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Abstract: We overview results on the topic of Poisson approximation that
are missed in existing surveys. The main attention is paid to the problem of
Poisson approximation to the distribution of a sum of Bernoulli and, more
generally, non-negative integer-valued random variables.

We do not restrict ourselves to a particular method, and overview the
whole range of issues including the general limit theorem, estimates of the
accuracy of approximation, asymptotic expansions, etc. Related results on
the accuracy of compound Poisson approximation are presented as well.

We indicate a number of open problems and discuss directions of further
research.
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1. Weak convergence to a Poisson law

Poisson approximation appears natural in situations where one deals with a large
number of rare events. The topic has attracted a considerable body of research. It
has important applications in insurance, extreme value theory, reliability theory,
mathematical biology, etc. (cf. [7, 12, 54, 66, 82]). However, existing surveys are
surprisingly sketchy, and miss not only a number of results obtained during the
last three decades but even some classical results going back to 1930s.

The paper aims to fill the gap. We present a comprehensive list of results on
the topic of Poisson approximation, and formulate a number of open problems.
Related results on the topic of compound Poisson approximation are presented
as well. The main attention is given to results that are missed in existing surveys.

1.1. Weak convergence to a Poisson law

We denote by Π(λ) a Poisson law with parameter λ.
The following Poisson limit theorem is due to Gnedenko [50] and Marcinkie-

wicz [73]. Hereinafter multiplication is superior to division.
Let {Xn,1, ..., Xn,kn}n≥1, where {kn} is a non-decreasing sequence of natural

numbers, be a triangle array of independent random variables (r.v.s).
Random variables {Xn,k} are called infinitesimal if

lim
n→∞

max
k≤kn

P(|Xn,k|>ε) → 0 (∀ε>0). (1)

Denote Bε = (−ε; ε) ∪ (1−ε; 1+ε),

Sn = Xn,1 + ...+Xn,kn .

Theorem 1. [50, 73] If {Xn,k} are infinitesimal r.v.s, then

L(Sn) ⇒ Π(λ) (∃λ>0) (2)

as n → ∞ if and only if for any ε∈(0; 1), as n→∞,

∑
k

P(|Xn,k−1|<ε) → λ, (3)

∑
k

P(Xn,k∈/Bε) → 0,
∑
k

EXn,k1{|Xn,k|<ε} → 0, (4)

∑
k

(
EX2

n,k1{|Xn,k|<ε} − E
2Xn,k1{|Xn,k|<ε}

)
→ 0. (5)

The following corollary presents necessary and sufficient conditions for the
weak convergence of a sum of independent and identically distributed (i.i.d.)
non-negative integer-valued r.v.s to a Poisson random variable.

Let N denote the set of natural numbers, and let Z+ :=N ∪{0}.
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Corollary 2. If {Xn,1, ..., Xn,kn}n≥1 is a triangle array of independent random

variables taking values in Z+ such that Xn,i
d
= Xn,1 (1≤ i≤kn), then (2) holds

if and only if

knP(X1,n=1) → λ and P(Xn,1≥2)/P(Xn,1≥1) → 0. (6)

Note that (6) yields P(Xn,1≥1) ∼ P(Xn,1=1) as n→∞.
The second relation in (6) means X ′

n,1 →p 1 as n→∞, where r.v. X ′
n,1 has

the distribution L(X ′
n,1) = L(Xn,1|Xn,1 �=0).

In the case of Bernoulli B(pn,k) random variables relations (4) and (5) triv-
ially hold, (3) means ∑

k

pn,k → λ (n → ∞), (3∗)

while (1) states that maxk pn,k → 0 as n → ∞. The latter together with (3∗)
is equivalent to ∑

k

p2n,k → 0 (n→∞). (1∗)

Thus, conditions (1∗) and (3∗) are necessary and sufficient for the weak con-
vergence (2).

Example 1.1. Let {Xn,1, ..., Xn,n} be i.i.d. random variables with the distri-
bution

P(X=0) = 1−λ/n−1/n1.5, P(X=1) = λ/n, P(X=n) = 1/n1.5 (λ>0).

Then (1) and (6) hold, hence L(Sn) ⇒ Π(λ). Note that ESn →/ λ.

The proof of Theorem 1 can be found in [52].
A compound Poisson limit theorem (weak convergence of L(Sn) to a com-

pound Poisson law, where Sn is a sum of i.i.d. random variables that are equal
to 0 with a large probability) has been given by Khintchin ([61], ch. 2.3).

1.2. Dependent Bernoulli random variables

The topic of Poisson approximation to the distribution of a sum of dependent
Bernoulli r.v.s has applications in extreme value theory, reliability theory, etc.
(cf. [7, 12, 66, 82]).

Let {Xn,1, ..., Xn,n}n≥1 be a triangle array of 0-1 random variables such that
sequence Xn,1, ..., Xn,n is stationary for each n ∈N. For instance, in extreme
value theory one often has

Xn,k = 1{Yk>un},

where {Yi, i≥ 1} is a stationary sequence of random variables and {un} is a
sequence of “high” levels. The special case where {Yi, i≥1} is a moving average
is related to the topic of the Erdös–Rényi partial sums (cf. [82], ch. 2).
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Let Fl,m(τ) be the σ–field generated by the events {Xn,i}, l≤ i≤m. Set

αn(l) = sup |P(AB)−P(A)P(B)|, ϕn(l) = sup |P(B|A)− P(B)|,
βn(l) = supE sup

B
|P(B|F1,m)−P(B)|,

where the supremum is taken over m≥1, A∈F1,m(τ), B∈Fm+l+1,n such that
P(A)>0. Conditions involving mixing coefficients αn(·), βn(·), ϕn(·) are slightly
weaker than those involving traditional mixing coefficients α(·), β(·), ϕ(·).

Condition Δ is said to hold if αn(ln) → 0 for some sequence {ln} of natural
numbers such that 1  ln  n.

Class R. If Δ holds, then there exists a sequence {rn} of natural numbers
such that

n � rn � ln � 1, nr−1
n α2/3

n (ln) → 0 (n→∞) (7)

(for instance, one can take rn =
[√

nmax{ln;nαn(ln)}
]
). We denote by R the

class of all such sequences {rn}.
Set

Sn = Xn,1 + ...+Xn,n, λn = ESn.

Let ζr,n be a r.v. with the distribution

L(ζr,n) = L(Sr |Sr>0). (8)

In extreme value theory L(ζr,n) is known as the cluster size distribution.

Theorem 3. Assume condition Δ. If, as n→∞,

Sn ⇒ πλ (∃λ>0), (9)

then

ζr,n →
p

1 (n→∞) (10)

for any sequence {r=rn} obeying (7).

If there exists the limit

lim
n→∞

P(Xn,1= ...=Xn,n=0) = e−λ (∃λ>0) (11)

and (10) holds for some {r=rn}∈R, then Sn ⇒ πλ.

Theorem 3 generalises Corollary 2 to the case of dependent α-mixing r.v.s.

Condition (11) is an analogue of (3); it means that P(Xn,i �=0) are “properly
small”.

Condition (10) prohibits asymptotic clustering of rare events. In the case of
independent r.v.s taking values in Z+ assumption (10) means X ′

n,1 →p 1 as
n→∞, where r.v. X ′

n,1 has the distribution L(X ′
n,1) = L(Xn,1|Xn,1 �=0).
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Remark 2.1. The following condition (D′) has been widely used in extreme
value theory (cf. [66, 82]):

lim
n→∞

n

r−1∑
i=1

P (Xn,i+1 �=0, Xn,1 �=0) = 0 (D′)

for any sequence {r= rn} such that n� rn � 1. Condition (D′) means that
there is no asymptotic clustering of extremes. It was introduced by Loynes [71].

Closely related is the following condition

lim
n→∞

r−1∑
i=1

P (Xn,i+1 �=0|Xn,1 �=0) = 0. (D̃′)

If conditions Δ and (11) hold, then (D′) is equivalent to (D̃′).
Indeed, one can check that Δ and (11) yield

P(Sr>0) ∼ λr/n (n→∞) (12)

(cf. (16) below). Denote p = P(Xn,1 �=0). Then

λr/n ∼ P(Sr>0) ≤ rp, λ+o(1) ≤ np.

Hence (D′) ⇒ (D̃′).
By Bonferroni’s inequality,

λr/n ∼ P(Sr>0) ≥ rP(Xn,1 �=0)− P

(
∪1≤i<j≤r {Xn,i �=0, Xn,j �=0}

)

≥ rp− rp

r−1∑
i=1

P (Xn,i+1 �=0|Xn,1 �=0) .

Therefore,

1 ≥ P(Sr>0)/rp ≥ 1−
r−1∑
i=1

P (Xn,i+1 �=0|Xn,1 �=0) , (13)

λ+o(1) ≥
(
1−

r−1∑
i=1

P (Xn,i+1 �=0|Xn,1 �=0)
)
np. (14)

Thus, np is bounded away from 0 and above, and (D′) is equivalent to (D̃′).

Remark 2.2. Condition (10) is weaker than (D′): if conditions Δ and (11)
hold, then (D′) entails (10). Indeed, ζr,n≥1 by construction. Note that

P(Sr>1) = P

(
∪1≤i<j≤r {Xn,i �=0, Xn,j �=0}

)

≤ r
r−1∑
i=1

P (Xn,i+1 �=0, Xn,1 �=0) .
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Thus, P(Sr > 1) = o(r/n) if (D′) holds. In view of (12), P(ζr,n > 1) → 0 as
n → ∞, i.e., (10) holds.

Remark 2.3. If conditions Δ and (D′) hold, then (11) is equivalent to

lim
n→∞

nP(Xn,1 �=0) = λ. (3′)

Indeed, this follows from (12), (13) and (16) (cf. [66], Theorem 3.4.1).

A generalisation of Corollary 2 to the case of stationary ϕ-mixing r.v.s has
been given by Utev [112], Theorem 10.1, who has shown that conditions (3′)
and (D′) are necessary and sufficient for (9). Sufficient conditions for Poisson
convergence without assuming stationarity have been provided by Sevastyanov
[104]. A Poisson limit theorem in the case of a two-dimentional random field
{Xi,j} has been given by Banis [8].

Proof of Theorem 3. Let {r=rn} be an arbitrary sequence from R. Condition
Δ and Lemma 2.4.1 from [66] imply that for any t∈R, as n → ∞,

E exp (itSn) = exp
(n
r
P(Sr>0)E

{
eitSr− 1|Sr>0

})
+ o(1), (15)

P(Sn = 0) = P
n/r(Sr=0) + o(1) = exp

(
−n

r
P(Sr>0)

)
+ o(1) (16)

(cf. (5.10) in [82]).

If (9) holds, then so does (11): P(Sn=0) → e−λ as n→∞. Note that (11)
and (16) yield (12). Since

EeitSn → exp(λ(eit−1)) (∀t∈R) (9∗)

by the assumption, (15) and (12) entail Eeitζr,n → eit, i.e., (10) holds.

On the other hand, if (10) and (11) hold for some {r=rn}∈R, then (12) is
valid. Relations (12) and (15) yield (9∗).

2. Accuracy of Poisson approximation

The problem of evaluating the accuracy of Poisson approximation to the distri-
bution of a sum

Sn = X1+ ...+Xn

of independent 0-1 random variables has attracted a lot of attention among
researchers (cf. [12, 82] and references wherein).

A natural task is to obtain a sharp estimate of the accuracy of Poisson ap-
proximation to the distribution of L(Sn). In this section we overview available
estimates.
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Historically, the accuracy of Poisson approximation was first studied in terms
of the uniform distance (sometimes called the Kolmogorov distance).

The uniform distance dK(X;Y ) ≡ dK(FX ;FY ) between the distributions of
random variables X and Y with distribution functions (d.f.s) FX and FY is
defined as

dK(FX ;FY ) = sup
x

|FX(x)− FY (x)|.

Many authors evaluated the accuracy of Poisson approximation to L(Sn) in
terms of the total variation distance. Recall that the total variation distance
d

TV
(X;Y ) between the distributions of r.v.s X and Y is defined as

d
TV
(X;Y ) ≡ d

TV
(L(X);L(Y )) = sup

A∈A
|P(X∈A)− P(Y ∈A)| ,

where A is a Borel σ-field. Evidently, dK(X;Y ) ≤ d
TV
(X;Y ). Note that

d
TV
(X;Y ) = inf

X′,Y ′
P(X ′ �= Y ′),

where the infimum is taken over all random pairs (X ′, Y ′) such that L(X ′) =
L(X) and L(Y ′) = L(Y ) [45, 24].

The Gini–Kantorovich distance between the distributions of r.v.s X and Y
with finite first moments (known also as the Kantorovich–Wasserstein distance)
is

dG(X;Y ) ≡ dG(L(X);L(Y )) = sup
g∈L

|Eg(X)− Eg(Y )| , (17)

where L = {g : |g(x)−g(y)| ≤ |x−y|} is the set of Lipschitz functions. Note that

d
G
(X;Y ) = inf

X′,Y ′
E|X ′ − Y ′|, (18)

where the infimum is taken over all random pairs (X ′, Y ′) such that L(X ′) =
L(X) and L(Y ′) = L(Y ) [113]. If X and Y take values in Z+, then [101, 39,
88]

d
G
(X;Y ) =

∑
i≥1

|P(X≥ i)− P(Y ≥ i)|.

