ap(Aq) .

Weights in the Ap (Aq) spaces satisfy the following characterization.
(See, for example, [8, p. 400] and [17, p. 195].)

Lemma 1. A weight w ∈ Ap (Aq) if and only if there is a constant
C so that

(2.2)

(
1

|Q × Q′|
∫

Q

∫
Q′

f

)p

≤ C∫
Q

(∫
Q′ w (x, y) dy

)p/q

dx

∫
Q

( ∫
Q′

|f |q w dy

)p/q

dx.

for all measurable f ≥ 0 and Q × Q′ ⊂ Rn × Rm. The smallest C
satisfying (2.2) is equal to ‖w‖Ap(Aq).

Proof. Suppose that w ∈ Ap (Aq). Using the Lp (Lq) version of
Hölder’s inequality [2],

1
|Q × Q′|

∫
Q

∫
Q′

f =
1

|Q × Q′|
∫

Q

∫
Q′

fw1/qw−1/q

≤ 1
|Q × Q′|

( ∫
Q

( ∫
Q′

fqw dy

)p/q

dx

)1/p

×
( ∫

Q

( ∫
Q′

w1−q′
dy

)p′/q′

dx

)1/p′

.

Raising both sides to the pth power and applying the Ap (Aq) condition
yields

(
1

|Q × Q′|
∫

Q

∫
Q′

f

)p

≤
‖w‖Ap(Aq)

∫
Q

( ∫
Q′ w (x, y) dy

)p/q

dx

( ∫
Q

( ∫
Q′

fqw dy

)p/q

dx

)
.
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This shows that Ap (Aq) implies (2.2) with C ≤ ‖w‖Ap(Aq).

To show that (2.2) implies w ∈ Ap (Aq), we rewrite (2.2) as

( ∫
Q

( ∫
Q′

w (x, y) dy

)p/q

dx

)( ∫
Q

∫
Q′

f dy dx

)p

≤ C |Q × Q′|p
( ∫

Q

( ∫
Q′

fqw dy

)p/q

dx

)
.

Since the function

f (x, y) = χQ (x)χQ′ (y)w (x, y)1−q′ ∥∥∥χQ′ (·)w (x, ·)1−q′∥∥∥(q−p)/q(p−1)

1

satisfies

∫
Q

∫
Q′

f dy dx =
∫

Q

( ∫
Q′

fqw dy

)p/q

dx =
∫

Q

( ∫
Q′

w1−q′
dy

)p′/q′

dx,

we see that w ∈ Ap (Aq) with ‖w‖Ap(Aq) ≤ C.

When p = q, the Ap (Aq) condition reduces to the Ap condition over
the set of rectangles R = {Q × Q′ : Q ⊂ Rn and Q′ ⊂ Rm}. We will
denote Ap (Ap) by Ap,R when we wish to point out the underlying
rectangles. Using the Lebesgue differentiation theorem, such weights
satisfy uniform Ap conditions over Rn and Rm. An analogous result
holds for Ap (Aq) weights.

Lemma 2. If w ∈ Ap (Aq) then, for almost every (x, y) ∈
Rn × Rm, w (x, ·) ∈ Aq (Rm) and w (·, y)p/q ∈ Ap (Rn). Further,
‖w (·, y)p/q ‖Ap

≤ ‖w‖Ap(Aq) and ‖w (x, ·)‖Aq
≤ ‖w‖q/p

Ap(Aq).

Proof. Let C = ‖w‖Ap(Aq). Fix a cube Q ⊂ Rn. We want to show
that

(2.3)
( ∫

Q

w (x, y)p/q dx

)( ∫
Q

(
w (x, y)p/q

)1−p′

dx

)(p−1)

≤ C |Q|p
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for almost every y ∈ Rm. Let Q′ ⊂ Rm be a cube. Since p =
p/q + (p − p/q) = p/q + (q − 1) p/q, we can rewrite the Ap (Aq)-
condition as( ∫

Q

(
1

|Q′|
∫

Q′
w (x, y) dy

)p/q

dx

)

×
( ∫

Q

(
1

|Q′|
∫

Q′
w (x, y)1−q′

dy

)p′/q′

dx

)(p−1)

≤ C |Q|p .

