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Abstract:

• In Section 1, we present a number of classical results concerningthe GeneralizedGamma
Convolution ( : GGC) variables, their Wiener-Gamma representations, and relation
with the Dirichlet processes.

• To a GGC variable, one may associate a unique Thorin measure. Let G a positive r.v.

and Γt(G)
(
resp. Γt(1/G)

)
the Generalized Gamma Convolution with Thorin measure

t-times the law of G (resp. the law of 1/G). In Section 2, we compare the laws of Γt(G)
and Γt(1/G).

• In Section 3, we present some old and some new examples of GGC variables, among
which the lengths of excursions of Bessel processes straddling an independent exponen-
tial time.
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Introduction

1. This survey is concerned with the study of a rich and interesting class of
infinitely divisible laws on R+ called the generalized gamma convolutions
(GGC), a class introduced by O. L. Thorin in 1977

(
see [49]

)
and then studied

thoroughly by L. Bondesson [5]; both the lectures notes by Bondesson and the
book by Steutel and Van Harn [48] contain many results on this class of laws. We
shall also discuss their close connections to a class of random variables known
as Dirichlet means whose study was initiated by Cifarelli and Regazzini [10; 11].

We shall often make, throughout this paper, the common abuse of language
which consists of talking about a random variable instead of its law; thus, we
shall use slightly incorrect terms such as GGC variables, and so on . . .
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In order to introduce the family of GGC variables as naturally as possible,
let us consider the 3 sets of r.v.’s (or of laws): G,S,J defined as follows:

a) J is the family of infinitely divisible r.v.’s (taking values in R+)
b) S is the set of self-decomposable r.v.’s, valued in R+

c) G is the set of positive GGC variables

The Laplace transforms of these variables satisfy:

E(e−λX) = exp

{
−aλ−

∫ ∞

0

(1 − e−λx)ν(dx)

}
(λ ≥ 0)

and

a’) If X ∈ J , then a ≥ 0 and ν(dx) is a Lévy measure, i.e.:

∫ ∞

0

(1 ∧ x)ν(dx) <∞

b’) If X ∈ S, then a ≥ 0 and ν(dx) = dx
x h(x), with h decreasing

c’) If X ∈ G, then X ∈ S and moreover:

h(x) =

∫ ∞

0

e−xyµ(dy)

for a σ-finite and positive measure µ; µ(dy) is called the Thorin measure
of X.

Thus, we have:
G ⊂ S ⊂ J

and, of course, the inclusions are strict.

Another definition of a GGC variable is sometimes given in the literature
as the limit (in law) of sums of independent gamma variables (with different
parameters).

A comparative discussion of different (but, in the end, equivalent) properties
of elements of S is made in Jeanblanc, Pitman, and Yor [32]. Similarly, it is the
aim of this survey to gather and to compare different properties for G. This, and
more generally, the entire survey is motivated by the fact that, recently, some
new elements of G were discovered; likewise, there is some recurring interest in
the Gamma process

(
see, e.g. the Festschrift Volume for Dilip Madan [55]

)
.

2. This survey paper consists of three parts:

• In the first part, the results being discussed are classical; they are about the
relationships between different families of r.v.’s and/or processes, namely: GGC
r.v.’s, Wiener-Gamma integrals, Dirichlet means, compound Poisson processes,
mixing of Gamma variables, Poisson point processes, GGC subordinators, and
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so on. These results are detailed here in order to ease up the reading of this
paper for probabilists coming from diverse horizons.

• In the second part, we discuss a notion of duality for the GGC r.v.’s; in
particular, when one knows the density, or the Laplace transform of a GGC r.v.
Γ, this notion of duality allows to compute explicitely the density, or the Laplace
transform of the “dual GGC variable”. We use this principle to compute the
Thorin measure of a Pareto r.v. and of a power of a gamma r.v.

• The third part consists essentially in presenting the explicit computations
of densities and of Laplace transforms of some particular GGC r.v.’s. In the
main, these r.v.’s originate from the study of the length of excursion which
straddles an independent exponential time for a recurrent Bessel process [4]. It
is noteworthy that, in this third part, the notion of duality presented in the
second part allows to obtain very easily explicit formulae for the density and
the Laplace transform of a large number of GGC variables.

Finally, in the Appendix, we describe an interpolation principle between the
gamma subordinator (γt, t ≥ 0) and a family of GGC subordinators.

1. Classical results on GGC r.v.’s

A writing convention.
1. Each time we write an equality in law between r.v.’s and that on one or

the other side of this equality, several r.v.’s occur, we always assume that these
r.v.’s are independent, without mentioning it systematically.

2. It will be convenient, in some instances, to speak of a r.v. instead of its
law and vice versa. We hope that no confusion will ensue.

1.1. The Gamma process

It is a subordinator - i.e. a Lévy process with increasing paths and càdlàg tra-
jectories -

All through this paper, the reference process is the standard Gamma process
(γt, t ≥ 0), which is a subordinator without drift, and with Lévy measure
dx
x e−x (x > 0). Thus, its Lévy-Khintchine representation writes (see [2]):

E[e−λγt ] = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
e−x

}
(λ, t ≥ 0) (1)

= exp
{
− t log(1 + λ)

}
=

1

(1 + λ)t
(2)

where formula (2) is obtained from (1) and from the elementary Frullani formula
(see [34], p. 6):

∫ ∞

0

(1 − e−λx)
dx

x

∫ ∞

0

e−xzν(dz) =

∫ ∞

0

log
(
1 +

λ

z

)
ν(dz) (3)
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where, in general, ν denotes a positive measure on R+, which is σ-finite. Here,
ν(dz) = δ1(dz) is the Dirac measure at 1, but formula (3) shall be useful in the
sequel. We note that Frullani’s formula (3) may be easily obtained by observing
that the two sides of this formula take the value 0 as λ = 0 and have the same
derivative with respect to λ.

For each t > 0 fixed, γt follows a gamma law with parameter t:

P (γt ∈ da) =
e−a

Γ(t)
at−1 da (a ≥ 0) (4)

This process (γt, t ≥ 0) enjoys a large number of remarkable properties which
make it a “worthy companion” of Brownian motion. In particular, Emery and
Yor [18] establish a parallel between Brownian motion and its bridges on one
hand, and the Gamma process and its bridges on the other hand. See also
Vershik, Yor and Tsilevich [50] and Yor [55] for a survey of many remarkable
properties of the gamma process.

1.2. Wiener-Gamma integrals and GGC variables

1.2.a Many times throughout this work, we shall use the properties of the
integrals:

Γ̃(h) :=

∫ ∞

0

h(s) dγs (5)

where h : R+ −→ R+ is a Borel function such that:
∫ ∞

0

log
(
1 + h(u)

)
du <∞ (6)

Under this hypothesis (6), Γ̃(h) is finite a.s. (see Proposition 1.1 below). Of
course, since the trajectories of the process are a.s. increasing, the integral fea-
tured in (1.5) may be defined in a path-wise manner, as a usual Stieltjes integral.

We call Γ̃(h) a Wiener-Gamma integral, in analogy with the Wiener integrals∫∞
0 f(u) dBu, f ∈ L2(R+, du) which constitute the Gaussian space generated

by Brownian motion (Bu, u ≥ 0).

Thus, the family of r.v.’s
{
Γ̃(h) with h such that

∫∞
0 log

(
1 + h(u)

)
du <∞

}

constitutes the analogue for the process (γt, t ≥ 0) of the first Wiener chaos for
a Brownian motion (Bu, u ≥ 0).

Let us assume for a moment that, in (1.5), the function h is constant on a
finite number of intervals, i.e.:

h(s) =

n−1∑

i=0

hi1]si,si+1](s) (hi ≥ 0)

for a subdivision 0 = s0 < s1 < · · · < sn <∞. Then:

Γ̃(h) =

n−1∑

i=0

hi(γsi+1 − γsi)
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Thus, Γ̃(h) is a linear combination of independent gamma r.v.’s and we obtain:

E
(
e−λΓ̃(h)

)
=

n−1∏

i=0

E
(
e−λhi(γsi+1

−γsi
)) (λ ≥ 0)

=

n−1∏

i=0

1

(1 + λhi)si+1−si

(
from (1.2)

)

= exp

(
−

n−1∑

i=0

(si+1 − si)

∫ ∞

0

(1 − e−λ hix)
dx

x
e−x

)

(
from Frullani’s formula (1.3)

)

= exp

(
−
∫ ∞

0

(1 − e−λ y)
dy

y

∫ ∞

0

e−
y

h(s) ds

)

(after making the change of variable hix = y)

= exp

(
−
∫ ∞

0

(1 − e−λ y)
dy

y

∫ ∞

0

e−yxµh(dx)

)

where µh is the image of Lebesgue’s measure on R+ by the application s→ 1
h(s) ·

This latter formula justifies the following definition:

1.2.b Definition 1.0: Following ([5], p. 29), we say that a positive r.v. Γ is
a generalized gamma convolution (GGC) - without translation term - if there
exists a positive Radon measure µ on ]0,∞[ such that:

E[e−λΓ] = exp
{
−
∫ ∞

0

(1 − e−λx)
dx

x

∫ ∞

0

e−xzµ(dz)
}

(7)

= exp
{
−
∫ ∞

0

log
(
1 +

λ

z

)
µ(dz)

}
(8)

with:

∫

]0,1]

|log x| µ(dx) <∞ and

∫

[1,∞[

µ(dx)

x
<∞ (9)

The measure µ is called Thorin’s measure associated with Γ. Thus, from the
Lévy-Khintchine formula, a GGC r.v. is infinitely divisible. In fact, since its
Lévy density lΓ(x) = 1

x

∫∞
0
e−xzµ(dz) satisfies: x −→ x l(x) is decreasing, then

Γ is a self decomposable r.v.
(
see, e.g. [37]

)
. Such a self-decomposable r.v. Γ,

assumed to be non degenerate, admits a density fΓ such that fΓ(x) > 0 for
every x > 0

(
see [45] p.404

)
. The study of GGC variables was initiated by O.

Thorin in a series of papers
(
see for instance [49]

)
.

1.2.c GGC variables and Wiener-Gamma representations.
The following Proposition is classical. The reader may refer to Lijoi and Regazz-
ini [36].

Proposition 1.1 The class of positive GGC variables coincides with the class
of Wiener-Gamma integrals. More precisely:
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1. If Γ̃(h) =
∫∞
0
h(u) dγu, then:

E(e−λΓ̃(h)) = exp
{
−
∫ ∞

0

log
(
1 +

λ

x

)
µh(dx)

}
(10)

where µh denotes the image of Lebesgue’s measure on R+ under the application:
s −→ 1

h(s) · In other terms:

∫ ∞

0

e
− x

h(s) ds =

∫ ∞

0

e−xzµh(dz) (x > 0) (11)

We note that, in (11), h may vanish on some measurable set.

2. Let Γ denote a GGC r.v. with Thorin measure µ. Let Fµ(x) :=
∫
]0,x]

µ(dy)

(x ≥ 0) and denote by F−1
µ its right continuous inverse, in the sense of the

composition of functions.
Then:

Γ
(law)
= Γ̃(h), with h(u) =

1

F−1
µ (u)

(12)

Proof of Proposition 1.1 Let Γ̃(h) :=
∫∞
0
h(u) dγu. It is easily obtained,

by approximation of Γ̃h by Riemann sums, using also the fact that the Lévy
measure of the process (γt, t ≥ 0) equals dx

x e−x, that:

E(e−λΓ̃(h)) = exp
{
−
∫ ∞

0

du

∫ ∞

0

(1 − e−λxh(u))
dx

x
e−x

}

= exp
{
−
∫ ∞

0

(1 − e−λy)
dy

y

∫ ∞

0

e−
y

h(u) du
}

(13)

after making the change of variable xh(u) = y. We observe, from (11) and (12),
the equivalence of the conditions:

∫ ∞

0

log
(
1 + h(u)

)
du <∞ ⇔

∫
log
(
1 +

1

x

)
µh(dx) <∞

⇔
∫

]0,1]

|logx|µh(dx) <∞ and

∫

[1,∞[

µh(dx)

x
<∞

Remark 1.2

1. Formula (13) may be obtained in a slightly different manner: the process
(γs − γs− := es, s ≥ 0) of jumps of the subordinator (γt, t ≥ 0) is a Poisson
point process whose intensity measure n equals the Lévy measure of (γt, t ≥ 0)(
see [2]

)
:

n(dx) =
1

x
e−xdx (14)

Thus, from the exponential formula for Poisson point processes
(
[43], p. 476

)
:

E
[
exp − λ

∑

0<s≤t

f(s, es)
]

= exp
{
−
∫ t

0

ds

∫ ∞

0

(1 − e−λf(s,u))n(du)
}
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one gets:

E[exp−λ
∫ ∞

0

h(s)dγs] = E(exp−λ Σ
s>0

h(s)(∆γs))

= exp

{
−
∫ ∞

0

ds

∫ ∞

0

(1 − e−λh(s)u)
e−u

u
du

}
,

which agrees with the expression in (13).

2. Let h, k : R+ −→ R+ two Borel functions which satisfy (6) and assume

that Γ̃(h)
(law)
= Γ̃(k). Relation (13) and the uniqueness of the Lévy measure in

the Lévy-Khintchine representation imply: the images by h and k of Lebesgue’s
measure on R+ are identical. Thus, choosing for k the increasing rearrangement
h∗, (resp.: the decreasing rearrangement h∗) of h, we obtain that there exists
essentially a unique increasing function h∗, (resp. a unique decreasing function
h∗) such that:

Γ̃(h)
(law)
= Γ̃(h∗) = Γ̃(h∗) (15)

We recall that the function h∗ (resp. the function h∗) is the unique (equivalence
class of) increasing (resp. decreasing) function such that for every a ≥ 0:

meas
(
x ; h(x) < a

)
= meas

(
x, h∗(x) < a

)
= meas

(
x ; h∗(x) < a

)

where meas indicates Lebesgue’s measure on R+.

From Proposition 1.1, Γ̃(h) is a GGC r.v. and we shall denote by µh the

Thorin measure associated with Γ̃(h).