Distance d
G

was introduced by Gini [49]; Kantorovich [59] has introduced a
class of distances that includes d

G
. Barbour et al. [12] called d

G
the “Wasser-

stein distance” after Dobrushin [45] attributed it to Vasershtein [114].
If distributions P1 and P2 have densities f1 and f2 with respect to a

measure μ, set

d2
H
(P1;P2) :=

1

2

∫ (
f
1/2
1 − f

1/2
2

)2

dμ = 1−
∫ √

f1f2 dμ.

Then dH denotes the Hellinger distance. It is known that

d2
H
≤ d

TV
≤ d

H

√
2−d2

H
. (19)
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Denote

χ2(P1;P2) =

∫
suppP2

(dP1/dP2 − 1)
2
dP2.

By the Cauchy-Bunyakovski inequality,

2d
TV
(P1;P2) ≤ χ(P1;P2).

We denote by

d2
KL

(P1;P2)=

∫
suppP2

ln(dP1/dP2) dP1

the Kullback–Leibler divergence. According to a Pinsker-type inequality,

d
TV

≤ d
KL

/
√
2 . (20)

Though d2KL is not a metric, it plays a role in statistics (cf. [53]) and in the
theory of large deviations (cf. [82], p. 324, ex. 41).

The Dudley divergence

ρε(P1;P2) = inf
X,Y

P(|X−Y |>ε) (ε≥0),

where the infimum is taken over all random pairs (X,Y ) such that L(X) = P1,
L(Y ) = P2, is a generalisation of the total variation distance: d

TV
(P1;P2) =

ρ0(P1;P2).
Certain other distances can be found in [70, 82, 89, 94]. Below we present

estimates of the accuracy of Poisson approximation for L(Sn) in terms of dK ,
dTV and dG distances. The main attention is given to results that are missed
in existing surveys.

2.1. Independent Bernoulli r.v.s

We denote by B(n, p) the Binomial distribution with parameters n and p. Let
Π(λ) denote the Poisson distribution with parameter λ; we denote by πλ a
Poisson Π(λ) random variable.

Let X1, X2, ..., Xn be independent Bernoulli B(pi) r.v.s. Denote λ = ESn,

pi = P(Xi=1) (i≥1), λk =

n∑
i=1

pki (k≥2), θ =

n∑
i=1

p2i /λ.

Many authors worked on the problem of evaluating the accuracy of Pois-
son approximation to L(Sn) in terms of the uniform distance dK , the total
variation distance d

TV
and the Gini–Kantorovich distance d

G
.

It seems natural to approximate B(n, p) by the Poisson distribution. For
instance, in the case of identically distributed Bernoulli B(p) r.v.s {Xi} one
has

P(Sn=k) ≡ P(Sn=k|Nn=n) = P(πn(p)=k|πn(1)=n), (21)
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where Nn ≡ n is the total number of 0’s and 1’s among X1, X2, ..., Xn and
{πn(t), t ∈ [0; 1]} is a Poisson jump process on [0; 1] with intensity rate n.
Thus,

B(n, p) = L(πn(p)|πn(1)=n). (21∗)

Tsaregradskii [110] has shown that

dK(FX ;FY ) ≤
∫ π

−π

|EeitX − EeitY |
4|t| dt (22)

if X and Y are integer-valued r.v.s, and derived the estimate

dK(B(n, p);Π(np)) ≤ pπ2e2p(2−p)/16(1−p) (p∈(0; 1/2]). (23)

Note that π2/16 ≈ 0.617. Inequality (23) seems to be the first estimate of the
accuracy of Poisson approximation with explicit constant.

In the case of non-identically distributed Bernoulli B(pi) random variables
Franken [46] has shown that

dK(Sn;πλ) ≤ 0.6p∗n

if p∗n := maxi≤n pi ≤ 1/4. Shorgin [107] has proved that

dK(Sn;πλ) ≤ c1θ/(1−
√
θ ) (θ<1)

where c1 = (1+
√

π/2)/2 < 1.13. According to Daley & Vere-Jones [38],

dK(Sn;πλ) ≤ 0.36θ.

Roos [94] has shown that

dK(Sn;πλ) ≤
(
1/2e+ 1.2

√
θ/(1−

√
θ)
)
θ.

Note that 1/2e ≤ 0.184.
A good survey concerning estimates of dK(Sn;πλ) is Zacharovas & Hwang

[121].
Kontoyiannis et al. [63] have shown that

d2
H
(Sn;πλ) ≤ λ−1

n∑
i=1

p3i /(1−pi).

Borisov & Vorozheikin [25] present sharp lower and upper bounds to χ2(B(n, p);
Π(np)) :

0 ≤ χ2(B(n, p);Π(np))− p2/2− 2p3/3n ≤ p4/(1−p) + p8(23−20p)/(1−p)2.

Harremoës & Ruzankin [53] present lower and upper bounds to d2
KL

(B(n, p);
Π(np)). In particular, they have shown that

2d2
KL

(B(n, p);Π(np)) = (−p− ln(1−p))(1+O(1/n)).
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Borisov [22] has shown that for any ε≥0

ρε(B(n, p);Π(np)) ≤ Ce−cε
(
(np2)[ε]+11{np≥1}+ np[ε]+21{np<1}

)
,

where c, C are absolute positive constants. Ruzankin [98] presents the bound
(k∈Z+)

ρk(B(n, p);Π(np)) <
7

3
e−k2/27np3

1{k<np2}+ e−np/151{k≥np2},

ρk(B(n, p);Π(np)) < exp

(
−1

4

√
nk ln3(k/np2e2)

)
(np2e4≤k≤n(1−p)/ ln(1/p)).

Many authors worked on the problem of evaluating the total variation dis-
tance d

TV
(Sn;πλ) (cf. [12, 82] and references wherein).

Prokhorov [87] has established the existence of an absolute constant c such
that

dTV(B(n, p);Π(np)) ≤ cp. (24)

Kolmogorov [62] points out that

d
TV
(Sn;πλ) ≤ C

n∑
i=1

p2i ,

where C is an absolute constant. LeCam [67, 68] attributes inequality

dTV(Sn;πλ) ≤
n∑

i=1

p2i (25)

to Khintchin [61]. Bound (25) is sharp: according to (2.10) in Deheuvels &
Pfeifer [41],

d
TV
(Sn;πλ) ≥ np2(1+O(p))

in the case of i.i.d. Bernoulli B(p) r.v.s if np → 0.
Note that (25) is a consequence of the property of d

TV
and the following fact:

d
TV
(B(p);Π(p)) = (1−e−p)p ≤ p2. (26)

Indeed, denote X̄ = (X1, ..., Xn), π̄ = (πp1 , ..., πpn), where {πpi} are indepen-
dent Poisson Π(pi) r.v.s. Then

d
TV
(Sn;πλ) ≤ d

TV
(X̄; π̄) ≤

n∑
i=1

d
TV
(Xi;πpi) ≤

n∑
i=1

p2i . (25′)

A similar argument due to D.J.Daley (cf. (5.5) in Serfling [103]) yields

dK(Sn;πλ) ≤
n∑

i=1

p2i /2.
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Set p̃i = − ln(1−pi) (1≤ i≤n), and put μ =
∑n

i=1 p̃i. According to Serfling
[102],

d
TV
(Sn;πμ) ≤

n∑
i=1

p̃2i /2.

Kerstan [60] has shown that

dTV(Sn;πλ) ≤ 1.05θ. (27)

Romanowska [91] has noticed that

d
TV
(B(n, p);Π(np)) ≤ p/2

√
1−p . (28)

The popular estimate

d
TV
(Sn;πλ) ≤ λ−1(1−e−λ)

n∑
i=1

p2i (29)

is effectively due to Barbour and Eagleson [9].
Presman [86] has established an estimate of d

TV
(Sn;πλ) with the constant

0.83 at the leading term. In the case of i.i.d. Bernoulli B(p) r.v.s Presman’s
bound becomes

d
TV
(B(n, p);Π(np)) ≤ 0.83p/(1−p)(1−1/n). (30)

Xia [117] has derived an estimate with the constant 0.6844 at the leading term.
Roos [94] (see also Čekanavičius & Roos [33]) has obtained a bound with a

correct constant 3/4e ≈ 0.276 at the leading term: if θ<1, then

d
TV
(Sn;πλ) ≤ 3θ/4e(1−

√
θ )3/2 . (31)

Note that θ/(1−
√
θ )3/2 ≥ θ(1+1.5

√
θ +3.75θ).

Roos [94] has shown also that

dTV(Sn;πλ) ∼ 3θ/4e

if θ→0 and λ→1 as n→∞. Thus, constant 3/4e cannot be improved.
Denote

p∗n = max
i≤n

pi , ε = min
{
1; (2π[λ−p∗n])

−1/2
+ 2δ/(1−p∗n/λ)

}
,

δ =
1−e−λ

λ

n∑
i=1

p2i , δ∗ =
1−e−λ

λ

n∑
i=1

p3i .

Note that δ2 ≤ δ∗ . The following inequality from [82], Theorem 4.12, sharpens
the second-order term of the right-hand side (r.h.s.) of estimate (31):

d
TV
(Sn;πλ) ≤ 3θ/4e+ 2δ∗ε+ 2δ2. (32)
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In the case of L(Sn) = B(n, p) estimate (32) becomes

d
TV
(Sn;πnp) ≤ 3p/4e+ 2(1−e−np)p2ε+ 2(1−e−np)2p2, (32∗)

where ε = min{1; (2π[(n−1)p])
−1/2

+2(1−e−np)p/(1−1/n)}. The second-order
term in (32∗) is of order p2 ∧ np3.

In applications one often has λ ≡ λ(n) → ∞ as n → ∞. Hence estimates
with the “magic factor” (1−e−λ)/λ attract special interest.

The possibility of the “super–magic” factor e−λ when one approximates
Sn∈A for a bounded A has been discussed in [82], ch. 4.5 (such approximations
are of interest in extreme value theory). For instance, if {Xi} are independent
Bernoulli B(pi) r.v.s and A = {0}, then

0 ≤ P(πλ=0)− P(Sn=0) ≤ e−λ+p∗
n

n∑
i=1

p2i/2. (33)

Indeed, set ci =
∏i−1

j=1 e
−pj

∏n
j=i+1(1−pj). Since e−pi−1+pi ≤ p2i /2 by Taylor’s

formula,

P(πλ=0)− P(Sn=0) =

n∑
i=1

(e−pi−1+pi)ci ≤ e−λ+p∗
n

n∑
i=1

p2i/2.

In the case of the Binomial B(n, p) distribution (33) becomes

0 ≤ P(πnp=0)− P(Sn=0) ≤ 1

2
np2e−(n−1)p ≤ 2n

e2(n−1)2
. (33∗)

Note that 2/e2 ≈ 0.2707.
Bound (32) is a consequence of inequality

|P(Sn∈A)− P(πλ∈A)| ≤ |P(πλ+1∈A)− P(π�
λ∈A)|θ/2 + 2δ∗ε+ 2δ2. (32�)

The first term on the r.h.s. of (32�) has the “super–magic” factor if A is finite.
Estimates in terms of the Gini-Kantorovich distance are available as well.

Denote μ = −
∑n

i=1 ln(1−pi). If p∗n ≤ 1/2, then

d
G
(Sn;πμ) ≤

n∑
i=1

p2i /2(1−pi) (34)

(Deheuvels et al. [43]). Witte [116] has shown that

dG(Sn;πλ) ≤
−
√
eλ

2
√
2π

ln(1−2θe2p
∗
n). (35)

According to [82], formula (4.53),

d
G
(Sn;πλ) ≤

(
1 ∧ 4

3

√
2/eλ

) n∑
i=1

p2i . (36)
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Roos [94] has shown that

dG(Sn;πλ) ≤
(
1/

√
2e+ 1.6

√
θ(2−θ)/(1−

√
θ)
)
θ
√
λ . (37)

A recent survey is Zacharovas & Hwang [121].
Sharp non-Poisson approximation to the Binomial B(n, p) distribution func-

tion P(Sn≤·) has been given by Zubkov & Serov [127].
Denote by Φ the standard normal d.f.. Let

Λ(x) = x ln(x/p) + (1−x) ln ((1−x)/(1−p)) (0<x<1)

denote the rate function of the Bernoulli distribution B(p) (cf. [82], p. 322),
and set

Zn,p(k) = Φ
(
sgn(k/n−p)

√
2nΛ(k/n)

)
.

Then [127]

Zn,p(k) ≤ P(Sn≤k) ≤ Zn,p(k+1). (38)

The following large deviations inequality is due to Bernstein [21], p. 168:

P ((Sn−np)/
√
npq > t(1 + γp,n))) < exp(−t2/2) (t>0),

where q = 1−p, γp,n = tp,n(q−p)/6 + t2p,n(p
3+q3)/12, tp,n = t/

√
npq .

Asymptotics of d
TV
(Sn;πλ). The asymptotics of d

TV
(Sn;πλ) in the case of

identically distributed Bernoulli B(p) r.v.s has been established by Prokhorov
[87]:

d
TV
(B(n, p);Π(np)) = p/

√
2πe

(
1 +O

(
1∧(p+1/

√
np )

))
. (39)

Kerstan [60], Deheuvels & Pfeifer [40, 42], Deheuvels et al. [43] and Roos [93]
have generalised (39) to the case of non-identically distributed 0-1 r.v.s. De-
heuvels & Pfeifer [40] present also the asymptotics of d

TV
(Sn;πλ) in the case

where λ→const as n→∞.
The following result concerning the asymptotics of d

TV
(Sn;πλ) uses the no-

tation from [82], ch. 4. Given a non-negative integer-valued random variable Y ,
we denote by Y � a random variable with the distribution

P(Y �=k) = P(Y =k)(k−λ)2/λ (k∈Z+). (40)

The next bound is a consequence of Theorem 11.