By the Lebesgue differentiation theorem, we get (2.3) for almost every
y, depending on Q. By considering only cubes with rational vertices
and taking limits, we see that for almost every y ∈ Rm, w (·, y)p/q ∈
Ap (Rn) with a norm bounded by the Ap (Aq) norm of w.

A similar argument shows that w(x, ·) ∈ Aq(Rm) and ‖w(x, ·)‖Aq
≤

‖w‖q/p
Ap(Aq). Note that, for fixed y ∈ Rm, w(·, y) and w(·, y)1−q′

need
not be locally integrable in x, as we mention below. However, both
(
∫

Q′ w (x, y) dy)p/q and (
∫

Q′ w (x, y)1−q′
dy)p′/q′

are locally integrable
in x, which allows the use of the Lebesgue differentiation theorem.

Now, suppose that w (x, y) = u (x) v (y) with up/q ∈ Ap and v ∈ Aq.
It then follows that( ∫

Q

( ∫
Q′

w (x, y) dy

)p/q

dx

)( ∫
Q

( ∫
Q′

w (x, y)1−q′
dy

)p′/q′

dx

)(p−1)

≤ ‖up/q‖Ap
|Q|p ‖v‖p/q

Aq
(|Q′|q)p/q

= ‖up/q‖Ap
‖v‖p/q

Aq
|Q × Q′|p .

Thus, w ∈ Ap (Aq). We have

Lemma 3. The weight w (x, y) = u (x) v (y) ∈ Ap (Aq) if and
only if up/q ∈ Ap and v ∈ Aq. Further, ‖up/q‖Ap

≤ ‖w‖Ap(Aq),
‖v‖Aq

≤ ‖w‖q/p
Ap(Aq) and ‖w‖Ap(Aq) ≤ ‖up/q‖Ap

‖v‖p/q
Aq

.

Using Hölder’s inequality, one sees that Ap ⊂ Ap+ε for any ε > 0.
A deeper result is that given any w ∈ Ap, there is an ε > 0 such that
w ∈ Ap−ε. For the Ap (Aq) spaces, we have
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Proposition 1. Suppose 1 < p < ∞, 1 < q < t < ∞, and
w ∈ Ap (Aq). Then, w ∈ Ap (At) and ‖w‖Ap(At)

≤ ‖w‖q/t
Ap(Aq).

In fact, if w is a product weight, it follows from results about Ap weights
that for w ∈ Ap (Aq) there is a t < q such that w ∈ Ap (At), though we
will not need this result.

While the Ap (Aq) spaces are nested for varying q, no such result
holds for the parameter p, as the following example shows.

Example 1. If 1 < s, p, q < ∞ and s �= p, then there is a weight
w ∈ Ap (Aq) such that w /∈ As (Aq). In fact, consider the product
weight w (x, y) = |x|α, which is in Ap (Aq) if, and only if, (|x|α)p/q ∈ Ap

or, equivalently,
−nq

p
< α <

nq

p′
.

If s �= p, it is easy to see that neither of the intervals (−(nq/p), (nq/p′))
and ((−nq/s), (nq/s′)) is contained in the other.

Further, it should be mentioned that weights in Ap (Aq) need not be
locally integrable in one variable with the other variable held fixed. In
fact, w (x, y) = |x|−n ∈ Ap (Aq) if 1 < p < q < ∞. This shows that
it is not necessarily the case that w (·, y0) ∈ Ap. In fact, in this case,
w (·, y0) /∈ At for every y0 ∈ Rm and t > 1.