1.3. m-Wiener-Gamma integrals, (m, G) GGC r.v.

In this work, we shall often consider a GGC r.v. whose associated Thorin mea-
sure has finite total mass. Thus, we shall now particularize Proposition 1.1 in
this case.

1.3.a Let m > 0 and h : [0, m] → R+ a Borel function such that:

∫ m

0

log
(
1 + h(u)

)
du <∞ (16)

We call m-Wiener integral of h the r.v.:

Γ̃m(h) :=

∫ m

0

h(u)dγu (17)

Since (γu, 0 ≤ u ≤ m) and (γm − γ(m−u)−, 0 ≤ u ≤ m) have the same law, we
deduce from (17), after making the change of variable m− u = v:

Γ̃m(h)
(law)
=

∫ m

0

h(u)dγu
(law)
=

∫ m

0

h(m− u)dγu (18)
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We note, in relation with (15) above, that if h is increasing, resp. decreasing,
then u→ h(m− u) is decreasing, resp. increasing.

1.3.b Let m > 0 and G be a positive r.v. such that:

E
(
log+(1/G)

)
<∞ (19)

We say that a positive r.v. Γ is a (m,G) GGC if:

E(e−λΓ) = exp
{
−m

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG)

}
(20)

Of course, from (7), a (m,G) GGC r.v. is a GGC r.v. whose Thorin measure µ
equals:

µ(dx) = mPG(dx) (21)

where PG denotes the law of G and we have:

µ
(
]0,∞[

)
= m (22)

Under (21), it is clear that:

∫

]0,1]

|logx|µ(dx) <∞ and

∫

[1,∞[

µ(dx)

x
<∞

⇔ E
(
log+(1/G)

)
<∞ (23)

We denote by Γm(G) the (law of the) r.v. Γ defined by (20). Hence:

E[e−λΓm(G)] = exp
{
−m

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG)

}
(24)

= exp
{
−mE

(
log
(
1 +

λ

G

))}
(25)

1.3.c G or 1/G ? How to choose ?
We have used the notation Γm(G) due to the relation (24). Of course, the relation
(25) invites, on the contrary, to adopt the notation Γm(1/G). However, we shall
not adopt this latter notation as the notation Γm(G) is used by L. Bondesson [5]
who has contributed in an essential manner to the study of the GGC variables.

1.3.d Proposition 1.1, when the Thorin measure has a finite total mass m,
admits the following translation.

Proposition 1.3 A r.v. is a (m,G) GGC if and only if it is a m-Wiener integral.
More precisely:

1) If Γm(G)
(law)
= Γ̃m(h), then

h(u) =
1

F−1
G (u/m)

(
u ∈ [0, m]

)
(26)
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where F−1
G denotes the right continuous inverse, in the sense of composition of

functions, of FG, the cumulative distribution function of G.

2) If Γm(h)
(law)
= Γm(G), then

G
(law)
=

1

h(Um)
(27)

where Um denotes a uniform r.v. on [0, m].

1.3.e Some classical results
We gather here some results which are due to L. Bondesson [5] and which we
shall use in the sequel. Let m > 0 and G satisfy (19). Then, denoting fΓm(G)

the density of Γm(G):

• fΓm(G)(x) =
xm−1

Γ(m)
g(x) (x > 0) (28)

where g is a completely monotone function ([5], p. 49). Moreover ([5], p. 50) g
admits a limit on the right of 0 and:

g(0+) = exp
{
mE (logG)

}
(29)

We note that, since by hypothesis E
(
log+(1/G)

)
< ∞, g(0+) is finite if and

only if E
(
log+(G)

)
< ∞. In Section 2 of this work (see Theorem 2.1) we give

an explicit form of g when E
(
|logG|

)
<∞.

• m may be determined from the knowledge of fΓm(G):

m = sup
{
α ≥ 0 ; lim

x↓0+

fΓm(G) (x)

xα−1
= 0
}

(30)

(see [5], p. 51).

1.4. m-Wiener Gamma integrals, m Dirichlet means, Gamma (m)
mixtures

1.4.a The preceding discussion leads us to introduce, for every m > 0, the

Dirichlet process with parameter m, denoted: (D
(m)
u , 0 ≤ u ≤ m) and defined

as:
(D(m)

u , 0 ≤ u ≤ m) =
( γu

γm
, 0 ≤ u ≤m

)
(31)

It is well known, and it is an easy consequence of the properties of the “beta-

gamma algebra” that this process (D
(m)
u , 0 ≤ u ≤ m) is independent from the

r.v. γm, hence from (γv , v ≥ m). Indeed, if γa and γb are two independent
gamma variables with parameter a, resp. b, the basic “beta-gamma algebra”
states that: (

γa

γa + γb
, γa + γb

)
(law)
=
(
βa,b, γa+b

)
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where βa,b and γa+b are independent and are respectively beta (a, b) and gamma
(a + b) distributed. In particular, γa

γa+γb
is independent from γa + γb. Thus, for

every u ≤ m:
γu

γm
=

γu

γu + (γm − γu)

is independent from γu + (γm − γu) = γm

This allows to write, for h which satisfies (16):

∫ m

0

h(u) dγu
(law)
= γm ·

∫ m

0

h(u) du (D(m)
u ) (32)

Thus, from Proposition 1.3, we may write for G which satisfies (19):

Γm(G)
(law)
= γm ·Dm(G) (33)

with

Dm(G) :=

∫ m

0

1

F−1
G (u/m)

du(D(m)
u ) (34)

It follows that for every (m,G) GGC r.v., the r.v. Γm(G) is a Gamma (m)
mixture, i.e. it may be written as:

Γm(G)
(law)
= γm · Z (35)

where Z is a positive r.v.
In general, a relationship of the kind:

X · Z (law)
= X · Z′

(with X and Z independent, and X and Z′ independent) does not allow, “via

simplification” to conclude that Z
(law)
= Z′. However, when X is a gamma vari-

able, this “simplification” is licit. More precisely:

1.4.b The relation (35) determines the law of Z. Indeed, let Z and Z′ two
positive r.v.’s such that:

γm · Z (law)
= γm Z′

Then, for every s ∈ R:

E[γis
m]E[Zis] = E[γis

m]E[Z′is]

Hence:

E(Zis) = E(Z′is) and Z
(law)
= Z′

1.4.c Remark 1.4
(We shall not use the present Remark in the sequel of this paper). We come

back to the notation of point 1 of Remark 1.2 and we denote: (J
(m)
1 ≥ J

(m)
2 ≥
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· · · ) the sequel of the lengths of jumps of the process (γu, u ≤ m) ranked in
decreasing order. It is not difficult to see that since the intensity measure of

the Poisson point process
(
(s, es), s ≥ 0

)
is ds e−x

x dx, then the jump times

(U
(m)
1 , U

(m)
2 , · · ·) constitute a sequence of i.i.d r.v.’s with uniform law on [0, m]

which is independent from the sequence (J
(m)
k , k ≥ 1). Thus:

∫ m

0

h(u)dγu
(law)
=

∫ m

0

1

F−1
G (u/m)

dγu

(
from (26)

)

=
∑

k≥1

1

F−1
G

(U
(m)

k

m

) J
(m)
k =

∑

k≥1

J
(m)
k

1

Gk
(36)

where
(

1
Gk
, k ≥ 1

)
is the sequence of i.i.d r.v.’s with common law 1/G and is

independent (as a sequence) from the r.v.’s (J
(m)
k , k ≥ 1). Indeed:

P

[
1

F−1
G

(U
(m)

k

m

) ≤ x

]
= P

[
F−1

G

(
U

(m)
k

m

)
≥ 1

x

]

= P

[
U

(m)
k

m
≥ FG

( 1

x

)]
= 1 − FG

( 1

x

)

= P
( 1

G
≤ x

)

since
U

(m)

k

m is uniform on [0, 1]. We deduce from (36) that:

∫ m

0

h(u)du(D(m)
u ) =

1

γm
·
∫ m

0

h(u) dγu =
∑

k≥1

J
(m)
k

γm
· 1

Gk
(37)

We note that:
∑

k≥1
J

(m)

k

γm
= 1.

We then define the random Dirichlet measure P
(1/G)
0,m (dx) by the formula:

P
(1/G)
0,m (dx) :=

∑

k≥1

J
(m)
k

γm
δ1/Gk

(dx)

and we obtain, from (34) and (37):

Dm(G)
(law)
=

∫ ∞

0

xP
(1/G)
0,m (dx) (38)

This relation (38) justifies the denomination, for Dm(G), of a Dirichlet means.
The study of the Dirichlet means can be traced back to an early work of

Cifarelli and Regazzini [10] which culminates into the more recognized [11].
Additional early works on this topic include [14; 21; 26; 56].
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See also Bertoin [3] for an example of (34) where he shows that a Cauchy
random variable, C1, my be represented as

C1
(law)
= − 1

γ1

∫ 1

0

cot(πs)dγs
(law)
=

∫ 1

0

M ′
sds.

Where, (M ′
s, s ∈ [0, 1[) is the right derivative of the convex minorant of a Cauchy

process.

1.4.d Multiplication by a beta variable.
In this section we discuss what happens when Dm(G) is multiplied by certain
independent beta random variables. This idea, and restatements of the results
(1.4.d i-iii) below, first appear in James

(
see [28], Theorem 3.1, revised in [29]

)
.

1.4.d i) We denote by D(m) the set of the laws of r.v.’s of the form

∫ m

0

h(u)du(D(m)
u ) := Dm(h), with

∫ m

0

log
(
1 + h(u)

)
du <∞, h ≥ 0.

If Dm(h) ∈ D(m) and if βm,m′−m, with m′ > m, is a beta r.v. with parameters
(m,m′ −m) then:

βm,m′−m ·Dm(h) ∈ D(m′) (39)

Indeed, γm

γm′
is independent from γm′ and follows a beta law, with parameters

(m,m′ −m). Hence:

βm,m′−m ·Dm(h)
(law)
=

γm

γm′

·
∫ m

0

h(u) du(D(m)
u )

(law)
=

γm

γm′

∫ m

0

h(u)
dγu

γm

(law)
=

1

γm′

∫ m′

0

h(u)1[0,m](u)du(D(m′)
u ) ∈ D(m′)

1.4.d ii) In the same spirit as for the preceding point, we note that, if G is
a positive r.v. such that E(log+G) <∞ and if m′ > m, then:

Γm

( 1

G

)
(law)
= Γm′

( 1

G · Yp

)
(40)

where, on the RHS of (40), G and Yp are independent and Yp is a Bernoulli r.v.
with parameter p = m

m′ :

P (Yp = 1) = p = 1 − P (Yp = 0) (41)
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Indeed, we deduce from (24):

E(e−λΓm(1/G)) = exp

{
−m

∫ ∞

0

(1 − e−λx)
dx

x
E(e−x/G)

}

= exp

{
−m′

∫ ∞

0

(1 − e−λx)
dx

x

m

m′ E(e−x/G)

}

= exp

{
−m′

∫ ∞

0

(1 − e−λx)
dx

x
E(e

−( x
GYp

)
)

}

= E(e
−λΓm( 1

GYp
)
)

1.4.d iii) We now write the relation (40) in a slightly different manner with
the introduction of the r.v.’s Dm(1/G) and Dm

(
1

GYp

)
. We have, from (40) and

(35) for m′ > m:

Γm(1/G)
(law)
= γmDm(1/G)

(law)
= Γm′

( 1

GYp

)
(law)
= γm′ ·Dm′

( 1

GYp

)

Hence:
γm

γm′

γm′Dm(1/G)
(law)
= γm′Dm′

( 1

GYp

)

so that, from point 1.4.b:

γm

γm′

·Dm(1/G)
(law)
= Dm′ (

1

GYp

)
i.e. :

βm,m′−m ·Dm(1/G)
(law)
= Dm′

( 1

GYp

) (
p =

m

m′

)
(42)

In particular, for m < 1 and m′ = 1:

βm,1−m ·Dm(1/G)
(law)
= D1

( 1

GYm

)
(43)

1.4.d iv) Some elements of D(m).
Let T denote a positive r.v. which belongs to the Bondesson class B (see [5], p.
73, Th. 5.2.2) i.e. whose density fT writes:

fT (x) = C xβ−1 h1(x)h2(1/x) (β ∈ R, x > 0)

with

hj(x) = exp
{
− bj x+

∫ ∞

0

log
(1 + y

x+ y

)
νj(dy)

}
j = 1, 2

and ∫ ∞

0

νj(dy)

1 + y
<∞

Then, from Bondesson ([5], Th. 5.2.2, p. 79), we know that:

Γm := γm · T (44)
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is GGC (for every m > 0) with some, possibly unknown, associated Thorin
measure we denote as µm. Assuming furthermore that E

(
T−m

)
< ∞, we get,

from (30):

µm

(
]0,∞[

)
= sup

{
α ≥ 0 ; lim

xց0+

fΓm(x)

xα−1
= 0
}

(45)

But, an elementary computation, starting from (44), shows that:

fΓm(x) =
1

Γ(m)
xm−1E

(
e−

x
T

1

Tm

)
(46)

Thus, we have:
µm

(
]0,∞[

)
= m

Hence, there exists, from Proposition 1.3, a positive r.v. Gm such that
E
(
log+

(
1

Gm

))
<∞ and also such that, from (33):

Γm
(law)
= γm · T = Γm(Gm) = γm ·Dm(Gm) (47)

Thus, from point 1.4.b

T
(law)
= Dm(Gm) ∈ D(m) (48)

We now summarize what we have just obtained:

Proposition 1.5
Let T denote a positive r.v. which belongs to B, such that:

E
(
T−m

)
<∞

Then:

1) T ∈ D(m)

2) For every m′ > m, βm,m′−m · T ∈ D(m′)
(
from (43)

)

In particular, Proposition 1.5 may be applied in the following cases:

• If T is a generalized inverse Gaussian r.v., i.e. its density is given by:

fT (x) = C xβ−1 exp
{
− 1

2

(
c1x+

c2
x

)}
· 1[0,∞[(x)

(β ∈ R, c1, c2 > 0) then, for every m > 0, T ∈ D(m)
(
although T is a

GGC variable with Thorin measure of infinite total mass (see [5], p. 59
)
.