Theorem 4. If X1, ..., Xn are independent Bernoulli r.v.s, L(Xi) = B(pi),
then

|dTV(Sn;πλ)− θdTV(π
�
λ;πλ+1)/2| ≤ 2δ∗ε+ 2δ2. (41)

One can check that

d
TV
(π�

λ;πλ+1) =
√
2/πe+O

(
1/

√
λ
)

(42)
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as λ → ∞. Thus,

d
TV
(Sn;πλ) = θ/

√
2πe

(
1 +O

(
θ+1/

√
λ
))

(43)

if λ → ∞ and θ → 0 as n→∞.

Example 2.1. Let pi = 1/i, i ∈ N. Then p∗n = 1, λ = λ(n) → ∞, θ → 0 as
n→∞, and (43) entails d

TV
(Sn;πλ) ∼ θ/

√
2πe .

Shifted Poisson approximation. Shifted (translated) Poisson approxima-
tion to B(n, p) has been considered by a number of authors (see [16, 19, 31,
65, 83] and references therein). The accuracy of shifted Poisson approximation
can be sharper than that of pure Poisson approximation. Another advantage of
using shifted Poisson approximation is the possibility to derive a more general
result (e.g., a uniform in p estimate of dTV(B(n, p);Π(np)), cf. (45) below).

Let X1, ..., Xn be independent 0-1 r.v.s. Set pi=P(Xi=1), qi=1−pi,

λ = ESn, σ2=varSn, λ2 = λ−σ2.

Denote [x] = max{k∈Z : k≤x}, {x} = x−[x]. We define r.v.

Y = [λ2]+πλ−[λ2].

Note that varπλ−varSn=λ2, while varY −varSn = {λ}<1.
The following result is due to Čekanavičius & Vaitkus [31].

Theorem 5. If σ2≥4, then

dTV(Sn;Y ) ≤ 0.93σ−3λ2 + {λ2}/(σ2+{λ2}) + e−σ2/4. (44)

Let {Xi} be i.i.d. Bernoulli B(p) r.v.s. Then the right-hand side (r.-h.s.) of
(44) is

O
(√

p/n+1/np
)
.

A similar bound in terms of the uniform distance has been established by
Kruopis [65].

Set q = 1−p, where 0<p<1. Then

Y = [np2]+πnpq+{np2}, EY = np, varY = npq+{np2}.

The following Theorem 6 presents a uniform in p∈ [0; 1/2] bound to d
TV
(Sn;Y ).

Theorem 6. [83] As n>4,

sup
0≤p≤1/2

d
TV
(Sn;Y ) ≤ 2/

√
πe√

n−2
+

0.9n1/4

n− 1
+

2+1.8/n1/4

(
√
n−1)2

. (45)
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Theorem 6 can be compared with the Berry–Esseen inequality

dK(B(n, p);N (np, npq)) ≤ C/
√
np

(see, e.g., [106]) as well as with the results by Meshalkin [75] and Pressman
[85]. Estimate (45) is uniform in p∈ [0; 1/2]. Note that a uniform in p∈ [0;1/2]
Berry–Esseen estimate would be infinite. Inequality (45) has advantages over
Meshalkin’s [75] and Pressman’s [85] results as the constants in (45) are explicit
(which matters in applications); besides, the structure of the approximating
distribution L(Y ) is simpler and does not assign mass to negative numbers.
Bound (45) is preferable to (29) – (32) if p>4e/

√
n .

An estimate of the accuracy of shifted Poisson approximation to the dis-
tribution of a sum of Bernoulli B(pi) r.v.s in terms of the Gini-Kantorovich
distance has been given by Barbour & Xia [19] in the assumption that λ2 is an
integer.

Poisson approximation to the multinomial distribution. Results on the
accuracy of Poisson approximation to the distribution of a sum of Bernoulli r.v.s
can be generalised to the case of a multinomial distribution.

Let S̄n be a random vector with multinomial distribution B(n, p1, ..., pm):

P(S̄n = l̄ ) =
n!

l1!...lm!(n− l)!
pl11 ...p

lm
m (1−p)n−l , (46)

where li∈Z+ (∀i), l̄ = (l1, .., lm), l = l1 +...+ lm ≤ n, p = p1 +...+ pm.
Formula (46) describes, in particular, the joint distribution of the increments

of the empirical d.f..
Note that

S̄n
d
= ξ̄1 +...+ ξ̄n, (47)

where ξ̄, ξ̄1, ..., ξ̄n are i.i.d. random vectors with the distribution

P(ξ̄=0̄) = 1−p , P(ξ̄= ēj) = pj (1≤j≤m),

vector ēj has the jth coordinate equal to 1 and the other coordinates equal to
0.

Let

π̄ = (π1, ..., πm)

be a vector of independent Poisson r.v.s with parameters np1, ..., npm, and let
πn(·) denote a Poisson jump process on [0; 1] with intensity rate n. Then π̄ is

a vector of increments of process πn(·): π1
d
= πn(p1),...,πm

d
= πn(p)−πn(p−pm).

Note that

P(S̄n = l̄ ) = P (πn(p1)= l1, ..., πn(p)− πn(p−pm)= ln |πn(1)=1) (46∗)

(cf. (21)).
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Arenbaev [6] has shown that

d
TV
(S̄n; π̄) = p/

√
2πe (1 +O(1∧1/√np )) (48)

if n→∞ (the term 1/
√
np in (48) apparently needs to be replaced with p +

1/
√
np , cf. (39)). Arenbaev ([6], formulas (5)–(9′)) has shown also that

d
TV
(S̄n; π̄) = d

TV
(B(n, p);Π(np)). (49)

Using (49) and (32), we deduce

d
TV
(S̄n; π̄) ≤ 3p/4e+ 4(1− e−np)p2. (50)

According to Deheuvels & Pfeifer [41],

|d
TV
(S̄n; π̄)−Kn,λ| ≤ max{16p2; 5np3}, (51)

where Kn,λ = np2e−np
(
(np)α−np(α−np)/α!− (np)β−np(β−np)/β!

)
/2,

α = np+1/2 +
√
np+1/4 , β = np+1/2−

√
np+1/4 .

The case of non-identically distributed random vectors ξ̄1, ..., ξ̄n has been
treated by Roos [97]. A generalisation of (50) to the case of a stationary sequence
of dependent r.v.s is given in [82], Theorem 6.8.

Open problem.
2.1. Improve the constants in (34)–(36).
2.2. Generalise Theorem 6 to the case of m-dependent r.v.s.

2.2. Dependent Bernoulli r.v.s

We present below generalisations of (25) and (29) to the case of dependent
Bernoulli r.v.s.

Let X1, ..., Xn be (possibly dependent) Bernoulli r.v.s. Chen [28] pioneered
the use of Stein’s method in deriving estimate of the accuracy of Poisson approx-
imation, and obtained an estimate of the accuracy of Poisson approximation to
the distribution of a sum of ϕ-mixing r.v.s.

Set pi = P(Xi = 1|X1, ..., Xi−1). A generalisation of (25) has been given by
Serfling [102]:

d
TV
(Sn;πλ) ≤

n∑
i=1

(Epi)
2 +

n∑
i=1

E|pi−Epi|, (25∗)

dK(Sn;πλ) ≤
2

π

n∑
i=1

(Epi)
2 +

n∑
i=1

E|pi−Epi|. (52)

Let {Xa, a∈J} be a family of dependent Bernoulli B(pa) random variables.
Assign to each a∈J a “neighborhood” Ba⊂J such that {Xb, b∈J \Ba} are
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“almost independent” of Xa (for instance, if {Xb} are m–dependent r.v.s and
J = {1, ..., n}, then Ba = [a−m; a+m] ∩ J).

The idea of splitting the sample into “strongly dependent” and “almost in-
dependent” parts goes back to Bernstein [20] (see also [104]).

Denote
S =

∑
a∈J

Xa, λ = ES,

and let

δ1 =
∑
a∈J

∑
b∈Ba

EXaEXb , δ2 =
∑
a∈J

∑
b∈Ba\{a}

EXaXb,

δ3 =
∑
a∈J

E

∣∣∣EXa − E

{
Xa

∣∣∣∑
b∈J\Ba

Xb

}∣∣∣.
The following bound is cited from Arratia et al. [2] (see also Smith [108]).

Theorem 7. There holds

d
TV
(S;πλ) ≤

1−e−λ

λ

(
δ1 + δ2

)
+min{1; 1.4/

√
λ }δ3 . (53)

According to Remark 10.2.4 in [12], the term 1.4/
√
λ in (53) can be replaced

with
√
2/eλ .

In the case of independent random variables one can choose Ba = {a}, then
(53) coincides with (29).

Theorem 7 has applications to the problem of Poisson approximation to the
distribution of the number of long head runs in a sequence of Bernoulli r.v.s,
and to the problem of Poisson approximation to the distribution of the number
of long match patterns in two sequences (e.g., DNA sequences, see [12, 82] and
references therein).

The topic concerning L(Sn) in the case of stationary dependent r.v.s {Xi}
has applications in extreme value theory [66, 82]. The case where the sequence
X1, ..., Xn is a moving average is related to the topic concerning the so-called
Erdös–Rényi maximum of partial sums (cf. [82], ch. 2).

Estimates of the accuracy of Poisson approximation for some special types of
dependence among {Xa, a∈J} can be found in Barbour et al. [12]. An estimate
of the accuracy of shifted Poisson approximation to the distribution of a sum of
dependent Bernoulli B(pi) r.v.s in terms of the total variation distance is given
by Čekanavičius & Vaitkus [31]. A generalization of Theorem 7 to the case of
compound Poisson approximation has been given by Roos [92].

Open problem.
2.3. Improve the constants in (53).

2.3. Independent integer-valued r.v.s

The topic of Poisson approximation to the distribution of a sum of integer-
valued r.v.s has applications in extreme value theory, insurance, reliability the-
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ory, etc. (cf. [7, 12, 66, 82]). For instance, in insurance applications the sum
Sn =

∑n
i=1Yi1{Yi > yi} of integer-valued r.v.s allows to account for the total

loss from the claims exceeding excesses {yi}. One would be interested if Poisson
approximation to L(Sn) is applicable.

In extreme value theory one often deals with the number of extreme (rare)
events represented by a sum Sn = ξ1 + ... + ξn of 0-1 r.v.s (indicators of rare
events). The r.v.s ξ1, ..., ξn can be dependent. One way to cope with dependence
is to split the sample into blocks, which can be considered almost independent
(the so-called Bernstein’s blocks approach [20]). The number of r.v.s in a block
is an integer-valued r.v.; thus, the number of rare events is a sum of almost
independent integer-valued r.v.s.

In all such situations one deals with a sum of non-negative integer-valued
r.v.s that are non-zero with small probabilities, and Poisson or compound Pois-
son approximation to L(Sn) appears plausible. An estimate of the accuracy of
Poisson approximation to the distribution of Sn can indicate whether Poisson
approximation is applicable.

The problem of evaluating the accuracy of Poisson approximation to the dis-
tribution of a sum of independent non-negative integer-valued r.v.s has been
considered, e.g., in [10, 11, 82]. Inequality (25) and the Barbour-Eagleson esti-
mate (29) have been generalised to the case of non-negative integer-valued r.v.s
by Barbour [10]. Theorem 8 below presents another result of that kind (see [82],
ch. 4.4).

Let X1, X2, ..., Xn be independent non-negative integer-valued r.v.s,

Sn = X1 + ...+Xn, λ = ESn,

πλ denotes a Poisson Π(λ) r.v..

Franken [46] has shown that

dK(Sn;πλ) ≤
2

π

n∑
i=1

(E2Xi + EXi(Xi−1))

Denote λ∗ =
∑n

i=1P(Xi = 1), λ∗
2 =

∑n
i=1P(Xi = 1)2. Kerstan [60] has proved

that

dTV(Sn;πλ∗) ≤
n∑

i=1

P(Xi≥2) + min{λ∗
2; 1.05λ

∗
2/λ

∗}.

An early survey on the topic is Witte [116].

Given a random variable Y that takes values in Z+, let Y ∗ denote a random
variable with the distribution

P(Y ∗=m) = (m+1)P(Y = m+1)/EY (m≥0). (54)

Distribution (54) differs by a shift from the distribution introduced by Stein

[109], p. 171. Note that Y ∗ d
= Y if and only if L(Y ) is Poisson.
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Theorem 8. As n≥1,

dTV(Sn;πλ) ≤ λ−1(1−e−λ)

n∑
i=1

dG(Xi;X
∗
i )EXi , (55)

d
G
(Sn;πλ) ≤ min

{
1;

4

3

√
2/eλ

} n∑
i=1

d
G
(Xi;X

∗
i )EXi . (56)

In the case of Bernoulli B(pi) r.v.s one has X∗
i ≡ 0, and (55) coincides with

(29).

In the case of i.i.d.r.v.s (55) becomes

d
TV
(Sn;πλ) ≤ (1−e−λ)E|X−X∗| .