3. Extrapolation. The weighted mixed norm inequality is an
immediate consequence of the following extrapolation theorem.

Theorem 2. Let T be a sublinear operator. Let 1 ≤ s < ∞
and 1 < q, p < ∞. Suppose that T is bounded on Ls

w for every
w ∈ A

s,R , with a norm that depends only on ‖w‖As,R . Then, if
w (x, y) = u (x) v (y) and w ∈ Ap (Aq), T is bounded on Lp (Lq (w)),
with a norm that depends only on ‖w‖Ap(Aq).

The proof of this result relies on the following lemma proved by Rubio
de Francia. (See Lemma 5.18 in [8, p. 447]).
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Lemma 4. Let w ∈ Aα for 1 < α < ∞. Suppose that 1 ≤ β < ∞
with β �= α and define by γ by 1/γ = |1 − (β/α)|. Then, for every
nonnegative function g ∈ Lγ

w there exists a G ∈ Lγ
w such that

(1) g (x) ≤ G (x);

(2) ‖G‖γ,w ≤ C ‖g‖γ,w; the constant C depends only on the exponent
β;

(3) Either:

(a) G w ∈ Aβ if β ≤ α;

(b) G−1 w ∈ Aβ if α < β.

In either case, the Aβ norm of Gw or G−1w depends only on the Aβ

norm of w, and not on w itself.

We may now prove Theorem 2.

Proof. Observe first that, under the assumptions on T , T is bounded
on Ls

w for every w ∈ As,R for every s, 1 < s < ∞, with a norm that
depends only on ‖w‖As,R by Theorem 5.19 in [8, p. 448]. Consequently,
the result is true when 1 < p = q < ∞ (since Ap (Ap) = Ap,R).

Suppose that 1 < q < p < ∞. Let r = p/q > 1. Then, there exists a
nonnegative function g ∈ Lr′

up/q (Rn) with ‖g‖r′,up/q = 1, such that

( ∫
Rn

( ∫
Rm

|Tf (x, y)|q v (y) dy

)p/q

up/q (x) dx

)q/p

=
∫
Rn

( ∫
Rm

|Tf (x, y)|q v (y) dy

)
g (x)up/q (x) dx = Φ.

By Lemma 4 with α = p, β = q < α and γ = r′, there is a function
G ∈ Lr′

up/q (Rn) such that g (x) ≤ G (x), Gup/q ∈ Aq (Rn) and the
norm of G is bounded by a constant. Since v ∈ Aq (Rm), it then
follows that the weight W defined by W (x, y) = G (x)up/q (x) v (y) is
in Aq,R. Note that Gup/q and consequently W have Aq norms that
depend only on the Ap (Aq) norm of w. Then, since T is bounded on
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Lq
w for every w ∈ Aq,R

Φ =
∫
Rn

(∫
Rm

|Tf (x, y)|q v (y) dy

)
g (x)up/q (x) dx

≤
∫
Rn

∫
Rm

|Tf (x, y)|q G (x)up/q (x) v (y) dy dx

≤ C

∫
Rn

∫
Rm

|f (x, y)|q G (x)up/q (x) v (y) dy dx

By hypothesis and the comment above, the constant C depends only
on ‖w‖Ap(Aq). Therefore,

Φ ≤ C

∫
Rn

∫
Rm

|f (x, y)|q G (x)up/q (x) v (y) dy dx

= C

∫
Rn

(∫
Rm

|f (x, y)|q v (y) dy

)
G (x)up/q (x) dx

≤ C

( ∫
Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)p/q

up/q (x) dx

)q/p

‖G‖r′,up/q

≤ C ′
( ∫

Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)p/q

up/q (x) dx

)q/p

which completes the proof when q < p.

Now, suppose that 1 < p < q < ∞. Let r = p/q < 1 and define
r′′ by 1/r′′ = q/p − 1. Then, there exists a nonnegative function
g ∈ Lr′′

up/q (Rn) with norm 1 such that

( ∫
Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)p/q

up/q (x) dx

)q/p

=
∫
Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)
1

g (x)
up/q (x) dx.