• If T is a Gamma r.v. γθ with parameter θ then for every m > 0, γθ ∈ D(m).
Indeed γθ ∈ B and for every m < θ: E

(
1

γm
θ

)
< ∞. On the other hand,

assuming still m < θ, we have:

βm,θ−m · γθ
(law)
= γm ∈ D(θ) from (40)
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• If T is a positive stable r.v. with index α:

E(e−λT ) = exp{−C λα}
(
λ, C > 0, α ∈]0, 1[

)

then, for α ≤ 1
2
, T ∈ B (see [5], p. 85–88) and hence T ∈ D(m) for every

m > 0 since E
(

1
T m

)
<∞.

Remark 1.5 Epifani, Guglielmi and Melilli ([16], section 4; see also [17]), posed
the natural question of which kind of probability measures are the laws of Dirich-
let means. They were able to find some examples in cases where those particular
random variables possessed all finite moments. One sees that Proposition 1.5,
in a rather simple way, identifies a large number of possible distributions.

1.4.e Another representation of Γm(G).
We have been interested mainly until now in the distributions of the (m,G)
GGC r.v.’s. We shall now describe a realization of such a r.v. with the help of
a compound Poisson process. Besides, this realization allows us to show that a
(m,G) GGC solves an “affine equation”. For a nice survey of these equations,
see Vervaat [51].

Let m > 0 and let K be a positive r.v. We shall say that (Yt, t ≥ 0) is a
(m,K) R+ valued compound Poisson process if:

Yt :=

Nt∑

i=1

Ki

where (K1, K2, · · · ) is a sequence of i.i.d. variables, distributed as K, and with
(Nt, t ≥ 0) a Poisson process with parameter m, independent of the sequence
(Ki, i = 1, 2 · · ·). In particular, Nt is a Poisson r.v. with parameter mt.

Proposition 1.6.

Let Γm(G) a (m,G) GGC r.v.
(
with E

(
log+

(
1
G

))
<∞ and m > 0

)
. Define K

by:

K
(law)
=

e

G
(e, a standard exponential r.v. independent of G)

Then

1) Γm(G)
(law)
=

∫ ∞

0

e−tdYt

where (Yt, t ≥ 0) is a (m,K) compound Poisson process.

2) Γm(G) satisfies the affine equation:

Γm(G)
(law)
= U1/m

[
Γm(G) +K

]

(
with U uniformly distributed on [0, 1]

)
.
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Proof of Proposition 1.6.
i) We first prove point 1. We consider (Yt, t ≥ 0) a (m,K) compound Poisson

process. Then, approximating
∫∞
0
e−tdYt by the Riemann sums

∑
(Yti+1 − Yti)e

−ti ,

we obtain:

E

(
exp
{
− λ

∫ ∞

0

e−tdYt

})
= exp

{
−
∫ ∞

0

(1 − e−λv)µ
(
[v,∞]

)dv
v

}

where µ is the Lévy measure of the subordinator (Yt, t ≥ 0). Since this subor-
dinator is a (m,K) compound Poisson process, we have:

µ
(
[v,∞[

)
= mP (K ≥ v) = mP

(
e

G
≥ v
)

= mP (e ≥ v G) = mE(e−vG).

Hence:

E

(
exp
{
− λ

∫ ∞

0

e−tdYt

})
= exp

{
−m

∫ ∞

0

(1 − e−λv)
dv

v
E(e−vG)

}

= E(e−λΓm(G))

ii) We now prove point 2. We have:

∫ ∞

0

e−tdYt =

∫ T1

0

e−tdYt +

∫ ∞

T1

e−tdYt

(where T1 is the first jump time of (Nt, t ≥ 0))

= e−T1K1 + e−T1

∫ ∞

0

e−td(YT1+t)

and we observe that:

e−T1
(law)
= U1/m,

∫ ∞

0

e−td(YT1+t)
(law)
=

∫ ∞

0

e−tdYt,

and
∫∞
0
e−td(YT1+t) is independent of T1.

1.5. The subordinators
(
Γt(G), t ≥ 0

)

Until now, we have been interested uniquely in the “individual” GGC variables.
However, to each GGC r.v. Γ we may, since Γ is infinitely divisible and posi-

tive, associate a unique subordinator (Γt, t ≥ 0) such that Γ1
(law)
= Γ. It is this

subordinator which we shall now define and describe.
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1.5.a Let Γ denote a GGC r.v. From Lévy-Khintchine formula, there exists
a (unique) subordinator (Γt, t ≥ 0) such that:

Γ1
(law)
= Γ (49)

hence we have:

E(e−λΓt) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x

∫ ∞

0

e−xzµ (dx)
}

(50)

where µ denotes the Thorin measure associated with Γ.

1.5.b Let G denote a positive r.v. which satisfies (19). Then, there exists a
subordinator

(
Γt(G), t ≥ 0

)
which is characterized by:

E(e−λΓt(G)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG)

}
(51)

= exp
{
− t E

(
log
(
1 +

λ

G

))}
(52)

In particular, for every t > 0, Γt(G) is a (t, G) GGC r.v. Thus, there exists,
following (33), a family of r.v.’s Dt(G), t ≥ 0, whose laws are characterized by:

Γt(G) = γt ·Dt(G) (53)

and, for every t > 0, from (34) and Proposition 1.3:

Γt(G)
(law)
=

∫ t

0

1

F−1
G

(
u
t

) dγu
(law)
=

∫ t

0

1

F−1
G (1 − u

t )
dγu (54)

Dt(G)
(law)
=

∫ t

0

1

F−1
G

(
u
t

) du(D(t)
u )

(law)
=

∫ t

0

1

F−1
G

(
u
t

) du(D(t)
u ) (55)

We note that the relations (54) and (55) are only true for fixed t, for any t > 0,
but do not hold as equalities in law between processes. On the other hand, since:
E(e−λγt ) = 1

(1+λ)t , we deduce from (53) that:

E(e−λΓt(G)) = E

(
1

(
1 + λDt(G)

)t

)
(56)

1.5.c Some elementary properties of
(
Γt(G), t ≥ 0) and

(
Dt(G), t ≥ 0

)

Let G denote a positive r.v. which satisfies (19).

Proposition 1.7
1) The family of laws of the r.v.’s Dt(G), t ≥ 0 solves the equation: for every
t, s ≥ 0:

γt+s ·Xt+s
(law)
= γt ·Xt + γsXs (57)
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2) The family of laws of the r.v.’s
(
Dt(G), t ≥ 0

)
solves the equation: for every

s, t ≥ 0:

Xt+s(G)
(law)
= βt,sXt + (1 − βt,s)Xs (58)

3) We assume furthermore that E
(

1
G

)
<∞

(
which implies E

(
log+

(
1
G

)
<∞

)
.

Then:

3 i) for every t > 0, E
(
Γt(G)

)
= t E(1/G) and E

(
Dt(G)

)
= E(1/G) (59)

3 ii)
1

t
Γt(G)

a.s.−→
t→0

E(1/G) and Dt(G)
L1

−→
t→∞

E(1/G) (60)

3 iii)
[
Γt(G)

]t (law)−→
t→0

U and
[
Dt(G)

]t (law)−→
t→0

1 (61)

where U is uniform on [0, 1].

Point 2 of this Proposition 1.7 is due to Hjort and Ongaro
(
see [27]), which can

be seen as a consequence of Ethier and Griffiths [19, Lemma 1].
We note the following remarkable feature of points 1 and 2 of Proposition

1.7: the affine equations (where the unknowns are the laws of the (Xt, t ≥ 0):

γt+s ·Xt+s
(law)
= γt ·Xt + γs ·Xs (sit ≥ 0)

and Xt+s
(law)
= βt,sXt + (1 − βt+s)Xs (sit ≥ 0)

both admit infinitely many solutions: Xu = Du(G), u ≥ 0 for every r.v. G
which satisfy (1.19).

Proof of Proposition 1.7
Point 1:

γt+s ·Dt+s(G)
(law)
= γt Dt(G) + γs Ds(G) (62)

follows from:

Γt+s(G)
(law)
= Γt(G) + Γs(G)

since
(
Γt(G), t ≥ 0

)
is a subordinator and since, from the definition of Da(G):

Γa(G)
(law)
= γa ·Da(G).

We now show (58). From the beta-gamma algebra, we have:

(γt, γs)
(law)
=
(
βt,s γt+s, (1 − βt,s)γt+s

)
(63)

hence, plugging (63) in (62), we obtain:

γt+s ·Dt+s(G)
(law)
= βt,s γt+s Dt(G) + (1 − βt,s)γt+sDs(G)
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which, using point 1.4.b, implies relation (58). We now prove 3 i). We have:

E
[
Γt(G)

]
= − ∂

∂λ
E(e−λΓt)

∣∣
λ=0

= − ∂

∂λ
exp
{
− t E

(
log
(
1 +

λ

G

))}∣∣
λ=0

= t E(1/G)

and we deduce from (53), that:

E
[
Γt(G)

]
= E

[
γt ·Dt(G)

]
= t E

(
Dt(G)

)
= t E(1/G)

We now prove 3 ii). The a.s. convergence (hence, the convergence in law) of
1
t Γt(G) as t → ∞ towards E(1/G) follows from the law of large numbers.

We prove that Dt(G)
L1

−→
t→∞

E(1/G). Indeed, we may write:

Γt(G)

t

(law)
= Dt(G)

(γt

t
− 1
)

+Dt(G) (64)

and we shall prove that:

Dt(G)
∣∣∣
γt

t
− 1
∣∣∣ L1

−→
t→∞

0

which implies that Dt(G)
P−→

t→∞
E(1/G). Since E

(
Dt(G)

)
= E

(
1
G

)
, this implies

that the family of laws of
{
Dt(G), t > 0

}
is tight, hence convergence in proba-

bility implies convergence in L1. It remains to prove: E
(
Dt(G)

∣∣γt

t − 1
∣∣) −→

t→∞
0.

But we have:

E
(
Dt(G)

∣∣∣
γt

t
− 1
∣∣∣
)

= E

(
1

G

)
E
(∣∣∣
γt

t
− 1
∣∣∣
)

≤ E

(
1

G

)(
E

((γt

t

)2

− 1

)) 1
2

= E

(
1

G

) √
t+ 1

t
−→
t→∞

0

Hence the result.

We now prove point 3 iii).

If we knew that
(
Dt(G)

)t (law)−→
t→0

1, then, combining this result with the classical

one: (γt)
t (law)−→

t→0
U , we would deduce:

(
Γt(G)

)t (law)
= (γt)

t ·
(
Dt(G)

)t (law)−→
t→0

U

In fact, we shall proceed in the other direction. We shall show further (see point

7 of Remark 2.2) that
(
Γt(G)

) (law)−→
t→0

U . The relation
(
Γt(G)

)t
= (γt)

t
(
Dt(G)

)t

and:

(γt)
t (law)−→

t→0
U,
(
Γt(G)

)t (law)−→
t→0

U then imply easily that:

(
Dt(G)

)t (law)−→
t→0

1.
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Remark 1.7 Lijoi and Reggazini [36] have shown that the support of the law
of Dt(G) is the closure of the convex hull of the support of the law of 1/G. In
particular:

• If G ≤ a a.s., then Dt(G) ≥ 1

a
a.s. (65)

• If G ≥ a a.s., then Dt(G) ≤ 1

a
a.s. (66)

In Section 3 of this survey, we shall verify this assertion on inspection of numer-
ous examples.

1.6. Some examples of GGC subordinators

Let Γ denote a GGC variable with associated Thorin measure µ, and let (Γt, t ≥
0) denote the subordinator such that Γ1

(law)
= Γ. We have:

E(e−λΓt) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x

∫ ∞

0

e−xzµ(dz)
}

(67)

Such a subordinator is called a GGC subordinator.
Here are now some examples of such subordinators. They are lifted from a

paper by H. Matsumoto, L. Nguyen and M. Yor [38] on one hand, and from the
study of hyperbolic subordinators made in Pitman and Yor [41] on the other
hand. The reader may refer to these papers for further information. In the study
of these examples, we shall denote subordinators with curly letters, especially
to avoid some possible confusion with the modified Bessel functions, which are
traditionally written with ordinary capital letters.

1.6.a The hyperbolic subordinators
(
see [41] for a probabilistic description

of these subordinators.
)

i) The subordinator (Ct, t ≥ 0) is characterized by:

E(e−λCt) = exp
{
− t log cosh

√
2λ
}

=
( 1

cosh
√

2λ

)t

(λ, t ≥ 0) (68)

Its Lévy density lC equals:

lC(x) =
1

x

∞∑

n=1

exp
(
− π2

8
(2n− 1)2x

)
(x ≥ 0) (69)

Hence, its associated Thorin measure, (i.e.: the Thorin measure of C1)
equals:

µC(dx) =
∞∑

n=1

δπ2

8 (2n−1)2
(dx) (70)

It has infinite total mass.
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ii) The subordinator (St, t ≥ 0) is characterized by:

E(e−λSt) =
( √

2λ

sinh
√

2λ

)t

(λ, t ≥ 0) (71)

Its Lévy density equals:

lS(x) =
1

x

∞∑

n=1

exp
(
− π2

2
n2x

)
(x ≥ 0) (72)

Hence, its Thorin measure equals:

µS(dx) =

∞∑

n=1

δπ2n2

2

(dx) (x ≥ 0) (73)

It has infinite total mass.
We note that the subordinator (Tt, t ≥ 0) which is characterized by:

E(e−λTt) =
( 1

cosh
√

2λ

)t

·
( sinh

√
2λ√

2λ

)t

=
( tanh

√
2λ√

2λ

)t

(74)

satisfies:

(Ct, t ≥ 0)
(law)
= (St + Tt, t ≥ 0) (75)

and that its Lévy density equals:

lT (x) = lC(x) − lS(x)

However, this subordinator (Tt t ≥ 0) is not GGC, as its would be ‘Thorin
measure’ µT is a signed measure:

µT = µC − µS .