Here X∗ may be chosen independent of X, although one would prefer to define
X and X∗ on a common probability space in order to make E|X−X∗| smaller.

A generalisation of (32) to the case of independent integer-valued r.v.s has
been given by Novak [83].

Example 2.2. Let ξ,X1, X2, ... be i.i.d.r.v.s with geometric Γ0(p) distribution:

P(ξ=m) = (1−p)pm (m≥0).

Then Sn is a negative Binomial NB(n, p) r.v..

Set r= p/(1−p). Vervaat [115] has shown that d
TV
(Sn;πλ) ≤ r, while Ro-

manowska [91] has noticed that d
TV
(Sn;πλ) ≤ r/

√
2. Roos [96] has shown that

dTV(NB(n, p);Π(np)) ≤ min{3r/4e;nr2}, (57)

d
G
(NB(n, p);Π(np)) ≤ nr2. (58)

It is easy to see that P(X∗
i =m) = (m+1)pm(1−p)2 . Hence

X∗
i

d
= Xi + ξ, (59)

and E|X−X∗| = p/(1−p). Note that

λ = nEξ = nr, d
G
(X;X∗) = Eξ = r.

Theorem 8 entails

dTV(Sn;πλ) ≤ (1−e−nr)r, (60)

d
G
(Sn;πλ) ≤ min

{
1;

4

3

√
2/enp

}
nr2. (61)

Inequality (60) has been established in [10], p. 758; estimate (61) is from [82],
formula (4.53).
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Shifted Poisson approximation. A number of authors dealt with shifted
Poisson approximation to the distribution of a sum Sn of integer-valued r.v.s
(see [16, 83] and references therein). Let

λ = ESn, σ2 = varSn, a = [λ−σ2], b = {λ−σ2}, μ = σ2+ b,

where [x] and {x} = x−[x] denote the integer and the fractional parts of x.
Barbour & Čekanavičius [16] have shown that

d
TV
(Sn; a+πμ) ≤ (1 ∧ σ−2)

(
b+ dn

n∑
i=1

ψi

)
+ P(Sn<a), (62)

where dn = maxi≤n dTV
(Sn,i;Sn,i+1), Sn,i = Sn−Xi, ψi = σ2

i EXi(Xi−1) +
|EXi−σ2

i |E(Xi−1)(Xi−2) + E|Xi(Xi−1)(Xi−2)|, σ2
i = varXi.

In the Binomial case (i.e., L(Sn) = B(n, p)) the r.-h.s. of (62) is O
(√

p/n +

1/np
)
. Further reading on the topic is [83].

An estimate of the accuracy of shifted Poisson approximation to the distribu-
tion of a random sum of i.i.d. integer-valued r.v.s has been presented by Röllin
[90].

2.4. Dependent integer-valued r.v.s

Let X1, ..., Xn be (possibly dependent) non-negative integer-valued r.v.s. Set
pi = P(Xi = 1|X1, ..., Xi−1). A generalisation of (25∗), (52) has been given by
Serfling [102]:

d
TV
(Sn;πλ) ≤

n∑
i=1

(
E
2pi + E|pi−Epi|+ P(Xi≥2)

)
, (25+)

dK(Sn;πλ) ≤
n∑

i=1

(
2

π
E
2pi + E|pi−Epi|+ P(Xi≥2)

)
. (52+)

Below we present a generalisation of Theorem 7.
Let {Xa, a∈ J} be a family of r.v.s taking values in Z+. Suppose one can

choose the “neighborhoods” {Ba} so that r.v.s {Xb, b∈J\Ba} are independent
of Xa . We call this assumption the “local dependence” condition.

Let L(πλ) denote a Poisson Π(λ) r.v.. Set

δ∗1 =
∑
a∈J

∑
b∈Ba\{a}

EXaEXb , δ4 =
∑
a∈J

d
G
(Xa;X

∗
a)EXa,

and let δ1, δ2, δ3 be defined as in Theorem 7. Theorems 9 and 10 are from [82],
ch. 4.

Theorem 9. If {Xb, b∈J \Ba} are independent of Xa, then

d
TV
(Sn;πλ) ≤

1−e−λ

λ
(δ∗1 + δ2 + δ4) . (63)
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In Theorem 10 we drop the local dependence condition assumed in Theorem 9.

Theorem 10. Denote δ5 =
∑

a∈J EXa(Xa−1)1{Xa≥2}. Then

d
TV
(Sn;πλ) ≤

1−e−λ

λ

(
δ1 + δ2 + δ5

)
+min{1;

√
2/eλ }δ3. (64)

Ruzankin [100] presents an estimate of the accuracy of Poisson approximation
to Eh(Sn), where h is an unbounded function.

Open problem.
2.4. Improve the constants in (63), (64).

2.5. Asymptotic expansions

Let X1, ..., Xn be independent Bernoulli B(pi) r.v.s, and let πλ be a Poisson
random variable.

Formal expansions of P(Sn ≤ x) have been given by Uspensky [111], see
also Franken [46]. Herrmann [55], Shorgin [107] and Barbour [10] present full
asymptotic expansions with explicit estimates of the error terms. Kerstan [60],
Kruopis [65], Čekanavičius [29] and Čekanavičius & Kruopis [30] present first-
order asymptotic expansions. Asymptotic expansions for Eh(Sn) − Eh(πλ) in
the case of independent 0-1 r.v.s {Xk} and unbounded function h have been
given by Barbour et al. [13] and Borisov & Ruzankin [23].

The formulation of the full asymptotic expansions is cumbersome and will
be omitted. We present below first-order asymptotics of Eh(Sn) for particular
classes of functions h.

Of special interest are indicator functions h(·) = 1{·∈A}, A⊂Z+. Denote

Qλ(A) =
[
P(πλ∈A) + P(πλ+2∈A)− 2P(πλ+1∈A)

]/
2,

ε = min
{
1; (2π[λ−p∗n])

−1/2
+ 2δ/(1−p∗n/λ)

}
, p∗n = max

i≤n
pi.

Let π�
λ denote a random variable with distribution (40). Then

Qλ(A) = [P(π�
λ∈A)− P(πλ+1 ∈A)]/2λ

(see [82], ch. 4).
The following result from [82], ch. 4, sharpens (13) in [55] and the bound of

Corollary 2.4 in [10] (Corollary 9.A.1 in [12]).

Theorem 11. Let X1, ..., Xn be independent Bernoulli r.v.s, L(Xi) = B(pi).
Then ∣∣∣∣∣P(Sn∈A)− P(πλ∈A) +Qλ(A)

n∑
i=1

p2i

∣∣∣∣∣ ≤ 2δ∗ε+ 2δ2 , (65)

where δ = λ−1(1−e−λ)
∑n

i=1 p
2
i , δ∗ = λ−1(1−e−λ)

∑n
i=1 p

3
i .
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Recall that λk =
∑n

i=1 p
k
i (k≥2). Denote

Δh(·) = h(·+ 1)− h(·).

Theorem 12. [23] If E|h(πλ)|π4
λ < ∞, then∣∣∣Eh(Sn)− Eh(πλ) + λ2EΔ

2h(πλ)/2
∣∣∣

≤ ep
∗
n

(1−p∗n)
2

(
λ3E|Δ3h(πλ)|/3 + λ2

2E|Δ4h(πλ)|/8
)
. (66)

Note that the assumption E|Δkh(πλ)| < ∞ is equivalent to Eπk
λ|h(πλ)| <

∞ (k∈N), see Proposition 1 in [23]. Borisov & Ruzankin ([23], Lemma 2) have
showed also that

sup
k

P(Sn=k)/P(πλ=k) ≤ (1−p∗n)
2.

Deheuvels et al. ([43], Corollary 2.2) have shown that∣∣d
G
(Sn;πλ)− λ2e

−λλ[λ]/[λ]!
∣∣ ≤ 2(2θ)3/2

√
λ/(1−

√
2θ) (θ<1/2).

Borisov & Vorozheikin [25] present asymptotic expansions of χ2(B(n, p);Π(np)).
Asymptotic expansions for Eh(Sn)− Eh(πλ), where {Xk} are non-negative

integer-valued random variables and function h is either bounded or grows at
a polynomial rate, are presented in Barbour [10]. Asymptotic expansions for
Eh(Sn)− Eh(πλ), where ‖h‖1 = 1, have been given by Barbour & Jensen [11].
A good survey is Zacharovas & Hwang [121].

Unit measure (signed measure) approximations. A number of authors
evaluated the accuracy of unit measure (signed measure) approximation to the
distribution of a sum Sn of independent Bernoulli r.v.s (see, e.g., [26, 18, 16]). In
particular, Borovkov [26] has generalised inequality (25). Note that asymptotic
expansion (65) is an example of a unit measure approximation.

Denote by Pn the distribution corresponding (with some abuse of notation)
to πλ+λ2 + 2π−λ2/2 (i.e., Pn is a convolution of Π(λ+λ2) and a Poisson unit
measure with parameter −λ2/2 on 2Z+). In the assumption that θ < 1/2
Barbour & Xia ([18], Theorem 4.1) have shown that

d
TV
(L(Sn);Pn) ≤ λ3/λ(1−2λ2)

√
λ−λ2−p∗n .

Čekanavičius & Kruopis [30] present an estimate of the accuracy of unit
measure approximation in terms of the Gini-Kantorovich distance:

dG(L(Sn);Qn) ≤ Cλ−1
∗ λ2(1 + (λ/λ2)

2),

where C is an absolute constant, λ∗ = max{1;λ−λ2} and Qn (with some
abuse of notation) corresponds to πλ−λ2/2 − π−λ2/2 (Qn is a convolution of
Π(λ−λ2/2) and a Poisson unit measure with parameter −λ2/2 on −Z+). Note
that

∑
k kQn(k) = ESn,

∑
k(k−λ)2Pn(k) = varSn.

Barbour & Čekanavičius [16] present a unit measure approximation to the
distribution of a sum of independent integer-valued r.v.s.
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2.6. Sum of a random number of random variables

Let ν,X,X1, X2, ... be independent non-negative random variables, where r.v.
ν takes values in Z+, X,X1, X2, ... are i.i.d. random variables.

Set

Sν = X1 + ...+Xν .

A natural task is to evaluate the accuracy of Poisson approximation to L(Sν).
We consider first the case where X,X1, X2, ... are Bernoulli B(p) r.v.s.
Denote ν̄ := Eν. Then ESν = pν̄.
Let F2 denote the class of functions h : Z+→R such that ||Δ2h||≤1, and

set

d2(X;Y ) = sup
h∈F2

|Eh(X)− Eh(Y )|.

Logunov [70] points out that d
TV
(X;Y ) ≤ d2(X;Y ), and shows that

d2(Sν ;πpν̄) ≤ p2d∗(ν;πpν̄),

where d∗(X;Y ) =
∑

k≥1 k(k−1)|P(X=k)−P(Y =k)|/2. Note that d∗(X;Y ) ≥
dG(X;Y ).

Yannaros [120] has shown that

d
TV
(πλ;πμ) ≤ min{|

√
λ−√

μ|; |λ−μ|}. (67)

The first term in (67) has been improved by Roos [96]:

d
TV
(πλ;πμ) ≤

√
2

e

∣∣∣√λ−√
μ
∣∣∣. (67∗)

Note that the second term in the r.-h.s. of (67) is a consequence of the trivial
inequality

d
TV
(πλ;πμ) ≤ 1− exp(−|λ−μ|) (67�)

that follows by defining πλ and πμ on a common probability space (cf. (4.10)
in [82]).

It is easy to see that

d
TV
(Sν ;πλ) ≤

∑
k
P(ν=k)d

TV
(Sk;πλ),

dTV(Sk;πλ) ≤ dTV(Sk;πkp) + dTV(πkp;πλ).

Using these inequalities and (67), Yannaros [120] has shown that

d
TV
(Sν ;πpν̄) ≤ min

{ p

2
√
1−p

; (1−Ee−pν)p
}
+min

{
pE|ν−ν̄|;

√
p
var ν

ν̄

}
. (68)

The term min
{
p/2

√
1−p ; (1−Ee−pν)p

}
in (68) is inherited from (28) and (29).
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The right-hand side of (68) can be sharpened using (32), (67�) and (67∗):

d
TV
(Sν ;πpν̄) ≤ 3p/4e+2(δ∗+δ2) +min

{(
1−Ee−p|ν−ν̄|

)
;E|

√
ν −

√
ν̄ |

√
2p/e

}
.

(69)
Note that E|√ν −

√
ν̄ | ≤ min{ν̄−1/2

√
var ν ; ν̄−3/2var ν}.

Mixed Poisson distribution. A number of authors (see, e.g., Roos [96])
have evaluated the accuracy of Poisson approximation to the mixed Poisson
distribution, i.e., the distribution of the r.v. πν , where L(πt) = Π(t), r.v. ν
takes values in [0;∞) :

P(πν=m) =

∫ ∞

0

P(πy=m)P(ν∈dy) (m≥0).

If {Xi} are Poisson Π(λ) r.v.s, then Sν
d
= πλν is a mixed Poisson random

variable.
Denote by NB(n, p) the negative Binomial distribution: L(Sn) = NB(n, p)

if

P(Sn= i) =

(
i+n−1

i

)
(1−p)npi (i≥0).