By Lemma 4 with α = p, β = q > α and γ = r′′, there is a function
G ∈ Lr′′

up/q (Rn) such that g (x) ≤ G (x), up/q/G ∈ Aq and the norm
of G is bounded by a constant. As above, the weight W defined by
W (x, y) = up/q (x) v (y)/G (x) is in Aq,R with a norm that depends
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only on the Ap (Aq) norm of w. Thus,
( ∫

Rn

( ∫
Rm

|Tf (x, y)|q v (y) dy

)p/q

up/q (x) dx

)1/p

=
(∫

Rn

( ∫
Rm

|Tf (x, y)|q v (y) dy

)p/q

× G (x)−p/q G (x)p/q up/q (x) dx

)1/p

≤
(∫

Rn

( ∫
Rm

|Tf (x, y)|q v(y) dy

)
G(x)−1up/q(x) dx

)1/q

‖G‖1/p

r′′ ,up/q

≤ C

(∫
Rn

∫
Rm

|Tf (x, y)|q G (x)−1
up/q (x) v (y) dy dx

)1/q

≤ C

(∫
Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)
G (x)−1

up/q (x) dx

)1/q

≤ C

(∫
Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)
1

g (x)
up/q (x) dx

)1/q

= C

(∫
Rn

( ∫
Rm

|f (x, y)|q v (y) dy

)p/q

up/q (x) dx

)1/p

.

This inequality completes the proof of the theorem.

We now consider the proof of Theorem 1. A simple argument shows
that if MS is a bounded operator on Lp (Lq (w)) then w ∈ Ap (Aq). In
fact, suppose f ≥ 0 and supp f ⊂ Q × Q′. If (x, y) ∈ Q × Q′, then

1
|Q × Q′|

∫
Q

∫
Q′

f ≤ MSf (x, y) .

This implies that(
1

|Q × Q′|
∫

Q

∫
Q′

f

)p ∫
Q

( ∫
Q′

w (x, y) dy

)p/q

dx

≤
∫

Q

( ∫
Q′

|MSf (x, y)|q w (x, y) dy

)p/q

dx

≤ C

∫
Q

( ∫
Q′

|f (x, y)|q w (x, y) dy

)p/q

dx.
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By Lemma 1, w ∈ Ap (Aq), with ‖w‖Ap(Aq) bounded by the operator
norm of MS . An application of Theorem 2 completes the proof of
Theorem 1.

The proof above shows that the Ap (Aq) norm of w is bounded by
the operator norm of MS . Whether or not the operator norm of MS is
bounded by the Ap (Aq) norm of w is an open question.

We remark that the proof of Theorem 1 shows that if ‖MSf‖Lp(Lq(w))

≤ C‖f‖Lp(Lq(w)) then w ∈ Ap (Aq), without requiring that w be a
product weight. Their equivalence, for general weights, is an open
question.

4. Double Hilbert transform and singular integral operators.
Let f : R2 → R, and define the double Hilbert transform of f by

Df (x, y) = pv

∫ ∞

−∞

∫ ∞

−∞

1
uv

f (x − u, y − v) du dv.

Define the one-variable Hilbert transforms, H1 and H2, by

H1f (x, y) = pv

∫ ∞

−∞

1
u

f (x − u, y) du

and

H2f (x, y) = pv

∫ ∞

−∞

1
v

f (x, y − v) du.

It follows that Df (x, y) = H2 (H1f) (x, y). Using the fact that w ∈
A

r,R implies that both w (·, y0) and w (x0, ·) are in Ar (R), uniformly
in x0 and y0, and iterating known results for the Hilbert transform, we
see that D defines a bounded operator on Lr

w

(
R2

)
for every w ∈ Ar,R .

We have

Theorem 3. Let w (x, y) = u (x) v (y) and 1 < p, q < ∞. The double
Hilbert transform is a bounded operator on Lp (Lq (w)) if and only if
w ∈ Ap (Aq).