1.6.b The subordinators (J (0)
t , t ≥ 0) and (K(0)

t , t ≥ 0)
We denote by Iν and Kν the modified Bessel functions with index ν

(
see [34],

p. 108
)
.

i) The subordinator (J (0)
t , t ≥ 0) is characterized by:

E(e−λJ (0)
t ) =

(
1+λ+

√
(1 + λ)2 − 1

)−t
= exp

{
−t
∫ ∞

0

(1−e−λx)
dx

x
I0(x)e

−x
}

(76)
Its Lévy density lJ (0) equals:

lJ (0)(x) = I0(x)
e−x

x
(x ≥ 0) (77)

and its Thorin measure µJ (0) , with total mass equal to 1, equals:

µJ (0)(dx) =
1

π

dx√
x(2− x)

1[0,2] (x) (78)
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This formula was obtained by Bondesson ([7], Ex. 5.2). In Section 3, Theorem

3.1, we shall meet again this subordinator (J (0)
t , t ≥ 0).

ii) The subordinator (K(0)
t , t ≥ 0) is characterized by:

E(e−λK(0)
t ) = exp

{
− t

2

(
arg cosh (1 + λ)

)2}

= exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
K0(x)e

−x
}

(79)

Hence, its Lévy density equals:

lK(0)(x) = K0(x)
e−x

x
x ≥ 0 (80)

and its Thorin measure µK(0) equals:

µK(0)(dx) =
dx√

x(x− 2)
1[2,∞[(x)dx (81)

We note that this latter formula follows from:

e−xK0(x) = e−x

∫ ∞

1

e−x(cosh t)dt
(
see [34], p. 119

)

= e−x

∫ ∞

1

e−xu du√
u2 − 1

=

∫ ∞

2

e−xv dv√
v(v − 2)

iii) The subordinators (K(0)
t , t ≥ 0) and (J (0)

t , t ≥ 0) are connected via the
subordination relation:

(J (0)
t , t ≥ 0)

(law)
= (K(0)

S1/2(t)
, t ≥ 0) (82)

where, on the RHS from (82), the processes (K(0)
u , u ≥ 0) and (S1/2(t), t ≥ 0)

are independent, and where (S1/2(t), t ≥ 0) is the stable subordinator with
index 1/2 characterized by:

E(e−λS1/2(t)) = exp
(
− t

√
2λ
)

(83)

iv) The v.a. K(0)
t , for t fixed, may be realized in the following manner:

let
(
bu(s) ; 0 ≤ s ≤ u

)
the brownian bridge with length u

(
with bu(0) = bu(u) =

0
)

and let:

A(bu) :=

∫ u

0

exp
(
2bu(s)

)
ds

Then:

K(0)
t

(law)
=
[
A(b1/t)

]−1 (law)
= t

(∫ 1

0

exp
(2b(s)√

t

)
ds
)−1

(84)

where, in (84),
(
b(s), 0 ≤ s ≤ 1

)
denotes the standard brownian bridge b1.
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v) In relation with the preceding, D. Dufresne and M. Yor [15], in a work in

preparation [15], establish the following formula: let
(
b
(x)
u (s), 0 ≤ s ≤ u

)
denote

the brownian bridge with length u, starting from 0 and such that b
(x)
u (u) = x.

Let:

A
[
b(x)
u

]
:=

∫ u

0

exp
(
2b(x)

u (s)
)
ds (85)

Then, D. Dufresne and M. Yor obtain the representation as a Wiener-Gamma
integral of the r.v. 1

A[b
(x)
u ]

:

1

A[b
(x)
u ]

(law)
=

∫ ∞

0

2

e2x + 2ex cosh (su) + 1
dγs (86)

and in particular:
1

A[bu]

(law)
=

∫ ∞

0

dγs

1 + cosh (su)
(87)

1.6.c The subordinators (J (ν)
t , t ≥ 0) and (K(ν)

t , t ≥ 0)
They are obtained by replacing in (76), resp. (79), I0 by Iν, resp. K0 by Kν .

i) The subordinator (J (ν)
t , t ≥ 0), which is defined for ν > −1, is characterized

by:

E(e−λJ (ν)
t ) = exp

{
− t

∫ ∞

0

(1 − e−λx)
dx

x
e−xIν(x)

}
(88)

Thus, its Lévy density lI(ν) equals:

lJ (ν)(x) =
e−x

x
Iν(x) x ≥ 0 (89)

Its Thorin measure, in the case −1/2 < ν < 0, is obtained by the following
calculus:

Iν(z) =

(
z
2

)ν
√
πΓ(ν + 1/2)

·
∫ 1

0

(1 − t2)ν−1/2(ezt + e−zt)dt (Reν > −1/2)

(
see [34], p. 119, form.5.10.22

)

and:

e−zIν(z) = Cν z
ν

∫ 1

0

(1 − t2)ν−1/2(e−z(1−t) + e−z(1+t))dt

But, for ν < 0:

zνe−za =
1

Γ(−ν)

∫ ∞

0

s−ν−1e−z(a+s)ds
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Hence:

e−zIν(z) = C ′
ν

∫ 1

0

(1 − t2)ν−1/2dt

∫ ∞

0

s−ν−1(e−z(1−t+s) + e−z(1+t+s))ds

= C ′
ν

∫ 1

0

(1 − t2)ν−1/2dt
[ ∫ ∞

1−t

e−zh(h− 1 + t)−ν−1dh

+

∫ ∞

1+t

e−zh(h− 1 − t)−ν−1dh
]

= C ′
ν

∫ 1

0

e−zhdh

∫ 1

0

dt(1 − t2)ν−1/2
[
(h− 1 + t)−ν−11h>1−t

+ (h− 1− t)−ν−11h>1+t

]

Hence, in the case −1/2 < ν < 0, the Thorin measure of (J (ν)
t , t ≥ 0) admits

a density equal to:

µJ (ν)(dx)/dx =
[
C ′

ν

∫ 1

0

(1 − t2)ν−1/2
{(
x− (1 − t)

)−ν−1
1x>1−t

+
(
x− (1 + t)

)−ν−1
1x>1+t

}
dt
]

Hence, if −1/2 < ν < 0, (J ν
t , t ≥ 0) is a GGC subordinator.

ii) The subordinator (K(ν)
t , t ≥ 0), defined for ν < 1, is characterized by:

E(e−λK(ν)
t ) = exp

{
− t

∫ ∞

0

(1 − e−λx)
dx

x
e−xKν(x)

}
(90)

Its Lévy density lK(ν) equals:

lK(ν) (x) =
e−x

x
Kν(x) (x ≥ 0) (91)

Its Thorin measure µK(ν) , obtained by using the formula
(
[34], p. 119

)

Kν(z) =

∫ ∞

0

e−z cosh u(cosh νu)du

equals:

µK(ν)(dx) = cosh
[
ν arg cosh(x− 1)

] dx√
x(x− 2)

1[2,∞[(x) (92)

The formula in (92) simplifies using,

cosh
[
ν arg cosh(x−1)

]
=

1

2

{(
(x− 1) +

√
(x− 2)x

)ν
+
(
(x− 1) +

√
(x− 2)x

)−ν}
,

since:
arg cosh(y) = log

(
y +

√
y2 − 1

)
.
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1.7. The subordinator
(
Γt(Sβ), t ≥ 0

)
(0 < β < 1)

We give here a realization for the subordinator
(
Γt(Sβ), t ≥ 0

)
, where Sβ is a

positive β-stable r.v.
Let α > 0. We denote σt,n := {s1 = 0 < s2 · · · < sn = t} a subdivision

of the interval [0, t] with mesh δ(σt,n) := sup
i

(si+1 − si). The limit along the

decreasing filtering set of sequences σt,n whose meshes δ(σt,n) tend to zero, of∑
sk∈σt,n

(γsk+1 − γsk)α exists a.s. Observe that: E
(∑

sk∈σt,n
(γsk+1 − γsk )α

)
=

∑
sk∈σt,n

Γ(α+sk+1−sk)
Γ(sk+1−sk) −→

δ(σt,n)→0
tΓ(α). Let:

V (α)(t) := lim
δ(σt,n)→0

∑

sk∈σt,n

(γsk+1 − γsk)α =
∑

0<s≤t

(γs − γs−)α (93)

Let
Nt,x := #{s ≤ t ; γs − γs− > x1/α}

From Section 1.4, Nt,x is a Poisson r.v. with parameter t ·
∫∞

x1/α
e−u

u du. But,
evidently:

Nt,x = #{s ≤ t ; (γs − γs−)α > x} (94)

We deduce from (94) that the Poisson point process

{
(γs − γs−)α, s ≥ 0

}
admits n(α)(dx) =

1

α

dx

x
e−x1/α

(x > 0)

as intensity measure. Hence
(
V (α)(t), t ≥ 0

)
is a subordinator whose Lévy

measure equals n(α)(dx):

E(e−λV (α)(t)) = exp
{
− t

α

∫ ∞

0

(1 − e−λx)
dx

x
e−x1/α

}

This subordinator, for every α > 0, is self-decomposable but it is GGC only in
the case α ≥ 1. In this case: α ≥ 1 we have:

E(e−λV (α)(t)) = exp
(
− t

α

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xS1/α )

}

where S1/α is a positive 1
α stable r.v. In other terms, with the notation of Section

1.5.b: (
Γt(Sβ), t ≥ 0

) (law)
=
(
V (α)(tα), t ≥ 0

) (
α =

1

β
≥ 1
)

(95)

1.8. Remark

We now end up this Introduction by indicating how the study of the GGC
subordinators may be embedded in a more general one.
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A subordinator (Nt, t ≥ 0) is said to belong to the Thorin class T (χ)(R+),
with χ > 0

(
see [Grig]

)
, if its Lévy measure admits a density lN of the form:

lN (x) = xχ−2k(x) x > 0 (96)

where k is a completely monotonic function, i.e. it may be represented as:

k(x) :=

∫ ∞

0

e−xy µ(dy) (97)

for a positive Radon measure µ carried by R∗
+. Thus, the subordinators which

we study in this work, i.e.: the GGC subordinators, belong to the class T (1)(R+).
The class T (2)(R+) has been studied by Goldie [24], Steutel [47] and Bondes-
son [6]. The r.v’s which belong to this class are the generalized convolutions of
mixtures of exponential laws. Note that T (χ)(R+) ⊂ T (χ′)(R+) if χ < χ′. We
also note that [BNMS] present extensions of these notions to Rd.

In the same manner as condition (9) is necessary and sufficient for a measure µ
to be the Thorin measure associated to a positive r.v., B. Grigelionis [25] obtains
a necessary and sufficient analytical condition so that a measure µ defines, via
(96) and (97), a subordinator (Nt, t ≥ 0) which belongs to the class T (χ)(R+).

1.9 We now detail the contents of the sequel of this paper:

• In Section 2, we present a duality result which connects on one hand the r.v.’s
Γt(G) and Dt(G) to the r.v.’s Γt(1/G) and Γt(G) on the other hand.

• In Section 3, we study in depth the examples of subordinators Γt(Gα) (0 ≤ α ≤
1) for which we know how to compute explicitly their Laplace transforms, i.e.:
their Lévy exponents, as well as their densities at any time, and their Wiener-
Gamma representations.

2. A duality principle

Throughout this section, G denotes a positive r.v. such that E
(
|logG|

)
< ∞.

Thus, we have:

E
(
log+(1/G)

)
<∞ and E

(
log+(G)

)
<∞ (98)

Consequently, the subordinators
(
Γt(G), t ≥ 0

)
and

(
Γt(1/G), t ≥ 0

)
are

well defined. We denote by ψG (resp. ψ1/G) the characteristic exponent (i.e.:

the Bernstein function or Lévy exponent) of the subordinator
(
Γt(G), t ≥ 0

)
,

resp.
(
Γt(1/G), t ≥ 0

)
.

ψG(λ) :=

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG) (99)

and the same formula for ψ1/G obtained when replacing G by 1/G. We denote

by FG the cumulative distribution function of G and by F−1
G its right continuous

inverse, in the sense of the composition of functions.
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2.1. The duality theorem

Theorem 2.1 (Duality)

1 ) F−1
1/G

(y) · F−1
G (1 − y) = 1 a.e.

(
y ∈ [0, 1]

)
(100)

2) For any λ ≥ 0:

ψ1/G(λ) − ψG(1/λ) = E(logG) + logλ (101)

3) i) fΓt(1/G) the density of the r.v. Γt(1/G), equals:

fΓt(1/G)(x) = e−t E(log G)E
{(Γt(G)

x

) 1−t
2

Jt−1

(
2
√
xΓt(G)

)}
(102)

where Jν denotes the Bessel function with index ν:

Jν(z)=

∞∑

k=0

(−1)k 1

Γ(k + 1)Γ(k + ν + 1)

(z
2

)ν+2k

, |z|<∞, |Arg z|<π

(103)(
see [34], p. 102

)

ii) fΓt(1/G)(x) =
xt−1

Γ(t)
e−t E(log G) E(e−xDt(G)) (x > 0) (104)

iii)E

(
1

(
Dt(G)

)t
)

= et E(log G) (105)

4 ) i) E

(
1

(
λ +Dt(G)

)t
)

= exp
{
− t
(
ψ1/G(λ) −E(logG)

}
(106)

ii) The densities fDt(G) and fDt(1/G) of, resp., Dt(G) and Dt(1/G) are
related by:

fDt(1/G)(x) = xt−2 e−t E(log G) fDt(G)(1/x) (x > 0) (107)

Remark 2.2.
1) The relation (101) is found, under a slightly different form, in Bondesson ([5],
p. 48, III “Curious composition”), under the only hypothesis E

(
log+(1/G)

)
<

∞. We have chosen to work under the stronger hypothesis E
(
|logG|

)
<∞ since

it seems that only under this hypothesis can we obtain the most interesting
results.

2) Of course, all formulae of Theorem 2.1 are “involutive”, in that G may be
replaced there by 1/G.