The negative Binomial distribution NB(t, p) is a mixed Poisson distribution
with

P(ν∈dy)/dy = rtyt−1e−yr/Γ(t) (y>0),

where r=p/(1−p), Γ(y) =
∫∞
0

xy−1e−xdx.
Roos [96] presents estimates of the accuracy of Poisson approximation to the

mixed Poisson distribution with a correct constant at the leading term.

Sum of 0-1 random variables till the stopping time. We now consider
the situation where r.v. ν depends on {Xi}.

Let X,X1, X2, ... be i.i.d. non-negative integer-valued r.v.s. Set S0=0,

Sn = X1 + ...+Xn (n≥1),

and let μ(t) denote the stopping time:

μ(t) = max{n≥0 : Sn≤ t}.

Theorems 13–14 below are cited from see [82], ch. 3. They provide estimates of
the accuracy of Poisson approximation to the distribution of the number

Nt(x) =

μ(t)∑
j=1

1{Xj≥x}+ 1{t−Sμ(t)≥x} (70)

of exceedances of a “high” level x∈ [0; t] till μ(t).
Note that

{Nt(x)=0} = {Mt<x},
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where
Mt = max{t−Sμ(t); max

1≤i≤μ(t)
Xi} (71)

is the largest observation among {X1, ..., Xμ(t), t− Sμ(t)}.
Let Xk,t denote the kth largest element among {X1, ..., Xμ(t), t−Sμ(t)}. Then

{Xk,t<x} = {Nt(x)<k}.

The topic has applications in finance. For instance, suppose a bank has
opened a credit line for a series of operations, and the total amount of credit is
t units of money. The cost of the i-th operation is denoted by Xi . What is the
probability that the bank will ever pay x or more units of money at once? that
there will be a certain number of such payments? Information on the asymptotic
properties of the distribution of random variables Mt and Nt(x) can help to
answer these questions.

Let {X<

i , i≥1}, {X>

j , j≥1} be independent r.v.s with the distributions

L(X<
) = L(X|X<x), L(X>

) = L(X|X≥x).

We set px = P(X≥x),

S0(k) = 0, Sm(k) =

k∑
i=0

X
>

i +

m∑
i=k+1

X
<

i (m≥1).

Let K∗, K
∗ denote the end-points of L(X), and set

τk = τ ′k−k , τ ′k = min{n : Sn(k) > t−x},
λk ≡ λk(t, x, k) = px(t−x−kEX

>
)/EX

<
.

In Theorems 13–14 we assume the following condition: there exist constants
D<∞ and D∗∈(K∗;K

∗) such that∫ ∞

x

P(X≥y)dy ≤ DP(X≥x) (x≥D∗). (72)

Condition (72) means the tail of L(X) is light (cf. (3.15) in [82]). Inequality
(72) holds if function g(x) = ecxP(X≥x) is not increasing as x>1/c (∃c>0).
The equality in (72) for all x≥0 may be attained only if L(X) is exponential
with EX = D.

Theorem 13. For any k∈Z+, as t → ∞,

sup
x∈B+(t)

∣∣∣∣∣P(Nt(x)=k)− P(πλk
=k)−

k−1∑
r=0

(
P(πλk

=r)− P(πλk−1
=r)

)∣∣∣∣∣=O(1/t),

where B+(t) = (K∗;K
∗ ∧ t/(k+2)).

Let π(t, x) denote a Poisson r.v. with parameter pxt/EX.
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Theorem 14. For any k∈Z+, as t → ∞,

sup
K∗<x<K∗

|P(Nt(x)=k)− P(π(t, x)=k)| = O(t−1 ln t).

One can show that Nt(x) is “small” when x is “large”:

sup
x≥

√
t

P(Nt(x)≥1) ≤ q
√
t (∃q∈(0; 1)).

Theorem 3.7 in [82] presents asymptotic expansions for P(Nx(t) = k). The
asymptotic expansions for L(Mt) are available under a weaker moment as-
sumption (cf. [82], ch. 3).

The number of intervals between consecutive jumps of a Poisson pro-
cess. Consider a Poisson jump process {πλ(s), s≥ 0} with parameter λ> 0,
and let ηi denote the moment of its ith jump. Set Xi = ηi−ηi−1 . Then Nt(x) is
the number of intervals between consecutive jumps with lengths greater or equal
to x. If the points of jumps represent catastrophic/rare events, then Nt(x) can
be interpreted as the number of “long” intervals without catastrophes.

Let πt,x be a Poisson r.v. with parameter tλe−λx . Then for any k∈Z+, as
t → ∞,

sup
0<x<t

|P(Nt(x) = k)− P(πt,x = k)| = O
(
t−1 ln t

)
(73)

(cf. (3.12) in [82]).

Open problems.
2.5. Will asymptotic expansions for L(Nx(t)) hold under a weaker moment
assumption?
2.6. Generalise the results of Theorems 13–14 to the case of

Nt(x) =

μ(t)∑
j=1

Yi1{Xj≥x}+ Yμ(t)+11{t−Sμ(t)≥x},

where {(Xi, Yi)i≥1} is a sequence of i.i.d. pairs of r.v.s, Yi>0.

3. Applications

Applications of the theory of Poisson approximation to meteorology, reliability
theory and extreme value theory have been discussed in [7, 54, 66, 82]. In this
section we present a number of results that are not fully covered in existing
surveys.

3.1. Long head runs

Let {ξi, i≥1} be a sequence of 0-1 random variables.
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We say a head run (a series of 1’s) starts at i = 1 if ξ1 = 1; a series starts
at i > 1 if ξi−1 = 0, ξi = 1. If ξi−1=0, ξi = ...= ξi+k−1 = 1, we say the head
run is of length ≥k.

For instance, if n = 5 and ξ1 = ξ2 = ξ3 =1, ξ4 =0, ξ5 =1, there is one series
(head run) of length 3 and one series of length 1.

Denote

A0 = {ξ1 = ...= ξk = 1}, Ai = {ξi=0, ξi+1 = ...= ξi+k = 1} (i>1).

Then

Wn(k) =

n−k∑
i=0

1{Ai} (n≥k≥1)

is the number of head runs of length ≥k among ξ1, ..., ξn (NLHR).
Set

Ln = max{k : ξi+1 = ... = ξi+k = 1 (∃i≤n−k)}. (74)

Ln is the length of the longest head run (LLHR) among X1, ..., Xn. Obviously,

{Ln<k} = {Wn(k)=0}.

The problem of approximating the distribution of LLHR is a topic of active
research; it has applications in reliability theory and psychology (cf. [7, 82]).

Let {ξi, i≥ 1} be i.i.d. Bernoulli B(p) r.v.s, p ∈ (0; 1), and let πλ denote
the Poisson Π(λ) r.v.. Theorem 7 with Bi = [i−k; i+k] and

λ ≡ λ(n, k, p) = pk(1+(n−k)(1−p))

yields the following

Corollary 15. As n≥k≥1,

d
TV
(Wn(k);πλ) ≤ (1−e−λ)(2k+1)pk. (75)

An open question is if estimate (75) can be improved. Note, for instance, that
(75) does not yield (77) even for j=0.

There is a close relation between Nt(x) and Wn(k). Let η0 = 0,

ηi = min{k>ηi−1 : ξk = 0}, Xi = ηi − ηi−1 (i≥1).

Then

Wn(k) =

μ(t)∑
j=1

1{Xj−1≥k}+ 1{n−ημ(n)≥k}. (76)

Hence
Wn−1(k) = Nn(k+1).

Denote λk = n(1−p)pk . Theorem 14 entails
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Corollary 16. For any j ∈ Z+, as n → ∞,

max
1≤k≤n

|P(Wn(k) = j)− P(πλk
= j)| = O

(
n−1 lnn

)
. (77)

According to Theorem 3.13 in [82], the rate n−1 lnn in (77) cannot be im-
proved.

The number of long non-decreasing runs. Let ξi = 1{Yi≤Yi+1}, where
{Yi} are i.i.d.r.v.s with a continuous d.f.. Then NLHR Wn(k) is the number
of non-decreasing runs of length ≥ k (NLNR), and LLHR is the length of the
longest non-decreasing run (LLNR) among Y1, ..., Yn+1. We denote LLNR by
L+
n and NLNR by W+

n (k).
The topic concerning LLNR and NLNR has applications in finance. It is well

known that prices of shares and financial indexes evolve in cycles of growth and
decline. Knowing the asymptotics of L+

n and W+
n (k) can help evaluating the

length of the longest period of continuous growth/decline of a particular financial
instrument as well as the distribution of the number of such long periods.

Pittel [84] has proved a Poisson limit theorem for NLNR (see also Chrys-
saphinou et al. [35] concerning the case of a Markov chain).

We proceed with the case of i.i.d.r.v.s with a continuous d.f.. Note that
L(ξi) = B(1/2) and P(Y1 ≤ ... ≤ Yk+1) = 1/(k+1)!. Set λn,k = EW+

n (k).
Then

λn,k = 1/(k+1)! + (n−k)/k!(k+2).

Theorem 7 with Bi = [i−k−1; i+k+1] yields the following

Corollary 17. As n≥k≥1,

d
TV
(W+

n (k);πλn,k
) ≤ (1−e−λn,k)(2k+3)/(k+1)!.

The accuracy of compound Poisson approximation to the distribution of the
number of non-decreasing runs of fixed length has been evaluated by Barbour
& Chryssaphinou [15], p. 982 (continuous d.f.) and Minakov [79] (discrete d.f.).
Concerning the asymptotics of LLNR, see [36, 82] and references therein.

Open problem.
3.1. Improve the estimates of Corollary 15 and Corollary 17.
3.1. Derive (45)-type (i.e., uniform in k) estimates of the accuracy of (possibly
shifted) Poisson approximation to L(Wn(k)) and L(W+

n (k)).

3.2. Long match patterns

Closely related to the number of long head runs is the number of long match
patterns (NLMP) between sequences of independent r.v.s. Information on the
distribution of NLMP and the length of the longest match pattern (LLMP) can
help recognising “valuable” fragments of DNA sequences (see [2, 3, 78, 80, 81]).
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In this section we present results on the accuracy of Poisson approximation
to the distribution of NLMP. Theorems 18, 20 and Lemma 22 below have been
established by the author (see [82], ch. 4).

Let X,X1, ..., Xm , Y, Y1, ..., Yn be independent non-degenerate random vari-
ables taking values in a discrete state space A. Denote (k∈N)

Tij = 1{Xi+1=Yj+1, . . . , Xi+k=Yj+k},
T̃ij = Tij(k)1{Xi �=Yj},
T ∗
ij = T̃ij (i≥1, j≥1), T ∗

ij = Tij (i=0 or j=0).

Then
M∗

m,n = max
{
k≤min(m,n) : max

(i,j)∈J
Tij = 1

}
is the length of the longest match pattern between (X1 . . . Xm) and (Y1 . . . Yn).

LLMP M∗
m,n is a 2–dimensional analog of LLHR Ln . If A = {0, 1} and

Y1 = ... = Yn = 1, then M∗
n,n = Ln.

Given m≥k, n≥k, let

J ≡ J(k,m, n) = {(i, j) : 0≤ i≤m−k, 0≤j≤n−k}.

Denote by

Wm,n ≡ Wm,n(k) =
∑

(i,j)∈J

T ∗
ij

the number of long match patterns (patterns of length≥k). Then

{M∗
m,n<k} = {Wm,n=0}.

In the rest of this section we assume that r.v.s X,X1, ..., Xm , Y, Y1, ..., Yn

are identically distributed. We set

λ ≡ λk,m,n = EWm,n, m′ = m−k +1, n′ = n−k+1.

Then λ = (m′−1)(n′−1)(1−p)pk + (m′+n′−1)pk.
Denote

p = P(X=Y ), pj = P(X=j), qk =
∑
j∈A

pk+1
j , q = q2,

and let
p∗ = max

j∈A
pj , c+ = log(1/q)− 1, c∗ = log(1/p∗),

where log is to the base 1/p. Note that

p2∗ < p , p2 ≤ q ≤ p∗ . (78)

Taking into account Hölder’s inequality, we conclude that

1≥c+≥c∗>1/2. (79)
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Note that c+ = c∗ = 1 if L(X) is uniform over a finite alphabet.
Let πm,n denote a Poisson random variable with parameter λk,m,n.
The following theorem shows that the distribution of the number of long

match patterns can be well approximated by the Poisson law.

Theorem 18. If n≥k and m≥k≥1, then

dTV(Wm,n;πm,n) ≤
1−e−λ

λ
m′n′(2k+1)

(
2kq2k + (m′+n′−1)(p2k+qk)

)
. (80)

Theorem 18 has been derived using Theorem 7 and Lemma 22.
Denote

Δm,n(k) = |P(M∗
m,n<k)− exp (−λ) |.

Corollary 19. For any constant C ∈ R, as m → ∞, n → ∞,

max
k≥C+logmn

Δm,n(k) = O
(
(m+n)(mn)−c+(lnmn) + (mn)1−2c∗(lnmn)2

)
.

(81)
If m → ∞ and n → ∞ in such a way that (lnmn)/(min{m,n}) → 0, then

max
1≤k≤m∧n

Δm,n(k) = O
(
(m+n)(mn)−c+(lnmn)1+c+ +(mn)1−2c∗(lnmn)1+2c∗

)
.