Proof. By Theorem 2, D is bounded on Lp (Lq (w)) for 1 < p, q < ∞.
To prove that the norm inequality implies w ∈ Ap (Aq), we repeat
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the argument used to prove Theorem 7 in [9, p. 244]. In place of the
function f (θ) = W (θ)−1/(p−1), we use the function

f (x, y) = χI (x)χI′ (y)w (x, y)1−q′ ‖χI′ (·)w (x, ·)1−q′ ‖(q−p)/q(p−1)
1

employed in the proof of Lemma 1.

Suppose that the operator T , defined by Tf (x) = (K ∗ f) (x),
is a standard Calderon-Zygmund singular integral operator; that is,
suppose that:

(1) |K (x)| ≤ C/|x|n+m,

(2)
∫
{a<|x|<b} K (x) dx = 0 for 0 < a < b,

(3) |∇K (x)| ≤ C/|x|n+m+1.

Then, it is well known that T is a bounded operator from Lp
w (Rn× Rm)

to itself for 1 < p < ∞ and w ∈ Ap (Rn × Rm), the standard Ap class
defined over cubes in Rd = Rn × Rm. See, for example, [17]. Since
w ∈ A

r,R implies that w ∈ Ap (Rn × Rm), it follows from Theorem 2
that T is a bounded operator from Lp (Lq (w)) to itself for 1 < p,
q < ∞ and w (x, y) = u (x) v (y) ∈ Ap (Aq). However, the spaces
Lp (Lq (w)) seem better adapted to multiparameter operators like the
double Hilbert transform and, like the maximal function considered
above, we will consider singular integral operators that conform to this
setting.

Let K (x, y) be a function of two variables and set

Δ1
hK (x, y) = K (x + h, y) − K (x, y)

Δ2
kK (x, y) = K (x, y + k) − K (x, y)

Δ1,2
h,k (K) = Δ1

h

(
Δ2

k (K)
)
.

and

K1 (x) =
∫
{β1<|y|<β2}

K (x, y) dy

K2 (y) =
∫
{α1<|x|<α2}

K (x, y) dx,
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with α1, α2, β1 and β2 fixed. Following [6], we assume there are fixed
A, η > 0 so that K satisfies the cancelation conditions:

(C1)
∣∣∣∣
∫
{α1<|x|<α2,β1<|y|<β2}

K (x, y) dx dy

∣∣∣∣ ≤ A,

(C2) |K1 (x)| ≤ A |x|−n,
∣∣Δ1

hK1 (x)
∣∣ ≤ A |h|η |x|−n−η for |x| ≥ 2 |h|,

and similar conditions for K2 (y);

and the size conditions:

(S1) |K (x, y)| ≤ A |x|−n |y|−m,

(S2)
∣∣Δ1

hK (x, y)
∣∣ ≤ A |h|η |x|−n−η |y|−m for |x| ≥ 2 |h|, and a similar

condition for Δ2
kK (x, y),

(S3)
∣∣Δ1,2

h,k K (x, y)
∣∣ ≤ A (|h| |k|)η |x|−n−η |y|−m−η for |x| ≥ 2 |h| and

|y| ≥ 2 |k|.

Under these assumptions on K, Fefferman and Stein, see [5] and [6],
showed that

‖K ∗ f‖Lp
w(Rn×Rm) ≤ C ‖f‖Lp

w(Rn×Rm)

for weights w such that w (·, y0) ∈ Ap (Rn) and w (x0, ·) ∈ Ap (Rm),
uniformly in x0 and y0, where C depends only on A, p, and the uniform
bounds on w. Since w ∈ Ap,R implies that both w (·, y0) ∈ Ap (Rn)
and w (x0, ·) ∈ Ap (Rm), uniformly in x0 and y0, we can extrapolate to
show that

Theorem 4. Suppose that K satisfies the cancelation and size
conditions above. Then, the operator K ∗ f is a bounded operator on
Lp (Lq (w)) for 1 < p, q < ∞ and w (x, y) = u (x) v (y) ∈ Ap (Aq).

We note that results for many other operators follow from the ex-
trapolation theorem, such as sharp function, multiplier and Littlewood-
Paley operators.
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