3) Formula (104) agrees with, and makes more precise, the result of Bondesson
which we recalled in (28) and (30). In particular:

fΓt(G)(x) ∼
x→0

xt−1

Γ(t)
et E(log G) (108)
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4) Formula (101) may be generalized as follows:
Let a, b, c, d ∈ R4, with ad− bc = ±1 and let, for x, λ ≥ 0:

σ(x) =
ax+ b

cx+ d
, σ̃(λ) =

dλ+ b

cλ+ a
(109)

so that σ(G) be a positive r.v. Then:

−ψG(σ̃(λ)) + ψσ(G)(λ) = log (cλ+ a) + k

with k := E
(
log
(

G+λ0

σ(G)+λ0
· σ(G)

G

))
− log (c λ0 + a) where λ0 is a fixed point of σ̃.

The relation (101) corresponds to a = d = 0, b = c = 1. We shall study, in the
Appendix, the case where a = d = sinhu, b = c = cosh u (u ≥ 0).

5) Cifarelli and Regazzini [11], Cifarelli and Melilli [9] have obtained the density
of Dt(G) for t ≥ 1 and James, Lijoi and Prünster [30] have obtained it for t ≤ 1.
For t ≤ 1, they obtained:

fDt(G)(x) =

∫ x

0

(x− u)t−1 d

du

(
θt(u)

)
du (110)

with

θt(u) :=
1

π
sin
(
t π F1/G(u)

)
exp
{
− t E

(
log
(
u− 1

G

)
1u 6= 1

G

)}
(111)

The proof of this formula (110) hinges upon the knowledge of the density of the
r.v. D1

(
1

G Yt

)
which is defined by:

(
see (41) and (42) with m = t and m′ = 1

)
.

βt,1−t ·Dt(1/G)
(law)
= D1

( 1

G · Yt

)
(t ≤ 1)

This density equals:

fD1

( 1

G · Yt

)
(x) =

sin
(
t π FG(1/x)

)

π
xt−1 exp

{
− t E

(
log
(
x− 1

G

)
· 1G 6= 1

x

)}

(112)
which is obtained by inverting its Stieltjes transform.

Other formulae for densities of Dirichlet means may be found in Regazzini,
Guglielmi and DiNunno [42].

6) Formula (105) is obtained from (104) by integrating between 0 and ∞:

1 =

∫ ∞

0

fΓt(1/G)(x)dx =

∫ ∞

0

1

Γ(t)
xt−1e−tE(log G)E(e−xDt(G))dx

=
e−tE(log G)

Γ(t)
E
[ 1
(
Dt(G)

)t
]

Γ(t), hence :

E
( 1
(
Dt(G)

)t
)

= etE(log G) (113)
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The interest of this formula (113) is the following: it allows, in a situation
where the law of G is not known but when one knows the laws of Dt(G) and

Dt(1/G) to show that E
(
|logG|

)
< ∞ as soon as E

((
Dt(G)

)−t)
< ∞ and

E
((
Dt(1/G)

)−t)
<∞.

Formula (104), once multiplied by xν, and integrated between 0 and ∞, leads
to:

E
[(

Γt(1/G)
)ν]

=
Γ(ν + t)

Γ(t)
e−tE(log G)E

( 1
(
Dt(G)

)ν+t

)
(114)

The formula is also true even when the expectations which appear in this ex-
pression are infinite.

7) The result:
(
Γt(G)

)t (law)−→
t→0

U (115)

with U uniform on [0, 1]
(
see point 3 iii) of Proposition 1.7

)
is a consequence of

(104). Indeed:

P
((

Γt(G)
)t ≤ e−a

)
= P

(
Γt(G) ≤ e−

a
t

)

=

∫ e− a
t

0

fΓt(G)(x)dx

=
etE(log G)

Γ(t)

∫ e− a
t

0

xt−1E(e−xDt(1/G))dx

(
from (104) applied when replacing G by 1/G

)
:

∼
t→0

1

Γ(t)

∫ e− a
t

0

xt−1dx =
e−a

Γ(t+ 1)
−→
t↓0

e−a

We note that, from (64), the family of the laws of Dt(1/G), t ≤ 1 is tight as
soon as E(G) <∞, since E

(
Dt

(
1
G

))
= E(G).

2.2. Proof of Theorem 2.1

2.2.a Point 1 is trivial. We show point 2:
Since, from Frullani’s formula:

ψG(λ) = E
(
log
(
1 +

λ

G

))
= E

(
log
( λ
G

(
1 +

G

λ

)))

= logλ− E(logG) + E
(
log
(
1 +

G

λ

)

we have, by changing λ in 1/λ:

−ψG(1/λ) + ψ1/G(λ) = −logλ +E(logG)
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2.2.b We now show point 3 of Theorem 2.1:
i) From formula (101), after multiplying by t and exponentiating, we obtain:

E(e−λΓt(1/G)) =
e−tE(log G)

λt
E(e−

1
λ Γt(G)) (116)

Then, taking the Laplace transform of both sides of (116) in the variable λ, we
obtain:
∫ ∞

0

E(e−λ(Γt(1/G))e−βλdλ = E
( 1

β + Γt(1/G)

)

= e−tE(log G)E
(∫ ∞

0

e−βλ− 1
λ Γt(G) dλ

λt

)

= 2e−tE(log G)E
{(Γt(G)

β

) 1−t
2

K1−t

(
2
√
βΓt(G)

)}

(117)

where Kν denotes the Bessel-McDonald function with index ν and where we
have used formula 5.10.25 in [34], p. 108 and 119.

We now use (117) to compute fΓt(1/G) by inverting its Stieltjes transform [53].

fΓt(1/G)(u) =
1

2iπ
lim
η↓0

{
E
( 1

−u − iη + Γt(1/G)
− 1

−u+ iη + Γt(1/G)

)}

=
e−tE(log G)

iπ
E
((Γt(G)

u

) 1−t
2
[
e

iπ(1−t)
2 K1−t

(
2
√
uΓt(G) e−

iπ
2

)

−e−
iπ(1−t)

2 K1−t

(
2
√
uΓt(G) e−

iπ
2

)])
(118)

However, it is well known that
(
see [34], p. 108 and 109

)
:

• Kν = K−ν

• π < Arg z < π
2
⇒ Kν(z) = iπ

2
e

iνπ
2 H

(1)
ν (z e

iπ
2 )

• π
2
< Arg z < π ⇒ Kν(z) = − iπ

2
e−

iνπ
2 H

(2)
ν (z e−

iπ
2 )

where the Hankel functions H
(1)
ν and H

(2)
ν satisfy

(
[34], p. 108

)

H(1)
ν +H(2)

ν = 2Jν

Plugging these relations into (118), we obtain:

fΓt(1/G)(u) = e−tE(log G)E
{(Γt(G)

u

)1−t
2

Jt−1

(
2
√
uΓt(G)

)}

ii) We now prove (104), which is a consequence of (102). Indeed, from (102)
and (103):

fΓt(1/G)(u) = e−tE(log G)E
{(Γt(G)

u

)1−t
2

∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + t)

(
uΓt(G)

)k+ t−1
2

}

= e−tE(log G)ut−1E
{ ∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + t)

(
uγtDt(G)

)k}
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from (53). But, since E(γk
t ) = Γ(k+t)

Γ(t)
, we have:

fΓt(1/G)(u) =
e−tE(log G)

Γ(t)
ut−1E

( ∞∑

k=0

(−1)k

k!

(
uDt(G)

)k)

=
e−tE(log G)

Γ(t)
ut−1E(e−uDt(G)) (119)

On the other hand, as we already noticed in point 6 of Remark 2.2, formula
(105) may be obtained by integrating from 0 to ∞ in (119).

2.2.c We now prove point 4 of Theorem 2.1.

i) Formula (106) is immediate. Indeed, since Γt(G)
(law)
= γtDt(G) we get:

E(e−λΓt(G)) = exp
(
− tψG(λ)

)
= E

( 1
(
1 + λDt(G)

)t
)

Replacing then λ by 1/λ in this latter formula, we obtain:

E
[ 1
(
λ+Dt(G)

)t
]

= exp
{
− t
(
ψG(1/λ) + logλ

)}

= exp
{
− t
(
ψ1/G(λ) −E(logG)

)}
(120)

from (101). We note that (105) may also be obtained by taking λ = 0 in (120).

ii) We now show (107). For this purpose, we shall prove that the two members
of (107) admit the same Stieltjes transform with index t. Indeed:

∫ ∞

0

e−tE(log G)

(λ+ x)t
xt−2fDt(G)

( 1

x

)
dx = e−tE(log G)

∫ ∞

0

1

(1 + λx)t
fDt(G)(x)dx

after making the change of variables y = 1/x

= e−tE(log G)E(e−λΓt(G)) from (56)

= exp − t
(
E(logG) + ψG(λ)

)
(121)

whereas:
∫ ∞

0

1

(λ + x)t
fDt(1/G)(x)dx =

1

λt

∫ ∞

0

1
(
1 + x

λ

)t fDt(1/G)(x)dx

= exp
{
− t
(
logλ+ ψ1/G(1/λ)

)} (
from (56)

)

= exp
{
− t
(
E(logG) + ψG(λ)

)} (
from (101)

)

(122)

The comparison of (121) and (122) and the injectivity of the Stieltjes transform
of index t imply (107).
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iii) We now show (107), for t = 1, by using (110). For t = 1, (110) writes:

fD1(G)(x) =
sin
(
πF1/G(x)

)

π
e−E((log|x− 1

G |)1x6=1/G) (123)

Thus:

fD1(1/G)(x) =
sin
(
πFG(x)

)

π
e−E((log|x−G|)1x6=G)

=
sin
(
πFG(x)

)

π
exp

{
−E

(
log
(
xG
∣∣1
x
− 1

G

∣∣
)
· 1x 6=G

)}

=
sin
(
πFG(x)

)

π

e−E(log G)

x
e−E(log| 1

x− 1
G |1x6=G)

=
1

x
e−E(log G)fD1(G)(1/x), from (123)

since sin
(
πFG(x)

)
= sin

(
π(1 − FG(x)

)
= sin

(
πF1/G(1/x)

)
. It is possible, by

using (110), to extend this proof for all t < 1. We leave the details to the
interested reader.

2.3. A complement to the duality theorem

Here again, G denotes a r.v. such that E
(
|logG|

)
< ∞, and we recall that, for

any t ≤ 1 Yt denotes a Bernoulli r.v. with parameter t
(
see (41) and (42), with

m = t and m′ = 1
)
.

Theorem 2.3. For all t ∈ [0, 1[:
1) The density fD1(

G
Yt

) may be expressed in terms of G, as:

f
D1

(
G
Yt

)(x) =
sin
(
π t FG(1/x)

)

π
xt−1

× exp

{
−t E

((
log
∣∣x− 1

G

∣∣
)

1x 6= 1
G

)}
x > 0, (124)

and when 1/x is in the support of FG. Otherwise replace sin
(
π t FG(1/x)

)
by

sin
(
π (1 − t)

)
when x > 0.

2) The following duality formula holds:

f
D1

(
G
Yt

)(x) =
sin
(
π t FG(1/x)

)

sin
(
π t
(
1− FG(1/x)

)) · xt−2f
D1

(
1

GYt

)
(1

x

)
· et E(log G) (125)

3) Let ∧t : [0,∞[−→ [0, 1] be defined by:

∧t(y) := 1 − 1

πt
arc tg

( sin (πt)

cos (πt) + y

)
(126)
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Then:

FG(1/x) = ∧t

( f
D1

(
G
Yt

)(x)

xt−2f
D1

(
1

GYt

)( 1
x

)
et E(log G)

)
(127)

4) Equivalently,

FG(1/x) = ∧t

(
E[(Dt(G) − x)−t

+ ]

E[(x−Dt(G))
−t
+ ]

)

Remark 2.4.
1) We note that the right-hand side of (127) depends on t

(
t ∈ [0, 1[

)
, whereas

the left-hand side does not depend on t.

2) Since
(
see (43)

)
D1

(
1

GYt

) (law)
= βt,1−t ·Dt(1/G), the knowledge of the law of

Dt(1/G) and of that of Dt(G), for one t < 1, allow to determine that of G.
We shall exploit this fact, in points 2.5 and 2.6 below, to determine the Thorin
measure of a Pareto distribution and of a power of a gamma variable.

3) We note that finding an explicit Thorin measure of an arbitrary GGC is
akin to finding the Lévy measure of some infinitely divisible random variable.
Bondesson([5], Theorem 4.3.2, p. 61), using inversion techniques, obtains an
expression for the Thorin measure, but notes that it seldom yields explicit ex-
pressions. On the other hand the use of statement 3) of Theorem 2.3 will often
lead to tractable expressions for the Thorin measure.

4) We shall prove (see Section 3.1.b) that ∧t is the cumulative distribution func-
tion of a r.v. Zt which we shall describe. On the other hand, some trigonometric
computations allow to see that ∧−1

t , the inverse of ∧t in the sense of composition
of functions, equals:

∧−1
t (x) =

sin(π tx)

sin
(
πt(1 − x)

) x ∈ [0, 1] (128)

5) Point 1 of Theorem 2.3 is due to James
(
see[28]

)
.

2.4. Proof of Theorem 2.3

2.4.a We first prove point 1.
As this point has already been established by James (see [28]), we shall only
give a quick proof.

We have, from (56):

E

[
1

1 + λD1

(
G
Yt

)
]
= exp

(
− tψG(λ)

)
=

1

λ
E

(
1

1
λ +D1

(
G
Yt

)
)

Hence, changing λ in 1
λ

and using (101):

E

[
1

λ +D1

(
G
Yt

)
]

= exp
{
− t ψG(1/λ) − logλ

}

= exp
(
(t − 1)logλ

)
· et E(log)exp

(
− t ψ1/G(λ)

)
(129)
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We then compute f
D1

(
G
Yt

) by inverting its Stieltjes transform:

f
D1

(
G
Yt

)(u) =

et E(log G)

2iπ
lim
η↓0

{
exp
[(

(t− 1) log (−u − iη)
)
− t ψ1/G(−u− iη)

]

−exp
[(

(t− 1)log(−u+ iη)
)
− t ψ1/G(−u + iη)

]}
(u > 0) (130)

It then suffices to observe that:

exp (t− 1) log (−u − iη) −→
η↓0+

exp
{
(t − 1) log |u| − iπ(t − 1)

}
= ut−1e−iπ(t−1)

and:
lim
η↓0+

exp
{
(t− 1) log (−u + iη)

}
= ut−1eiπ(t−1)

as well as:

t ψ1/G(−u − iη) = t E
(
log(1 − uG− iη G)

)

= t E
(
log (1 − uG− iη G)1uG<1 + log(1 − uG− iη G)1uG>1

)

−→
η↓0+

t E
(
log
(
|1− uG|

)
1uG 6=1 − iπP (uG > 1)

)

whereas:

t ψ1/G(−u + iη) −→
η↓0+

t E
(
log
(
|1 − uG|

)
1uG 6=1 + iπP (uG > 1)

Then, plugging the values of these different limits in (130), we obtain point 1 of
Theorem 2.3.