(82)

It is easy to see that the accuracy of estimate (81) depends on the relation
between m and n. If L(X) is uniform over a finite alphabet and (lnmn)/(m∧
n) → 0, then Corollary 19 implies that

max
1≤k≤m∧n

∣∣P(M∗
m,n<k)− e−λ

∣∣ = O
(
n−1(lnn)2

)
(83)

If L(X) is uniform over a finite alphabet and

c ≤ m/n ≤ 1/c

for some constant c>0, then the right-hand side of (81) becomes O(n−1 lnn).
We conject that the correct rate of convergence in (83) for the uniform L(X)
is O

(
n−1 lnn

)
.

The reason why (80) does not yield such a rate is the lack of factor e−λ

on the right-hand side. Results obtained for LLHR by the method of recurrent
inequalities do produce such a factor (cf. Theorem 3.12 in [82]).

In a more general situation one can consider NLMP with say r mismatches al-
lowed. An estimate of the accuracy of Poisson approximation to the distribution
of the number of long r-interrupted match patterns among X1, ..., Xm, Y1, ..., Yn

(match patterns of length ≥ k with ≤ r “interruptions”) can be found in [78, 82].
Neuhauser [81] considers a situation where L(X) may differ from L(Y ) and
only insertions and deletions (but no mismatches) are allowed to occur; she
presents a logarithmic estimate of the rate of Poisson approximation to the
distribution of the number of such long patterns.
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The Zubkov–Mihailov statistic. Let now Yi = Xi (∀i), m = n. Denote

N∗
n ≡ N∗

n(k) =
∑

(i,j)∈A(n,k)

T ∗
ij ,

where

A(n, k) = {(i, j) : 0≤ i<j ≤n−k} (n>k).

N∗
n is the number of long match patterns in one and the same sequence,

X1, ..., Xn.

Statistic N∗
n was introduced by Zubkov & Mihailov [126] who have shown

that L(N∗
n) is asymptotically Poisson Π(μ) if

n2pk(1−p)/2 → μ>0, nktpk∗ → 0 (∀ t>0).

Denote by

M∗
n = max{k≤n : max

(i,j)∈A(n,k)
Tij = 1}

the length of the longest match pattern among X1, ..., Xn. Then {M∗
n < k} =

{N∗
n=0}.
The next theorem evaluates the accuracy of Poisson approximation to L(N∗

n).

Theorem 20. If n>3k≥3, then

d
TV
(N∗

n;π
∗
n,k) ≤

1−e−λ∗

λ∗
(
(n∗)3(2k+1) (p2k+qk) + 2(kn∗)2q2k

)
+ 2kn∗pk,

where λ∗ ≡ λ∗
n,k = (n−3k+1) pk(1 + (n−3k)(1−p)/2), n∗ = n−k, L(π∗

n,k) =
Π(λ∗).

Theorem 20 has been derived using Theorem 7 and Lemma 22.

Denote

Δ∗(n, k) = |P(M∗
n < k)− exp(−λ∗

n,k)|.

Corollary 21. As n → ∞,

max
k≥C+2 logn

Δ∗(n, k) = O
(
n1−2c+ lnn+ n2−4c∗(lnn)2

)
, (84)

max
1≤k<n/3

Δ∗(n, k) = O
(
n1−2c+(lnn)1+c+ + n2−4c∗(lnn)1+2c∗

)
. (85)

If L(X) is uniform over a finite alphabet, then the right-hand side of (84) is
O(n−1 lnn), the right-hand side of (85) is O(n−1(lnn)2).

The key result behind Theorems 18 and 20 is the following

Lemma 22. For all natural i, j, i′, j′ such that (i, j) �= (i′, j′) ,

P(T ∗
ij = T ∗

i′j′ = 1) ≤ q2k . (86)
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Denote by

τk = min{n : N∗
n(k) �= 0}

the first instance a match pattern of length k appears in the sequence {Xi, i≥
1} . Then

{τk > n} = {M∗
n < k}.

The results concerning the asymptotics of τk can be derived from the corre-
sponding results for M∗

n .

NLMP with a small number of mismatches has been considered by several
authors (see [78, 82] and references therein).

A number of authors evaluated the accuracy of compound Poisson approxi-
mations to the distribution of NLMP (see [78, 82, 105] and references therein).

Open problems.
3.2. Derive uniform in k estimates of (possibly shifted) Poisson approximation
to L(Wm,n) and L(N∗

n).
3.3. Find the 2nd-order asymptotic expansions for P(Wm,n∈·) and P(N∗

n∈·).
3.4. Check if the correct rate of convergence in (82) and (85) in the case of
uniform L(X) is O

(
n−1 lnn

)
.

3.5. Improve the estimate of the rate of convergence in the limit theorem for the
length of the longest r-interrupted match pattern.

4. Compound Poisson approximation

The topic of compound Poisson (CP) approximation is vast. From a theoretical
point of view, the interest to the topic arises in connection with Kolmogorov’s
problem concerning the accuracy of approximation of the distribution of a sum
of independent r.v.s by infinitely divisible laws (see [5, 68, 85, 87] and references
therein). Recall that the class of infinitely divisible distributions coincides with
the class of weak limits of compound Poisson distributions [61].

The topic has applications in extreme value theory, insurance, reliability the-
ory, patterns matching, etc. (cf. [7, 12, 15, 66, 82]). For instance, in (re)insurance
applications the sum Sn =

∑n
i=1Yi1{Yi >xi} of integer-valued r.v.s allows to

account for the total loss from the claims {Yi} that exceed excesses {xi}. If the
probabilities P(Yi>xi) are small, L(Sn) can be accurately approximated by a
Poisson or a compound Poisson law.

In extreme value theory one deals with the number of extreme (rare) events
represented by a sum of 0-1 r.v.s (indicators of rare events). The indicators can
be dependent. A well-known approach consists of grouping observations into
blocks which can be considered almost independent [20]. The number of r.v.s
in a block is an integer-valued r.v., hence the number of rare events is a sum of
almost independent integer-valued r.v.s. In all such situations the block sums
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are non-zero with small probabilities. More information concerning applications
can be found in [7, 12, 48, 66].

This section concentrates on results concerning compound Poisson (CP) ap-
proximation that can be derived from the results concerning pure Poisson ap-
proximation. The main attention is given to results that are missed in existing
surveys.

4.1. CP limit theorem

Compound Poisson (CP) distribution is the distribution of a r.v.

πλ∑
i=1

ζi ,

where ζ0 = 0, r.v.s πλ, ζ, ζ1, ζ2, ... are independent, L(ζ) = Π(λ), ζi
d
= ζ (i≥1).

We denote L(
∑πλ

i=1 ζi) by Π(λ, ζ) ≡ Π(λ,L(ζ)).
Typically ζ �=0 w.p. 1. The requirement ζ �=0 w.p. 1 may be omitted. Indeed,

denote p = P(ζ �=0). Then by Khintchin’s formula ([61], ch. 2),

ζ
d
= τpζ

′, (87)

where τp and ζ ′ are independent r.v.s, L(ζ ′) = L(ζ|ζ �=0), L(τp) = B(p). Note
that

Π(t, τpζ
′) = Π(tp, ζ ′)

(cf. (6.26) in [82]).
Let {Xn,1, ..., Xn,n}n≥1 be a triangle array of stationary dependent 0-1 ran-

dom variables, i.e., sequence Xn,1, ..., Xn,n is stationary for each n∈N. Set

Sn = Xn,1 + ...+Xn,n.

Let ζr,n be a r.v. with distribution (8). The following Theorem 23 generalises
Theorem 3 to the case of CP approximation. It states that under certain as-
sumptions weak convergence of the cluster size distribution (see (89) below) is
necessary and sufficient for the CP limit theorem for Sn .

In Theorem 23 below we will assume (11) and the following condition:

lim sup
n→∞

nP(Xn,1 �= 0) < ∞. (88)

Note that relation (11) does not imply (88) — for example, consider the case
Xn,1 ≡ X. Denzel & O’Brien [44] present an example of an α–mixing sequence
such that (11) holds though (88) does not.

Theorem 23. Assume conditions (11), (88) and Δ. If

ζr,n ⇒ ζ (n→∞) (89)
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for a sequence {r=rn}∈R, then

Sn ⇒
π(λ)∑
i=0

ζi. (90)

The limit in (90) does not depend on the choice of a sequence {rn}∈R.
If Sn converges weakly to a random variable Y , then L(Y ) is compound

Poisson Π(λ, ζ), where λ = − lnP(Y =0). If λ> 0, then (89) holds for some
random variable ζ and sequence {r=rn}∈R.

Theorem 23 is effectively Theorem 5.1 from [82].

4.2. Accuracy of CP approximation

Let {Xi} be independent r.v.s that are non-zero with small probabilities (cf.
[68, 76, 86, 122]). Set Sn := X1 + ...+Xn, and denote

pi = P(Xi �=0) (i≥1), λ = p1 + ...+ pn .

According to Khintchin’s formula (87),

Xi
d
= τiX

′
i, (87∗)

where τi and X ′
i are independent r.v.s, L(X ′

i) = L(Xi|Xi �=0), L(τi) = B(pi).
Hence

Sn
d
= τ1X

′
1 + ...+ τnX

′
n.

Let ζ1, ..., ζn be independent compound Poisson Π(pi, X
′
i) random variables.

Set Zn =
∑n

i=1 ζi. Note that Zn is a compound Poisson random variable:

L(Zn) = Π(λ,X ′
η),

where r.v. η is independent of X ′
1, ..., X

′
n, P(η=j) = pj/λ (1≤j≤n).

A simple estimate of the accuracy of CP approximation to L(Sn) follows
from the property of d

TV
and (26):

dTV(Sn;Zn) ≤
n∑

i=1

dTV(τi;πpi) ≤
n∑

i=1

p2i

(cf. LeCam [68], Theorem 1).
Zaitsev [122] has derived an estimate of the accuracy of compound Poisson

approximation that can be sharper if λ is “large”. The following Theorem 24
presents Zaitsev’s result.

Theorem 24. There exists an absolute constant C such that

dK(Sn;Zn) ≤ Cp∗n . (91)
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Inequality (91) has been generalised to the multidimensional situation by
Zaitsev [123].

We consider now the situation where

X ′
i

d
= X ′ (∀i).

In such a situation an estimate of the accuracy of compound Poisson approx-
imation to L(Sn) follows from the estimate of the accuracy of pure Poisson
approximation to L(τ1+...+τn).

Indeed, denote

νn = τ1 + ...+ τn, Y =

πλ∑
i=1

X ′
i,

where Poisson Π(λ) r.v. πλ is independent of X ′
1, X

′
2, .... Then

Sn
d
=

νn∑
i=1

X ′
i. (92)

It is easy to check (see, e.g., Presman [86]) that

d
TV
(Sn;Y ) ≡ d

TV

( νn∑
i=1

X ′
i;

πλ∑
i=1

X ′
i

)
≤ d

TV
(νn;πλ). (93)

Kolmogorov ([62], formula (30)) has applied (93) without formulating it ex-
plicitly. Presman [86] was probably the first to formulate (93) explicitly and
present its proof.

Presman [86] has evaluated dTV(νn;πλ) (and hence dTV(Sn;Y )) using (93)
and (30). Michel [76] has applied (93) and the Barbour–Eagleson estimate (29).
An application of (93) and (32) yields

d
TV
(Sn;Y ) ≤ 3θ/4e+ 2δ∗ε+ 2δ2. (94)

According to [82], Lemma 5.4,

d
G
(Sn;Y ) ≤ d

G
(ν;πλ)E|X ′|. (95)

A combination of (36) and (95) entails

d
G
(Sn;Y ) ≤

(
1 ∧ 4

3

√
2/eλ

)
λ2E|X ′|. (96)

Further results on the accuracy of compound Poisson approximation can be
found in [14, 32, 33, 95, 125, 119].

Open problem.
4.1 Evaluate constant C in (91).
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4.3. CP approximation to B(n, p)

Below we present an estimate of the accuracy of compound Poisson approxima-
tion to the Binomial law related to the topic of pure Poisson approximation.

Let X,X1, ... be independent Bernoulli B(p) r.v.s. Presman [85] has shown
that

sup
p

dTV(B(n, p);Fn,p) = O(n−2/3), (97)

where the shifted compound Poisson distribution Fn,p is constructed via Pois-
son distributions (a similar result in terms of dK is due to Meshalkin [75]).

We present Presman’s result in Theorem 25 below (see also [5], ch. 4).
Denote by �x� the integer number that is the nearest to x from above, and

let
γ =

⌈
3np2−2np3

⌉
, β = γ−3np2+2np3∈ [0; 1), q = 1−p.

Let η1, η2, η3 be independent r.v.s with distributions

L(η1) = Π(pq2−β/n), L(η2) = Π(p2q+β/3n), L(η3) = Π(β/6n).

Set
Y := γ/n+η1−η2+2η3.

Note that Y −γ/n is a CP r.v.. One can check that

EY = p, E(Y −p)2 = pq, E(Y −p)3 = pq(q−p).

Let Fn,p := L(Y1 + ...+ Yn), where {Yi} are independent copies of Y .

Theorem 25. There exists an absolute constant C such that

d
TV
(B(n, p);Fn,p) ≤ Cεn,p (0≤p≤1/2), (98)

where εn,p = min
{
np2; p; max{1/(np)2; 1/n}

}
.