2.4.b We now prove point 2 of Theorem 2.3.
We deduce from (104) that:

f
D1

(
G
Yt

)(x)

=
sin
(
πt FG(1/x)

)

π
xt−1exp

{
− t E

(
log
( 1

G
|1− xG|

)
1xG 6=1

)}

=
sin
(
πt FG(1/x)

)

π
xt−1et E(log G)exp

{
− t E

(
(log |1− xG|

)
1xG 6=1

)}
(131)

whereas:

xt−2f
D1

(
1

GYt

)
(1

x

)
et E(log G) = xt−2 sin

(
πtF1/G(x)

)

π
et E(log G) · x1−t

· exp
{
− t E

(
log
(∣∣∣

1

x
− 1

G

∣∣∣
)
1xG 6=1

)}

=
1

x

sin
(
πtF1/G(x)

)

π
etE(log G)exp

{
− t E

(
log
(1

x
|1− xG|

)
1xG 6=1

)}

=
sin
(
πt F1/G(x)

)

π
xt−1etE(log G)exp

{
− t E

(
log|1 − xG|

)
1xG 6=1

)}
(132)
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hence, point 2 of Theorem 2.3 follows, by comparison of (132) and (131).

2.4.c We now prove point 3 of Theorem 2.3.
From (125), we obtain:

f
D1

(
G
Yt

)(x)

xt−2f
D1

(
1

GYt

)( 1
x

)
etE(log G)

=
sin
(
πt FG(1/x)

)

sin
(
πt
(
1 − FG(1/x)

)) = ∧−1
t

(
FG(1/x)

)

with ∧−1
t (x) =

sin(πtx)

sinπt(1 − x)

(
see (128)

)

Then, inverting this formula, since ∧t ◦ ∧−1
t (x) = x, x ∈ [0, 1] we obtain:

FG(1/x) = ∧t

( f
D1

(
G
Yt

)(x)

xt−2etE(log G)f
D1

(
1

GYt

)( 1
x

)
)

2.4.d We now prove point 4 of Theorem 2.3. This result follows by using the
generic form of the density of a βt,1−t random variable multiplied by an indepen-
dent random variable in the particular cases of βt,1−tDt(G) and βt,1−tDt(1/G).
The result is completed by applying the identity in (107).

2.5. Computation of the Thorin measure of a Pareto r.v.

Here is a first application of Theorem 2.3.

2.5.a Let m > 0 fixed and:

Xθ :=
γθ

γm
(0 < θ < 1) (133)

with density:

fXθ (x) =
Γ(θ +m)

Γ(θ) Γ(m)
xθ−1(1 + x)−(θ+m) (134)

=
Γ(θ +m)

Γ(θ) · Γ(m)
xθ−1E(e−xγθ+m ) (135)

The r.v. Xθ is a GGC r.v. (see Bondesson [5], p. 59 ). The rationale of our work
is now the following:
• We first compute the Thorin measure associated with Xθ .
• Then, letting θ converge 1, we shall obtain - as the Thorin measure depends
continuously (for the narrow topology) on the law of Xθ (see Bondesson, [5]) -
the Thorin measure associated with the r.v. X1 = γ1

γm
, i.e. to a Pareto r.v. with

parameter m(m > 0).
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2.5.b Thorin measure associated with Xθ , θ < 1.
Since, from (134):

sup
{
α > 0 ; lim

x→0

fXθ (x)

xα−1
= 0
}

= θ

we deduce from (30) the existence of a r.v. Gθ, such that E
(
log+

(
1

Gθ

))
< ∞

and such that Xθ is a (θ, Gθ) GGC r.v.:

Xθ
(law)
= Γθ(Gθ)

(law)
= γθDθ(Gθ)

(law)
=

γθ

γm
(136)

hence:

Dθ(Gθ)
(law)
=

1

γm
(137)

On the other hand, from (104):

fΓθ(Gθ)(x) =
xθ−1

Γ(θ)
eθE(log Gθ)E(e−xDθ (1/Gθ)) (138)

Comparing (137) and (135) yields:

eθE(log Gθ) =
Γ(θ +m)

Γ(m)
(139)

Dθ(1/Gθ)
(law)
= γθ+m (140)

Since, on the other hand:

D1

( 1

GθYθ

)
(law)
= βθ,1−θ ·Dθ(1/Gθ)

(law)
= βθ,1−θ · γθ+m (141)

D1

(Gθ

Yθ

)
(law)
= βθ,1−θ ·Dθ(Gθ)

(law)
= βθ,1−θ ·

1

γm
(142)

we easily deduce from these formulae that:

f
D1

(
1

GθYθ

)(z) =
sinπθ

πΓ(θ +m)
zθ−1

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy (143)

f
D1

(
Gθ
Yθ

)(z) =
sinπθ

πΓ(θ)
z−m−1

∫ 1

0

e−
y
z ym+θ−1(1 − y)−θdy (144)

The Thorin measure of Xθ, which equals: θPGθ (dx), where PGθ is the law of
Gθ, is then, by applying (127):

FGθ

(1

z

)
= ∧θ

(
∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy

zm

∫ 1

0

e−yzym+θ−1(1 − y)−θdy

)
(145)

where, to obtain (145), we have used (139).
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2.5.c Thorin measure of γ1

γm
(m > 0).

By continuity, the r.v. γ1

γm
is a (1, G) GGC r.v. and its Thorin measure is the

law of G whose cumulative distribution function is obtained by letting θ tend
to 1 in (145). To obtain this limit, we shall develop several computations.

2.5.i) Development of
∫∞
z e−y ym+θ−1

(y−z)θ dy as β = 1 − θ → 0

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy

= e−z

∫ ∞

0

e−u (z + u)m+θ−1

uθ
du (y = z + u)

=
e−z

β

∫ ∞

0

e−uuβ
[
(z + u)m−β − (m− β)(z + u)m−β−1

]
du

with
(
β = 1 − θ

)
and after integrating by parts:

=
e−z

β

∫ ∞

0

e−u(z + u)m
[( u

z + u

)β(
1 − (m− β)

1

z + u

)]
du

∼
β→0

e−z

β

∫ ∞

0

e−u(z + u)m
[(

1 + β log
( u

z + u

))(
1 − (m− β)

1

z + u

)
du

=
β→0

e−z

β

∫ ∞

0

e−u(z + u)m
(
1 − m

z + u

)
du

+e−z

∫ ∞

0

e−u(z + u)m
(
log

u

1 + u
+

1

z + u

)
du+ o(β)

=
e−zzm

β
+ e−zzm

∫ ∞

0

e−u
(
1 +

u

z

)m(
log

u

1 + u
+

1

z + u

)
du+ o(β)

since
∫∞
0
e−u(z + u)m

(
1 − m

z+u

)
du = zm, by integration by parts. Finally:

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy =

β→0

e−zzm

β
+ e−zzmCm(z) + o(β) (146)

with

Cm(z) =

∫ ∞

0

e−u
(
1 +

u

z

)m(
log

u

1 + u
+

1

z + u

)
du (147)

2.5. ii) Development of zm
∫ 1

0
e−xzxm+θ−1(1 − x)−θdx as β = 1 − θ −→ 0

zm

∫ 1

0

e−xzxm−β(1 − x)β−1dx

= e−zzm

∫ 1

0

ezu(1 − u)m−βuβdu (x = 1 − u)

=
e−zzm

β

∫ 1

0

ezu
(
(m− β)(1 − u)m−β−1 − z(1 − u)m−β

)
uβdu
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with β = 1 − θ, and after integrating by parts:

=
e−zzm

β

∫ 1

0

ezu(1 − u)m
( u

1 − u

)β(m− β

1 − u
− z
)
du

∼
β→0

e−zzm

β

∫ 1

0

ezu(1 − u)m
(m− β

1 − u
− z
)(

1 + β log
u

1 − u

)
du

∼
β→0

e−zzm

β

∫ 1

0

ezu(1 − u)m
( m

1 − u
− z
)
du+ e−zzm

∫ 1

0

ezu(1 − u)m ·
[
− 1

1 − u
+
( m

1 − u
− z
)
log

u

1 − u

]
du+ o(β)

=
e−zzm

β
+ e−zzmC̃m(z) + o(β) (148)

with

C̃m(z) =

∫ 1

0

ezu(1 − u)m
(
− 1

1 − u
+
( m

1 − u
− z
)
log

u

1 − u

)
du (149)

since:
∫ 1

0 e
zu(1 − u)m

(
m

1−u − z
)
du = 1, by integrating by parts.

2.5. iii) Let

q1−β(z) :=

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy

zm

∫ 1

0

e−xzxm+θ−1(1 − x)θdx

(150)

Thus, we have:

q1−β(z) =
β→0

e−z

β
zm + e−zzmCm(z) + o(β)

e−zzm

β
+ e−zzmC̃m(z) + o(β)

(151)

where Cm(z) and C̃m(z) are given by (147) and (149). Hence:

q1−β(z) = 1 + β
(
Cm(z) − C̃m(z)

)
+ o(β) (152)

Plugging this expression in (145), we obtain:

FG1−β(1/z)

= 1 − 1

πθ
arc tg

(
sin(πθ)

cos(πθ) + 1 + β
(
Cm(z) − C̃m(z) + o(β)

)
)

= 1 − 1

π(1 − β)
arc tg

(
sinπβ

−cos πβ + 1 + β
(
Cm(z) − C̃m(z) + o(β)

)
)

−→
β→0

1 − 1

π
arc tg

(
π

Cm(z) − C̃m(z)

)
= F (1/z) (153)

where F is the cumulative distribution function of the Thorin measure associated
to the Pareto r.v. γ1

γm
, with parameter m > 0.
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2.6. Thorin measure associated with γ
1/α
1 , 0 < α < 1

2.6.a Let Xα :
(law)
= γ

1/α
1 with 0 < α < 1, with density:

fXα (x) = αxα−1e−xα

= αxα−1E(e−xSα ) (154)

where Sα is a positive stable r.v. with index α:

E(e−λSα ) = exp(−λα) (λ ≥ 0) (155)

From Bondesson
(
[5], p. 60

)
, Xα is a GGC r.v. Since:

α = sup
{
ν > 0, lim

x↓0

fXα (x)

xν−1
= 0
}

Xα is a (α,Gα) GGC r.v., for a r.v. Gα such that: E
(
log+(1/Gα)

)
<∞. Thus:

Xα
(law)
= (γ1)

1/α = Γα(Gα) = γαDα(Gα) (156)

We shall now devote some effort to finding the law of Gα, making use in partic-
ular of formula (107)

From (104):

fΓα(Gα)(x) =
xα−1

Γ(α)
eαE(log Gα)E(e−xDα(1/Gα)) (157)

we deduce, by comparison with (154):

eαE(log Gα) = αΓ(α) = Γ(α+ 1) (158)

and

Dα(1/Gα)
(law)
= Sα (159)

Since:

D1

( 1

GαYα

)
(law)
= βα,1−α ·Dα(1/Gα)

(law)
= βα,1−α · Sα

we deduce that the density of D1

(
1

GαYα

)
equals:

fD1( 1
GαYα

)(y) =
sin(πα)

π
yα−1

∫ ∞

y

1

(x− y)α
fα(x)dx (160)

where fα denotes the density of Sα. On the other hand, from Chaumont-Yor(
[9], p. 112

)
:

γ
1/α
1

(law)
=

γ1

Sα
(161)

hence, since:

γ1

Sα

(law)
= γα ·Dα(Gα)

(law)
= βα,1−α · γ1Dα(Gα)

(law)
= γ1 ·D1

(Gα

Yα

)
(162)
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we get:

D1

(Gα

Yα

)
(law)
=

1

Sα
and (163)

fD1( Gα
Yα

)(x) =
1

x2
fα

(1

x

)
(164)

Then, applying (127), we get:

F1/Gα

(1

y

)
= ∧α

( Γ(α+1)sin (πα)
π

∫∞
y

1
(x−y)α fα(x)dx

yfα(y)

)
(165)

where, to obtain (165), we have used (157). This expression (165), provides us
then with the explicit form of the Thorin measure of (γ1)

1/α, which is equal to
PGα .

2.6.b. We shall now give a more suitable expression of (165). From the relations
(162) and (163), we deduce:

βα,1−α ·Dα(Gα)
(law)
= D1

(Gα

Yα

)
=

1

Sα
(166)

hence:
1

y2
fα

(1

y

)
=

sinπα

π
yα−1

∫ ∞

y

1

(z − y)α
fDα(Gα)(z)dz (167)

But, the density of Dα(Gα) may be computed from that of Dα(1/Gα), thanks
to (107):

fDα(Gα)(x) = xα−2 eαE(log Gα)fDα(Gα)(1/x).

Now from (159) and (158), we obtain:

fDα(Gα)(x) = xα−2 Γ(α+ 1)fα(1/x). (168)

We now note the interesting relationship concerning the law of Sα.

Lemma 2.4
Let 0 < α < 1, and S denote a positive random variable with density (f(y), y >
0) such that:

yf(y) = CE
[ 1

(y − S)α
1{S<y}

]
(169)

for some C > 0. Then, S is a stable (α) variable; precisely:

E
(

exp
{
− λS

})
= exp

{
− CΓ(1 − α)

α
λα
}
.

We postpone the proof of the Lemma for the moment, and we note that,
plugging (169) into (165), we obtain:
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F1/Gα

(1

y

)

= ∧α

(
E
(

1
(Sα−y)α 1Sα>y

)

E
(

1
(y−Sα)α 1Sα<y

)

= 1 − 1

πα
arc tg

[
sin(πα) · E

(
1

(y−Sα)α 1Sα<y

)

cos(πα) · E
(

1
(y−Sα)α 1Sα<y

)
+ E

(
1

(Sα−y)α 1Sα>y

)
]
, (170)

from (126).

Proof of Lemma 2.4 From (169), we take the Laplace transform of both sides:

∫ ∞

0

e−λyyf(y)dy = CE
[ ∫ ∞

S

e−λy

(y − S)α
dy
]

= CE
[
e−λS

∫ ∞

0

e−λz

zα
dy
]

= CΓ(1 − α)λα−1E
(
e−λS

)
.

Denoting φ(λ) = E
(
e−λS

)
, we get:

−φ′(λ) = CΓ(1− α)λα−1φ(λ),

from which we deduce:

φ(λ) = exp
{
− CΓ(1 − α)

α
λα
}
.

3. Explicit examples of GGC variables associated with the
(Gα, 0 ≤ α ≤ 1) family

All the examples discussed in this Section are related to the r.v.’s. (Gα, 0 ≤
α ≤ 1) introduced in [4]. Below, we indicate the properties of these r.v.’s which
we shall use. We also recall our notation:

Γt(Gα) = γt ·Dt(Gα) and (171)

E(e−λΓt(Gα)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xGα)

}
(λ, t ≥ 0) (172)

3.1. The family (Gα, 0 ≤ α ≤ 1)

(see [4])

3.1.a. For 0 < α < 1, the density fGα of Gα equals:

fGα(x) =
α sin(πα)

(1 − α)π

xα−1(1 − x)α−1

(1 − x)2α − 2(1 − x)αxα cos(πα) + x2α
1[0,1](x) (173)
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In particular:

• for α = 1/2, G1/2 follows the arc sine law:

fG1/2
(x) =

1

π

1√
x(1 − x)

1[0,1](x), G1/2
(law)
= β1/2, 1/2 (174)

• for α = 1, G1 is uniform on [0, 1] (175)

• for α = 0, G0
(law)
=

1

1 + exp(πC)
(176)

where C is a standard Cauchy variable.
In general, for 0 < α < 1 one has:

E[e−λΓ1−α(Gα)] = exp
{
− (1 − α)

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xGα)

}

= (1 + λ)α − λα (177)

The density fΓ1−α(Gα) of Γ1−α(Gα) equals:

fΓ1−α(Gα)(x) =
α

Γ(1 − α)

1

x1+α
(1 − e−x) 1[0,∞](x) (178)

which may be translated as the following identities in law:

Γ1−α(Gα)
(law)
=

γ1−α

βα,1

(law)
=

γ1−α

U1/α
(179)

3.1.b. We note, for 0 < µ < 1, Sµ and S′
µ two independent copies of positive

stable (µ) r.v.’s, i.e.:

E(e−λSµ ) = exp(−λµ) (λ ≥ 0) (180)

and, we let:

Zµ :=
(Sµ

S′
µ

)µ

(181)

Then
(
see [33] or [8], p. 116

)
, the density fZµ of Zµ equals:

fZµ(x) =
sin(πµ)

πµ

1

x2 + 2x cos(πµ) + 1
1[0,∞](x) (182)

and we have:

Gα
(law)
=

(Z1−α)1/α

1 + (Z1−α)1/α
(183)

or equivalently:
1

Gα

(law)
= 1 +

1

(Z1−α)1/α

(law)
= 1 +

S′
1−α

S1−α
(184)
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We note that the cumulative distribution function FZµ of Zµ equals:

FZµ(x) = 1 − 1

πµ
arc tg

[ sin(πµ)

cos(πµ) + x

]
x ≥ 0 (185)

and that its inverse, in the sense of composition of functions, is given by:

F−1
Zµ

(x) =
sin (πµx)

sin
(
πµ(1 − x)

) (0 ≤ x ≤ 1) (186)

(see Remark 2.4, point 3).

3.1.c. Although this will not be used in the sequel, we indicate a realization of
the r.v. Γ1−α(Gα) which has been at the start of [4]. Let (Rt, t ≥ 0) denote a
Bessel process starting from 0, with dimension d = 2(1−α), with 0 < d < 2, or
equivalently 0 < α < 1. Let, for any t > 0:

g
(α)
t := sup{s ≤ t ; Rs = 0}, d

(α)
t := inf{s ≥ t, Rs = 0} (187)

and let e

(law)
= γ1 an exponentially distributed r.v., with mean 1, independent

from (Rt, t ≥ 0). Then:

Γ1−α(Gα)
(law)
= d

(α)
e − g

(α)
e (188)

A more general study of quantities such as the RHS of (188), has been developed
by M. Winkel [54].

3.2. Study of the subordinators

(
Γt(G1/2), t ≥ 0

)
and

(
Γt(1/G1/2), t ≥ 0

)
.

In this Section, G1/2 is a beta (1/2, 1/2) variable, i.e.: its law is the arc sine

distribution.
(
see (174)

)
.

3.2.a. Theorem 3.1.
Let

(
Γt(G1/2), t ≥ 0

)
denote the subordinator characterized by:

E(e−λΓt(G1/2)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG1/2 )

}
(189)

The following explicit formulae hold:
1. Laplace transform of Γt(G1/2).

E(e−λΓt(G1/2)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
I0

(x
2

)
e−

x
2

}
(190)

=
(√

1 + λ−
√
λ
)2t

=
( 1√

1 + λ+
√
λ

)2t

=
(
1 + 2λ+ 2

√
λ(1 + λ)

)−t
(191)
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where, in (190), I0 denotes the modified Bessel function with index 0.
(
see [34],

p. 108
)

2. Laws of Γt(G1/2) and of Dt(G1/2).

Γt(G1/2)
(law)
=

γt

β1/2,1/2+t
, Dt(G1/2)

(law)
=

1

β1/2,1/2+t

(law)
= 1 +

γt+1/2

γ1/2
(192)

The density of fΓt(G1/2) equals:

fΓt(G1/2)(x) =
22tΓ(1 + t)

2π Γ(2t)
xt−1

(∫ 1

0

e−xy
(
y(1 − y)

)t−1/2
dy
)
1[0,∞](x) (193)

3. Wiener-Gamma representation of Γt(G1/2).
For any t > 0:

Γt(G1/2)
(law)
=

∫ t

0

dγu

sin2
(

πu
2t

) (law)
=

∫ t

0

dγu

cos2
(

πu
2t

) (194)

Here is the dual version of Theorem 3.1:

Theorem 3.1*. (Cifarelli and Melilli, [9]
)

Let
(
Γt(1/G1/2), t ≥ 0

)
denote the

subordinator characterized by:

E(e−λΓt(1/G1/2)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e

− x
G1/2 )

}
(195)

Then:

1. Laplace transform of Γt(1/G1/2).

E(e−λΓt(1/G1/2)) =
( 2

1 +
√

1 + λ

)2t

(λ, t ≥ 0) (196)

2. Laws of Γt(1/G1/2) and of Dt(1/G1/2).

Γt(1/G1/2)
(law)
= γt · βt+1/2, t+1/2, Dt (1/G1/2)

(law)
= βt+1/2, t+1/2 (197)

The density fΓt(1/G1/2) of Γt

(
1

G1/2

)
equals:

fΓt(1/G1/2)(x) =
t · 22t

Γ(1/2 + t)
√
π
xt−1

( ∫ 1

0

e−
x
y

(1 − y)t−1/2

√
y

dy
)
1[0,∞](x) (198)

3. Wiener-Gamma representation of Γt(1/G1/2).
For any t ≥ 0:

Γt

( 1

G1/2

)
(law)
=

∫ t

0

cos2
(πu

2t

)
dγu

(law)
=

∫ t

0

sin2
(πu

2t

)
dγu (199)
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Remark 3.2.
1) Theorem 3.1*. has been obtained by Cifarelli and Melilli [9]. It would be

possible to prove Theorem 3.1 by first using Theorem 3.1* and then by applying
the duality Theorem 2.1. In fact, we shall operate conversely, as we shall first
prove Theorem 3.1, then we shall show that Theorem 3.1* may be deduced from
it, due to the duality Theorem 2.1.

2) By comparing formula (190) with formula (76), we deduce:

(J (0)
t , t ≥ 0)

(law)
=
(1

2
Γt(G1/2), t ≥ 0

)

3) We come back to (196) and we write:

2

1 +
√

1 + λ
=

1

1 + 1
2 (
√

1 + λ− 1)
=

∫ ∞

0

e−u−u
2 (

√
1+λ−1)du

= E
(
exp − λS

(1)
1/2

(
e

2

))
(200)

where
(
S

(1)
1/2(t), t ≥ 0

)
denotes the stable (1/2) subordinator, Esscher trans-

formed, with the Esscher transformation with parameter 1
(
see [45]

)
. In (200),

e denotes a standard exponential r.v. independent from
(
S

(1)
1/2(t), t ≥ 0

)
. Hence:

( 2

1 +
√

1 + λ

)2t

= E
(
exp
(
− λS

(1)
1/2

(γ2t

2

)))
(201)

where the subordinators
(
S

(1)
1/2(t), t ≥ 0

)
and (γ2t, t ≥ 0) featured in (201) are

being assumed independent. This formula led James and Yor to consider, more

generally, the subordinator
(
S

(ν)
1/2(γt), t ≥ 0

)
. In the article [31], the following

is obtained:

(
Γt(G1/2), t ≥ 0

) (law)
=
(
S1/2(γ2t) + S̃

(1)
1/2(γ2t), t ≥ 0

)
(202)

where, on the right-hand side of (202), the three subordinators S1/2, S̃
(1)
1/2 and γ

are assumed independent, and
(
S1/2(t), t ≥ 0)

(law)
=
(
S̃1/2(t), t ≥ 0

)
.

3.2.b. Proof of Theorem 3.1.

i) We already prove (191). In fact, (191) follows immediately from (176),
since:

E[e−λΓt(G1/2)] =
(
E[e−λΓ1/2(G1/2)]

)2t

=
(√

1 + λ−
√
λ
)2t

=

(
1√

1 + λ+
√
λ

)2t

=

(
1

1 + 2λ+ 2
√
λ(1 + λ)

)t
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ii) We now prove (190), which is equivalent to:

E(e−xG1/2 ) = e−
x
2 I0

(x
2

)
, x ≥ 0 (203)

From the Lipschitz-Hankel formula
(
see [52] or [38], Th. 1.1

)
:

ν

∫ ∞

0

e−axIν(x)
dx

x
=
(
a+

√
a2 − 1

)−ν
(a ≥ 1, ν > 0) (204)

we deduce:

ν

∫ ∞

0

(1 − e−λx)e−
x
2 Iν

(x
2

)dx
x

= 1 −
(
2λ+ 1 + 2

√
λ(1 + λ)

)−ν
(205)

then, letting ν → 0 in (205):

∫ ∞

0

(1 − e−λx)e−
x
2 I0

(x
2

)dx
x

= log
(
2λ+ 1 + 2

√
λ(1 + λ)

)
(206)

Hence:

E(e−λΓ1(G1/2)) = exp
{
−
∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG1/2 )

}

=

(
1√

1 + λ +
√
λ

)2

=
1

2λ+ 1 + 2
√
λ(1 + λ)

= exp
{
−
∫ ∞

0

(1 − e−λx)
dx

x
e−

x
2 I0

(x
2

)}

This formula, which is of interest by itself, shall not be used in the sequel of this
proof.

iii) We now prove point 2 of Theorem 3.1.
For this purpose, we shall use the following property of hypergeometric func-
tions:

(
see [34], p. 238

)
. Let, for α, δ, γ reals

(
cf [34], p. 239

)
:

F (α, δ, γ ; z) =
Γ(γ)

Γ(δ)Γ(γ − δ)

∫ 1

0

tδ−1(1 − t)γ−δ−1(1 − tz)−αdt (207)

(
γ > δ > 0, |z| < 1

)

= E
(
(1 − zβδ,γ−δ )−α

)
(208)

Lemma 3.3. Let a, b, c three positive reals. Then:

1) E
(
e
−λ γa

βb,c

)
=

Γ(a+ b) Γ(b+ c)

Γ(b) (Γ(a + b+ c)

1

λa
F
(
a, a+ b, a+ b+ c ; − 1

λ

)
(λ ≥ 0)

(209)
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2) E(e−λγaβb,c) = F (a, b, b+ c ; −λ) (λ ≥ 0)
(210)

Proof of Lemma 3.3.

Since E(e−λγa ) = 1
(1+λ)a , we have:

E(e
−λ γa

βb,c ) = E

[(
1

1 + λ
βb,c

)a]

=
1

B(b, c)

∫ 1

0

xaxb−1

(x+ λ)a
(1 − x)c−1dx

(
by definition of the beta (b, c) law

)

=
B(a + b, c)

B(b, c)

1

B(a + b, c)

1

λa

∫ 1

0

xa+b−1(1 − x)c−1

(
1 + x

λ

)a dx

=
Γ(a+ b) Γ(b+ c)

Γ(b) Γ(a+ b+ c)

1

λa
E
((

1 +
βa+b,c

λ

)−a)
,

hence point 1 of Lemma 3.3, from (208). Point 2 of Lemma 3.3 may be obtained
from similar arguments.
We now end the proof of point 2 of Theorem 3.1. From Lemma 3.3, we have:

E(e
−λ

γt
β 1

2
, 1
2
+t ) =

Γ
(
t+ 1

2 ) Γ(t+ 1)

Γ(1
2
) Γ(2t+ 1)

1

λt
F (t, t+

1

2
, 2t+ 1 ; − 1

λ

)

=
Γ
(
t+ 1

2 ) Γ(t+ 1)

Γ(1
2
) Γ(2t+ 1)

1

λt

(1 +
√

1 + 1
λ

2

)−2t

(211)

since
(
see [34], p. 259

)
:

F
(
α, α+

1

2
, 2α+ 1 ; z

)
=
(1 +

√
1 − z

2

)−2α

Using Legendre’s duplication formula
(
[34], p. 4

)
:

Γ
(
t+

1

2

)
Γ(t + 1) = 2−2t√π(2t+ 1)

(
with Γ

(1

2

)
=

√
π
)

we obtain:

E(e
−λ

γt
β 1

2
, 1
2

+t ) =
( 1√

1 + λ +
√
λ

)2t

= E(e−λΓt(G1/2))

from (191). Hence:
γt

β 1
2 , 1

2+t

(law)
= Γt(G1/2) (212)
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The form of the density of Γt(G1/2) follows easily from (212).

iv) From Proposition 1.3 and (18), showing point 3 amounts to compute the
inverse of the cumulative distribution function of G1/2. Now, we have:

FG1/2
(x) := P (G1/2 ≤ x) =

1

π

∫ x

0

du√
u(1− u)

=
2

π
Arc sin (

√
x) x ≥ 0

so that F−1
G1/2

(y) = sin2
(πy

2

)
(0 ≤ y ≤ 1).