Bound (97) follows after noticing that sup0≤p≤1/2 εn,p = O(n−2/3). Clearly,
it suffices to consider only p∈ [0; 1/2] : if L(Sn) = B(n, p), then L(n−Sn) =
B(n, 1−p).

Dependent 0-1 r.v.s. Let X,X1, ... be a stationary sequence of 0-1 r.v.s. The
following Theorem 26 is an application of (93) in the case of dependent r.v.s.

Let π, ζ
(r)
1 , ζ

(r)
2 , . . . be independent random variables, where 1≤ r≤n, πn,r

is a Poisson Π(kq) r.v., ζ
(r)
0 = 0,

L(ζ(r)i ) = L(Sr|Sr>0) (i≥1),

q = P(Sr �=0), k = [n/r].

Denote p = P(X=1),

Yn =

πn,r∑
i=0

ζ
(r)
i .
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The distribution of Sn = X1+...+Xn can be approximated by a CP distribution
L(Yn).

Theorem 26. If n>r>l≥0, then

d
TV
(Sn;Yn) ≤ κn,rrp+ (2kl + r′)p+ nr−1γn(l), (99)

dG(Sn;Yn) ≤ rpmin
{
np ;

4

3

√
2np/e

}
+ (2kl + r′)p+ nγn(l), (100)

where r′ = n− rk, κn,r = min{1− e−np ; 3/4e + (1− e−np)rp} and γn(l) =
min{4α(l)√r ;βn(l)}.

Theorem 26 is effectively Theorem 5.2 from [82].

If the random variables {Xi} are independent, then (99) with r=1, l=0
yields (29) and (32).

If the random variables {Xi} are m–dependent, then one can choose l=m,
r = �√mn �, the smallest integer greater than or equal to

√
mn , and get the

estimate d
TV
(Sn;Yn) ≤ 4p�√mn �.

Further reading on the topic of the accuracy of compound Poisson approx-
imation to the distribution of a sum of dependent r.v.s includes [92, 34] and
references therein.

Open problem.
4.2. Evaluate constant C in (98).

5. Poisson process approximation

The topic of point process approximation is vast; an interested reader is referred
to [38, 74]. This section concentrates on the results concerning Poisson process
approximation that are closely related to the results on Poisson approximation
to the distribution of a sum of 0-1 random variables. The main attention is given
to results that are missed in existing surveys.

Point process counting locations of rare events. Let {ξi, i ≥ 1} be
Bernoulli r.v.s (e.g., ξi = 1{Xi>un}, where un is a “high” level). Then

Sn(·) =
n∑

i=1

ξi1{ i/n∈·} (101)

can be called a “Bernoulli process”.

Sn(·) counts locations of extreme/rare events represented by r.v.s {ξi}. A
typical example of a rare event is an exceedance of a high threshold.

For instance, let X,X1, X2, ... be a stationary sequence of random variables,
and let {un} be a sequence of levels. Set ξi = 1{Xi > un}. Then Sn(·) =
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Nn(·, un), where

Nn(B, un) =

n∑
i=1

1{ i/n∈B,Xi>un} (B⊂(0; 1]). (101∗)

Process Nn(·, un) counts locations of exceedances of level un.
Let {r = rn} be a sequence obeying (7). We denote by ζr,n a r.v. with

distribution (8).

Theorem 27. Assume (11), (88) and mixing condition Δ. If (10) holds, then

Nn(·, un) ⇒ N(·), (102)

where N(·) is a Poisson point process with intensity rate λ.

Theorem 27 is a particular case of Theorem 7.2 in [82]. The necessity part of
Theorem 27 is given by Theorem 3: if (102) holds, then so does (10). Leadbetter
et al. [66], Theorem 5.2.1, present a version of Theorem 27 with condition (D′)
instead of (10).

Denote by Ξn a Poisson point process with intensity measure

λ(·) =
n∑

i=1

pi1{i/n∈·},

where pi = P(ξi=1).
The accuracy of Poisson process approximation to L(Sn(·)) has been evalu-

ated by Brown [27] and Kabanov et al. [57], Theorem 3.2: if {ξi} are indepen-
dent, then

dTV(Sn(·); Ξn(·)) ≤
n∑

i=1

p2i . (25′′)

Arratia et al. [2] have generalised (25′′) to the case of dependent Bernoulli r.v.s.
Ruzankin [99] and Xia [118] present estimates of the accuracy of Poisson

process approximation in terms of a dG -type distance.
In the general case (when the limiting distribution of ζr,n is not degenerate)

the limiting distribution of Nn(·, un) is necessarily compound Poisson (Hsing
et al. [56], see also [82], ch. 7).

Excess process. Let X,X1, X2, ... be a stationary sequence of r.v.s. If one
is interested in the joint distribution of exceedances of several levels among
X1, ..., Xn, a natural tool is the excess process Nε

n(·).
Set

Nε
n(t) =

n∑
i=1

1{Xi>un(t)} (t>0).

Given T >0, we call {Nε
n(t), t∈ [0;T ]} the excess process.



266 S. Y. Novak

Process Nε
n(·) describes variability in the heights of the observations.

Note that Nε
n(·) is the “tail empirical process” for Yn,1, ..., Yn,n, where Yn,i=

u−1
n (Xi):

Nε
n(t) =

n∑
i=1

1{Yn,i<t}. (103)

There is considerable amount of research on the topic of tail empirical pro-
cesses (see, e.g., [37, 72] and references therein).

We present necessary and sufficient conditions for the weak convergence of
the excess process to a Poisson process in Theorem 28 below (cf. [82], ch. 7).

Suppose there is a sequence {un(·), n≥1} of functions on [0;∞) such that
function un(·) is strictly decreasing for all large enough n, un(0) = ∞,

lim sup
n→∞

nP(X>un(t)) < ∞ (0<t<∞), (104)

lim
n→∞

P(Mn≤un(t)) = e−t (t≥0), (105)

where Mn = max{X1, ..., Xn} is the sample maximum. Conditions (104) and
(105) mean that un(·) is a “proper” normalising sequence for the sample max-
imum.

First, we recall the definitions of mixing (weak dependence) conditions.

Given 0 < t1 < ... < tk < ∞, where k ≥ 1, and a sequence {un(·)}n≥1, we
denote

τ = (t1, ..., tk), un(τ) = (un(t1), ..., un(tk)).

Let Fl,m(τ) be the σ–field generated by the events {Xi>un(tj)}, l≤ i≤m, 1≤
j ≤ k; mixing (weak dependence) coefficient αn(ln) := α (ln, un(τ)) is defined
as above.

Condition Δ({un(τ)}) is said to hold if αn(ln) → 0 for some sequence {ln}
such that ln → ∞, ln/n → 0 as n → ∞.

Condition Δ holds if Δ({un(τ)}) is in force (∀ 0<t1<. . .<tk<∞, k≥1).

Class R(τ). If Δ{un(τ)} holds, then there exists a sequence {rn} such that
(7) holds (for instance, one can take rn =

[√
nmax{l;nαn(ln)}

]
). We denote

by R(τ) the class of all such sequences.

The next condition describes the joint distribution of exceedances of several
levels.

We say that condition C ′
τ holds if there exists a sequence {rn}∈R(τ) such

that for every 1≤ i<j ≤ k and every ti<tj from {t1, ..., tk}

(a) P(Nr[un(ti−1);un(ti))=1) ∼(ti−ti−1)r/n,
P(Nr[un(ti−1);un(ti))=j) = o(r/n) (j≥2),

(b) P(Nr(un(ti))>0, Nr[un(ti);un(tj))>0) = o(r/n).
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Condition C ′ holds if C ′
τ is valid for all 0<t1<...<tk<∞, k≥1.

Theorem 28. Assume mixing condition condition Δ, and let π(·) denote a
Poisson process with intensity rate 1. Then

Nε
n(·) ⇒ π(·) (106)

if and only if condition C ′ holds.

Example 5.1. Let X,X1, X2, ... be i.i.d.r.v.s with the distribution function
(d.f.) F . Denote K∗ = sup{x : F (x)<1}, and assume that

P(X≥x)/P(X>x) → 1 (G)

as x → K∗ (Gnedenko’s condition [51]). Set un(t) = F−1
c (t/n), where

Fc(·) := P(X> ·).

Then excess process {Nε
n(·), t∈ [0; 1]} converges weakly to a pure Poisson pro-

cess N with intensity rate 1 (cf. [82], ch. 8). Process N admits the representa-
tion

N
d
=

π(1)∑
j=1

γj(·),

where γj(t)
d
= 1{ξ<t} and r.v. ξ has uniform U[0; 1] distribution.

The accuracy of approximation Nε
n(·) ≈ N(·) can be evaluated as well (cf.

Deheuvels & Pfeifer [41], Kabanov & Liptser [58], Novak [82], ch. 8).

Given T > 0, let π(np) denote a Poisson Π(np) r.v., where p = P(X >
un(T )). Let η, η1, η2, ... be independent of π(np) i.i.d. processes with the dis-
tribution

L(η(·)) = L(1{X>un(·)}|X>un(T )) ≡ L(1{Yn,1< ·}|Yn,1<T )

(i≥ 1). One can check that Nε
n(·)

d
=

∑νn

i=1 ηi(·), where r.v. νn is independent
of {ηi}, L(νn) = B(n, p).

Let {Xi} be independent r.v.s. An application of (93) and (32) yields

dTV

(
Nε

n(·);
π(np)∑
i=1

ηi(·)
)
≤ 3p/4e+ 2(1−e−np)(1+ε)p2, (107)

where ε = min
{
1; (2π[(n−1)p])

−1/2
+2(1−e−np)p/(1−1/n)

}
(cf. [82], Theorem

8.3, where we applied (29) instead of (32)).

Note that
∑π(np)

i=1 ηi(·) is a Poisson process. Inequality (107) is an improve-
ment of a particular result by Major [72].
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Let X,X1, X2, ... be i.i.d.r.v.s, and let T >0. According to (49) (see also (6.5)
in [41]), the total variation distance between {

∑n
i=1 1{Yn,i<t}, t∈ [0;T ]} and

the approximating Poisson process coincides with d
TV
(B(n, p);Π(np)), where

p = P(Yn,1≤T ).

In a general situation excess process {Nε
n(·)} may converge weakly to a

process of more complex structure:

{Nε
n(t), t≤T} ⇒

{
π∑

j=1

γj(t/T ), t≤T

}
, (108)

where π is a Poisson r.v., {γj(·)} are independent jump processes.

Process
{∑π

j=1 γj(·)
}

can be called Poisson cluster process or compound

Poisson process of the second order (regarding the standard CP process as a
“compound Poisson process of the first order”).

Necessary and sufficient conditions for the weak convergence of the excess
process to a compound Poisson process or a Poisson cluster processes are pre-
sented in [82], ch. 7, 8.

General point process of exceedances. Consider now a two–dimensional
point process N∗

n that counts locations of rare events (e.g., exceedances of
“high” thresholds) as well as their “heights”: for any Borel set A⊂(0; 1]×[0;∞)
we set

N∗
n(A) :=

n∑
i=1

1{
(
i/n, u−1

n (Xi)
)
∈ A }. (109)

If {Xi} are i.d.d.r.v.s, or if {Xi, i≥1} is a strictly stationary sequence obeying
certain mixing conditions, then N∗

n(·) converges weakly to a pure Poisson point
process (Adler [1]). Theorem 29 below presents Adler’s result.

We will assume a multilevel version of the “declustering” condition (D′):

lim
n→∞

n

r∑
i=1

P(Xi+1>un(t), X1>un(t)) = 0 (D′
+)

for any sequence {r=rn} ∈ R(t), 0<t<∞.

Theorem 29. If conditions Δ and (D′
+) hold, then N∗

n converges weakly to
a pure Poisson point process N∗ on (0; 1]×[0;∞) with the Lebesgue intensity
measure.

Example 5.2. Let Y, Y1, Y2, ... be a sequence of i.i.d.r.v.s with exponential E(1)
distribution, and set

Xi = Yi + Yi+1 .

Evidently, {Xi, i≥1} is a stationary sequence of 1–dependent r.v.s.
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Let u ≡ un(t) = ln[t−1n lnn], t>0. Then P(X>un(t)) ∼ t/n, and condition
(D′

+) holds. According to Theorem 29, N∗
n ⇒ N∗, the Poisson point process

with the Lebesgue intensity measure (cf. [82], ch. 7).

Adler’s result has been generalised to the case of compound Poisson approx-
imation: necessary and sufficient conditions for the weak convergence of N∗

n to
a compound Poisson point process can be found in [82], ch. 7. Necessary and
sufficient conditions for the weak convergence of N∗

n to a Poisson cluster process
are given in [82], ch. 8.

An estimate of the accuracy of approximation N∗
n(·) ≈

∑π(T )
j=1 γj(·) in terms

of the d
G
(X;Y )-type distance has been established in [17].

Open problem.
5.1. Improve the estimate of the accuracy of approximation N∗

n ≈ N∗ presented
in [17].
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[56] Hsing T., Hüsler J. and Leadbetter M.R. (1988) On the exceedance point
process for stationary sequence. — Probab. Theory Rel. Fields, v. 78,
97–112. MR0940870

[57] Kabanov Yu.M., Liptser R.Sh. and Shiryaev A.N. (1983) Weak and strong
convergence of the distributions of point processes. — Theory Probab.
Appl., v. 28, No 2, 288–319. MR0700211

[58] Kabanov Yu.M. and Liptser R.Sh. (1983) On convergence in variation of
the distributions of multivariate point processes. — Z. Wahrscheinlichkeit-
stheor. verw. Geb., v. 63, 475–485. MR0705618

[59] Kantorovich L.V. (1942) On the translocation of mass. — Doklady USSR
Acad. Sci., v. 37, No 7–8, 227–229. Trans: Management Sci. (1958) v. 5,
No 1, 1–4. MR0096552

[60] Kerstan J. (1964) Verallgemeinerung eines satzes von Prochorow und Le
Cam. — Z. Wahrsch. Verw. Gebiete, v. 2, 173–179. MR0165555

[61] Khintchin A.Y. (1933) Asymptotische Gesetze der Wahrscheinlichkeit-
srechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin:
Springer.

[62] Kolmogorov A.N. (1956) Two uniform limit theorems for sums of inde-
pendent random variables. — Theory Probab. Appl., v. 1, No 4, 384–394.

http://www.ams.org/mathscinet-getitem?mr=0171294
http://www.ams.org/mathscinet-getitem?mr=0936631
http://www.ams.org/mathscinet-getitem?mr=0579350
http://www.ams.org/mathscinet-getitem?mr=0008655
http://www.ams.org/mathscinet-getitem?mr=0062975
http://www.ams.org/mathscinet-getitem?mr=2097199
http://www.ams.org/mathscinet-getitem?mr=0208713
http://www.ams.org/mathscinet-getitem?mr=0190979
http://www.ams.org/mathscinet-getitem?mr=0940870
http://www.ams.org/mathscinet-getitem?mr=0700211
http://www.ams.org/mathscinet-getitem?mr=0705618
http://www.ams.org/mathscinet-getitem?mr=0096552
http://www.ams.org/mathscinet-getitem?mr=0165555


Poisson approximation 273

[63] Kontoyiannis I., Harremoes P. and Johnson O.T. (2005) Entropy and the
law of small numbers. — IEEE Trans. Inform. Theory, v. 51, No 2, 466–
472. MR2236061

[64] Kozulyaev P.A. (1939) Asymptotic analysis of a fundamental formula of
Probability Theory. — Acad. Notes Moscow Univ., v. 15, 179–182.

[65] Kruopis J. (1986) Precision of approximations of the generalized binomial
distribution by convolutions of Poisson measures. — Lithuanian Math. J.,
v. 26, 37–49. MR0847204

[66] Leadbetter M.R., Lindgren G. and Rootzen H. (1983) Extremes and Re-
lated Properties of Random Sequences and Processes. New York: Springer
Verlag. MR0691492

[67] LeCam L. (1960) An approximation theorem for the Poison binomial dis-
tribution. — Pacif. J. Math., v. 19, 1 3, p. 1181–1197. MR0142174

[68] LeCam L. (1965) On the distribution of sums of independent random
variables. — In: Proc. Intern. Res. Sem. Statist. Lab. Univ. California,
pp. 179–202. New York: Springer. MR0199871

[69] Liapunov A.M. (1901) Nouvelle forme du théor‘eme sur la limite des prob-
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[90] Röllin A. (2005) Approximation of sums of conditionally independent vari-
ables by the translated Poisson distribution. — Bernoulli, v. 11, 1115–
1128. MR2189083

[91] Romanowska M. (1977) A note on the upper bound for the distribu-
tion in total variation between the binomial and the Poisson distribution.
— Statist. Neerlandica, v. 31, 127–130. MR0467889

[92] Roos M. (1994) Stein’s method for compound Poisson approximation: the
local approach. — Ann. Appl. Probab., v. 4, No 4, 1177–1187. MR1304780

[93] Roos B. (1999) Asymptotic and sharp bounds in the Poisson approxi-
mation to the Poisson-binomial distribution. — Bernoulli, v. 5, No 6,
1021–1034. MR1735783

[94] Roos B. (2001) Sharp constants in the Poisson approximation. — Statist.
Probab. Letters, v. 52, 155–168. MR1841404

[95] Roos B. (2003) Kerstan’s method for compound Poisson approximation.
— Ann. Probab., v. 31, No 4, 1754–1771. MR2016599

[96] Roos B. (2003) Improvements in the Poisson approximation of mixed
Poisson distributions. — J. Statist. Plan. Inference, v. 113, 467–483.
MR1965122

[97] Roos B. (2015) Refined total variation bounds in the multivariate and
compound Poisson approximation. — arXiv:1509.04167v1. MR3647296

[98] Ruzankin P.S. (2001) On the Poisson approximation of the binomial dis-
tribution. — Siberian Math. J., v. 42, No 2, 353–363. MR1833166

[99] Ruzankin P.S. (2004) On the rate of Poisson process approximation to a
Bernoulli process. — J. Appl. Probab., v. 41, No 1, 271–276. MR2036288

http://www.ams.org/mathscinet-getitem?mr=1311992
http://www.ams.org/mathscinet-getitem?mr=2933280
http://www.ams.org/mathscinet-getitem?mr=0606801
http://www.ams.org/mathscinet-getitem?mr=0700218
http://www.ams.org/mathscinet-getitem?mr=0792634
http://www.ams.org/mathscinet-getitem?mr=0056861
http://www.ams.org/mathscinet-getitem?mr=0084896
http://www.ams.org/mathscinet-getitem?mr=0773434
http://www.ams.org/mathscinet-getitem?mr=2189083
http://www.ams.org/mathscinet-getitem?mr=0467889
http://www.ams.org/mathscinet-getitem?mr=1304780
http://www.ams.org/mathscinet-getitem?mr=1735783
http://www.ams.org/mathscinet-getitem?mr=1841404
http://www.ams.org/mathscinet-getitem?mr=2016599
http://www.ams.org/mathscinet-getitem?mr=1965122
https://arxiv.org/abs/1509.04167v1
http://www.ams.org/mathscinet-getitem?mr=3647296
http://www.ams.org/mathscinet-getitem?mr=1833166
http://www.ams.org/mathscinet-getitem?mr=2036288


Poisson approximation 275

[100] Ruzankin P.S. (2010) Approximation for expectations of unbounded func-
tions of dependent integer-valued random variables. — J. Appl. Prob.,
v. 47, 594–600. MR2668509

[101] Salvemini T. (1943) Sul calcolo degli indici di concordanza tra due carat-
teri quantitativi. — Atti della VI Riunione della Soc. Ital. di Statistica.

[102] Serfling R.J. (1975) A general Poisson approximation theorem. — Ann.
Probab., v. 3, 726–731. MR0380946

[103] Serfling R.J. (1978) Some elementary results on Poisson approximation
in a sequence of Bernoulli trials. — SIAM Rev., v. 20, No 3, 567–579.
MR0482958

[104] Sevastyanov B.A. (1972) Limit Poisson law in a scheme of dependent ran-
dom variables. — Theory Probab. Appl., v. 17, No 4, 733–737. MR0310943

[105] Schbath S. (2000) An overview on the distribution of word counts in
Markov chains. — J. Comput. Biology, v. 7, 193–201.

[106] Shevtsova I.G. (2011) On the absolute constants in the Berry–Esseen type
inequalities for identically distributed summands. — arXiv:1111.6554v1.
MR2848430

[107] Shorgin S.Y. (1977) Approximation of a generalized binomial distribution.
— Theory Probab. Appl., v. 22, No 4, 846–850. MR0458544

[108] Smith R.L. (1988) Extreme value theory for dependent sequences via
the Stein–Chen method of Poisson approximation. — Stoch. Proc. Appl.,
v. 30, No 2, 317–327. MR0978362

[109] Stein C. (1992) A way of using auxiliary randomization. — In: Probability
Theory. Proc. Singapore Probab. Conf., pp. 159–180. Berlin: de Gruyter.
MR1188718

[110] Tsaregradskii I.P. (1958) On uniform approximation of the binomial dis-
tribution with infinitely divisible laws. — Theory Probab. Appl., v. 3,
No 4, 470–474. MR0102121

[111] Uspensky J.V. (1931) On Ch.Jordan’s series for probability. — Ann.
Math., v. 32, No 2, 306–312. MR1502999

[112] Utev S.A. (1992) Extremal problems, characterisation, and limit theorems
of Probability Theory. — DSc Thesis. Novosibirsk: Novosibirsk Inst. Math.,
280 pp.

[113] Vallander S.S. (1973) Calculation of the Wasserstein distance between
probability distributions on the line. — Theory Probab. Appl., v. 18,
No 4, 824–827. MR0328982

[114] Vasershtein L.N. (1969) Markov processes on a countable product of spaces
describing large automated systems. — Probl. Inform. Trans., v. 14, 64–
73. MR0314115

[115] Vervaat W. (1969) Upper bounds for the distance in total variation be-
tween the binomial or negative binomial and the Poisson distribution.
— Statist. Neerlandica, v. 23, 79–86. MR0242235

[116] Witte H.-J. (1990) A unification of some approaches to Poisson approxi-
mation. — J. Appl. Probab., v. 27, No 3, pp. 611–621. MR1067026

[117] Xia A. (1997) On using the first difference in the Stein–Chen method.
— Ann. Appl. Probab., v. 7, No 4, 899–916. MR1484790

http://www.ams.org/mathscinet-getitem?mr=2668509
http://www.ams.org/mathscinet-getitem?mr=0380946
http://www.ams.org/mathscinet-getitem?mr=0482958
http://www.ams.org/mathscinet-getitem?mr=0310943
https://arxiv.org/abs/1111.6554v1
http://www.ams.org/mathscinet-getitem?mr=2848430
http://www.ams.org/mathscinet-getitem?mr=0458544
http://www.ams.org/mathscinet-getitem?mr=0978362
http://www.ams.org/mathscinet-getitem?mr=1188718
http://www.ams.org/mathscinet-getitem?mr=0102121
http://www.ams.org/mathscinet-getitem?mr=1502999
http://www.ams.org/mathscinet-getitem?mr=0328982
http://www.ams.org/mathscinet-getitem?mr=0314115
http://www.ams.org/mathscinet-getitem?mr=0242235
http://www.ams.org/mathscinet-getitem?mr=1067026
http://www.ams.org/mathscinet-getitem?mr=1484790


276 S. Y. Novak

[118] Xia A. (2005) Stein’s method and Poisson process approximation. — In:
An introduction to Stein’s method (A.D. Barbour and L.H.Y. Chen, eds.)
Singapore: World Scientific, 115–181. MR2235450

[119] Xia A. (2015) Stein’s method for conditional compound Poisson approxi-
mation. — Statist. Probab. Lett., v. 100, 19–26. MR3324070

[120] Yannaros N. (1991) Poisson approximation for random sums of Bernoulli
random variables. — Statist. Probab. Lett., v. 11, 161–165. MR1092977

[121] Zacharovas V. and Hwang H.-K. (2010) A Charlier-Parseval approach to
Poisson approximation and its applications. — Lith. Math. J., v. 50, No 1,
88–119. MR2607681

[122] Zaitsev A.Yu. (1983) On the accuracy of approximation of distributions
of sums of independent random variables, which are non-zero with a small
probability, by accompanying laws. — Theory Probab. Appl., v. 28, No 4,
657–669. MR0726889

[123] Zaitsev A.Yu. (1988) A multidimensional variant of Kolmogorov’s second
uniform limit theorem. — Theory Prob. Appl., v. 34, 108–128. MR0993957

[124] Zaitsev A.Yu. (1991) An example of a distribution whose set of n-fold
convolutions is uniformly separated from the set of infinitely divisible laws
in the sense of the variation distance. — Theory Probab. Appl., v. 36, 419–
425. MR1119511

[125] Zaitsev A.Yu. (2005) Approximation of a sample by a Poisson point pro-
cess. — J. Math. Sciences, v. 128, No 1, 2556–2563. MR2038866

[126] Zubkov A.M. and Mihailov V.G. (1979) On the repetitions of s–tuples in
a sequence of independent trials. — Theory Probab. Appl., v. 24, No 2,
p. 267–279. MR0532442

[127] Zubkov A.M. and Serov A.A. (2012) A complete proof of universal in-
equalities for the distribution function of the binomial law. — Theory
Probab. Appl., v. 57, No 3, 539–544. MR3196787

http://www.ams.org/mathscinet-getitem?mr=2235450
http://www.ams.org/mathscinet-getitem?mr=3324070
http://www.ams.org/mathscinet-getitem?mr=1092977
http://www.ams.org/mathscinet-getitem?mr=2607681
http://www.ams.org/mathscinet-getitem?mr=0726889
http://www.ams.org/mathscinet-getitem?mr=0993957
http://www.ams.org/mathscinet-getitem?mr=1119511
http://www.ams.org/mathscinet-getitem?mr=2038866
http://www.ams.org/mathscinet-getitem?mr=0532442
http://www.ams.org/mathscinet-getitem?mr=3196787

	Weak convergence to a Poisson law
	Weak convergence to a Poisson law
	Dependent Bernoulli random variables

	Accuracy of Poisson approximation
	Independent Bernoulli r.v.s
	Dependent Bernoulli r.v.s
	Independent integer-valued r.v.s
	Dependent integer-valued r.v.s
	Asymptotic expansions
	Sum of a random number of random variables

	Applications
	Long head runs
	Long match patterns

	Compound Poisson approximation
	CP limit theorem
	Accuracy of CP approximation
	CP approximation to B(n,p)

	Poisson process approximation
	Acknowledgements
	References