3.2.c Proof of Theorem 3.1*.

i) We prove point 1, in two different ways :

• A direct proof.
We deduce, as a particular case of the beta-gamma algebra, that:

N2

2

(law)
= γ1/2

(law)
= eβ 1

2 , 1
2

(213)

where N is a centered Gaussian variable, with variance 1, and e a standard
exponential. Hence:

P
(N2

2
> x

)
= P (e β 1

2 ,12
> x) = P

(
e >

x

β 1
2 , 1

2

)
= E(e

− x
β 1

2
, 1
2 )

Thus:
∫ ∞

0

(1 − e−λx)
dx

x
E(e

− x
G1/2 ) = E

( ∫ γ1/2

0

dx

x
(1 − e−λx)dx

)

=

∫ 1

0

du

u

(
1 −E

(
exp(−λu γ1/2)

))

(from the change of variable:x = u γ1/2)

=

∫ 1

0

du

u

(
1 − 1

(1 + λu)1/2

)

= 2
(
log
(√

1 + λ+ 1
)
− log 2

)

hence:

E(e
−λΓt(

1
G1/2

)
) = exp

{
− 2t log

(√1 + λ+ 1

2

)}

=
( 2

1 +
√

1 + λ

)2t

=
( 4

2 + λ+ 2
√

1 + λ

)t

• We may also prove (196) with the help of the duality Theorem 2.1. Indeed,
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from (101):

E(e
−λΓt(

1
G1/2

)
) = E

(
exp − 1

λ
Γt(G1/2)

)
· exp − t E(logG1/2)

λt

=
4t

(
1 + 2

λ
+ 2
√

1
λ
(1 + 1

λ
)
)t · 1

λt

from (191) and since E(log G1/2) = −log 4, from (104) and (192). Thus:

E(e
−λΓt(

1
G1/2

)
) =

4t

(
2 + λ+ 2

√
1 + λ

)t =
( 2

1 +
√

1 + λ

)2t

ii) We now prove point 2 of Theorem 3.1*.
Of course, it would be possible to use point 2 of Lemma 3.3 to make this proof,
in the same manner that we have used point 1 of this Lemma 3.3 to show point
2 of Theorem 3.1. In fact, we prefer to use formula (104) of the duality Theorem
2.1. We have:

fΓt(1/G1/2)(u) = e−t E(log G1/2)
ut−1

Γ(t)
E(e−u Dt(G1/2))

=
4t

Γ(t)
ut−1 E(e

− u
β 1

2
, 1
2

+t )
(
from (192)

)
(214)

Considering now the Laplace transform of the two sides of (214) we obtain:

E(e
−λΓt(

1
G1/2

)
) =

4t

Γ(t)
E
( ∫ ∞

0

e−λuut−1e
− u

β 1
2

, 1
2
+t du

)

=
4t

Γ(t)
E
[( β 1

2 , 1
2+t

1 + λβ 1
2 , 1

2+t

)t]

=
4tB(t + 1

2 , t+
1
2 )

B(1
2 ,

1
2 + t)

E
[( 1

1 + λβt+ 1
2 , 1

2+t

)t]
(215)

Note that, by taking λ = 0 in (215), we get:

4t B(t + 1
2
, t+ 1

2
)

B(1
2
, t+ 1

2
)

= 1

(which may also be recovered from the duplication formula for the Gamma
function). Hence:

E(e
−λΓt(

1
G1/2

)
) = E

[( 1

1 + λβt+1/2, t+1/2

)t]
= E(e−λγtβt+1/2, t+1/2 )

The other formulae of Theorem 3.1* are now easily obtained. In particular,
since: F−1

1/G1/2
(u) = 1

F−1
G1/2

(1/u)
= 1

sin2 πu
2

, we have, from Proposition 1.3:

Γt(1/G1/2)
(law)
=

∫ t

0

dγu

F−1
1/G1/2

(u
t )

=

∫ t

0

sin2
(πu

2t

)
dγu.
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3.3. Study of the r.v.’s Γ1−α(Gα) and Γ1−α(1/Gα), 0 < α < 1

3.3.a. Theorem 3.4. Let, for 0 < α < 1,
(
Γt(Gα), t ≥ 0

)
the subordinator

characterized by:

E(e−λΓt(Gα)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xGα)

}
(216)

We then have the following explicit formulae:

1. Laplace transform of Γt(Gα).

E(e−λΓt(Gα)) =
(
(1 + λ)α − λα

) t
1−α (λ, t ≥ 0) (217)

2. Distributions of Γ1−α(Gα) and of D1−α(Gα).

Γ1−α(Gα)
(law)
=

γ1−α

βα,1

(law)
=

γ1−α

U1/α
(218)

D1−α(Gα)
(law)
=

1

βα,1

(law)
=

1

U1/α

(law)
= 1 +

γ1

γα
(219)

(
where γ1

γα
is, by definition, a Pareto r.v. with parameter α

)
. The density fΓ1−α(Gα)

of Γ1−α(Gα) equals:

fΓ1−α(Gα)(x) =
α

Γ(1 − α)

1

x1+α
(1 − e−x) 1[0,∞[(x) (220)

3. Wiener-Gamma representation of Γt(Gα).
For every t ≥ 0 and 0 < α < 1:

Γt(Gα)
(law)
=

∫ t

0

[
1 +

(
sin
(
π(1 − α)( t−u

t )
)

sin
(
π(1 − α)u

t

)
)1/α]

dγu (221)

(law)
=

∫ t

0

[
1 +

(
sin
(
π(1 − α)u

t

)

sin
(
π(1 − α)

(
t−u

t

))
)1/α]

dγu

In particular, for t = 1 − α:

Γ1−α(Gα)
(law)
=

∫ 1−α

0

[
1 +

(
sin(πu)

sinπ(1 − α− u)

)1/α]
dγu (222)

We note that, for α = 1/2, formula (222) cöincides with (194). The dual version
of Theorem 3.4 is:

Theorem 3.4*. Let 0 < α < 1 and let
(
Γt(1/Gα), t ≥ 0

)
the subordinator

characterized by:

E(e−λΓt(1/Gα)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−

x
Gα )
}

(223)
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Then:

1. Laplace transform of Γt(1/Gα).

E(e−λΓt(1/Gα)) =
( 1

α

(1 + λ)α − 1

λ

) t
1−α

(224)

2. Laws of Γ1−α(1/Gα) and of D1−α(1/Gα).

Γ1−α(1/Gα)
(law)
= γ1−α · U, D1−α(1/Gα)

(law)
= U (225)

(
we note that the law of D1−α(1/Gα) does not depend on α, and it may be

compared with (197): β1,1 = U
)
.The density fΓ1−α(1/Gα) of Γ1−α(1/Gα) equals:

fΓ1−α(1/Gα)(x) =
1

Γ(1 − α)

1

xα

( ∫ ∞

1

e−xy dy

yα+1

)
1[0,∞[(x) (226)

3. Wiener-Gamma representation of Γt(1/Gα).
For every t ≥ 0:

Γt

( 1

Gα

)
(law)
=

∫ t

0

dγu

1 +
(

sin
(
π(1−α)

(
t−u

t

))

sin
(
π(1−α)u

t

)
)1/α

(227)

(law)
=

∫ t

0

dγu

1 +
(

sin
(
π(1−α)u

t

)

sin
(
π(1−α)

(
t−u

t

))
)1/α

(228)

Remark 3.5.

1) Formula (221) was originally obtained by T. Fujita and M. Yor
(
see [23]

)
.

2) We deduce from Proposition 1.6:

E
(
D1−α

( 1

Gα

))
= E(Gα) = E(U) =

1

2

(
from (225)

)
(229)

Of course, we may verify directly that:

E(Gα) =
1

2

starting from the formula:

E
(
exp(− λe Gα)

)
=

α

1 − α

1 − (1 + λ)α−1

(1 + λ)α − 1
(230)

(
see [4], formula 1.19

)
, then taking the derivative in λ = 0.

3) In [4], Section 4.2.1, the positive variables Xα,1 whose Laplace transforms
equal:

E(e−λ Xα,1) =
1

α

(1 + λ)α − 1

λ
(0 < α < 1)
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have been introduced. We note that, from (224):

Xα,1
(law)
= Γ1−α

( 1

Gα

)
(231)

4) Since Γ1−α(1/Gα)
(law)
= γ1−α · U and Γ1−α(Gα)

(law)
= γ1−α

U1/α the relations (221)

and (227) may also be written as:

1

U1/α
− 1

(law)
=

∫ 1−α

0

( sin(πu)

sin(π(1 − α− u))

)1/α

du(D(1−α)
u )

(law)
=

∫ 1−α

0

( sin(π(1 − α− u))

sin(πu)

)1/α

du (D(1−α)
u )

and

U
(law)
=

∫ 1−α

0

du(D
(1−α)
u )

1 +
(

sin(π(1−α−u))
sin(πu)

)1/α

(law)
=

∫ 1−α

0

du(D
(1−α)
u )

1 +
(

sin(πu)
sinπ(1−α−u)

)1/α
(232)

In particular, for α = 1
2
, one finds:

U
(law)
=

∫ 1/2

0

cos2(πu) du(D(1/2)
u )

(law)
=

∫ 1/2

0

sin2(πu)du(D(1/2)
u )

3.3.b. Proof of Theorem 3.4.

i) Point 1) is an immediate consequence of (176) and point 2) of (177), as
may be shown after some elementary computations.

ii) We now prove point 3. From Proposition 1.3, it amounts to compute FGα

and its inverse. However, from (182) and (181), we find, successively:

FGα(x) = P (Gα < x) = P
( Z

1/α
1−α

1 + Z
1/α
1−α

< x
)

= P
(
Z1−α <

( x

1 − x

)α)
(0 ≤ x ≤ 1)

i.e.:

FGα(x) = FZ1−α

(( x

1 − x

)α)
(0 ≤ x ≤ 1) (233)

hence:

F−1
Gα

(x) =

(
F−1

Z1−α
(x)
)1/α

1 +
(
F−1

Z1−α
(x)
)1/α

(234)
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then:

FZ1−α(x) = P (Z1−α ≤ x) =
sinπ(1 − α)

π(1 − α)

∫ x

0

dy

y2 + 2y
(
cos π(1 − α)

)
+ 1

= 1 − 1

π(1 − α)
arc tg

( sinπ(1 − α)

cosπ(1 − α) + x

)
(235)

= ∧1−α(x) with the notation of (126)

and, from (185):

F−1
Z1−α

(x) =
sin
(
π(1 − α)x

)

sin
(
π(1 − α)(1 − x)

) (236)

hence, plugging (236) in (234), we obtain:

1

F−1
Gα

(x)
= 1 +

( sin
(
π(1 − α)(1 − x)

)

sin
(
π(1 − α)x

)
)1/α

(237)

which, thanks to Proposition 1.3, proves point 3) of Theorem 3.4.

3.3.c. Proof of Theorem 3.4*.
We use the duality theorem. From formula (104):

fΓ1−α(Gα)(x) ∼
x→0

x−α

Γ(1 − α)
e(1−α)E(log Gα) (238)

which we compare with (220):

fΓ1−α(Gα)(x) =
α

Γ(1 − α)

1

x1+α
(1 − e−x) 1[0,∞[(x)

and we deduce:

E(logGα) =
logα

1 − α
(239)

Then, using this time (101):

E(e−λ Γt(
1

Gα
)) = exp

{
− t
(
E(log Gα) + logλ+ ψGα

( 1

λ

))}

=
[
exp
(
− t

1 − α
logα

)] 1

λt

[(
1 +

1

λ

)α

−
( 1

λ

)α] t
1−α

from (239) and (217):

=
[ 1

α

(1 + λ)α − 1

λ

] t
1−α

(240)

which establishes (224). The density of Γ1−α

(
1

Gα

)
may be computed from the

density formula (104) and the knowledge of the law of D1−α(Gα)
(law)
= 1

U1/α ,

given by (219). All the formulae in point 2 of Theorem 3.4* follow easily
from the explicit expression of fΓ1−α( 1

Gα
), and point 3 of Theorem 3.4* follows

from:
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F−1
1/Gα

(y) · F−1
Gα

(1 − y) = 1,

and from Proposition 1.3.

3.4. Study of the subordinators
(
Γt(µ + G0), t ≥ 0

)
and(

Γt

(
1

µ+G0

)
, t ≥ 0

)

We recall the following formula, which was established in [4]
(
see formulae (181)

and (179) in [4]
)
:

exp
{
−
∫ ∞

0

(1 − e−λx)
dx

x
E(e−x(µ+G0))

}
=

log
(
1 + 1

λ+µ

)

log
(
1 + 1

µ

) λ, µ ≥ 0 (241)

This formula was obtained in [4] by “letting α tend to 0 in the study of the
r.v.’s Gα. Here, G0 satisfies

(
see (175)

)
:

G0
(law)
=

1

1 + expπC
, where C denotes a standard Cauchy r.v. (242)

3.4.a. Theorem 3.6. Let µ > 0 be fixed and let
(
Γt(µ+ G0), t ≥ 0

)
denote the

subordinator which is characterized by:

E(e−λ Γt(µ+G0)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−x(µ+G0))

}
(243)

Then:

1. Laplace transform of Γt(µ+ G0).

E(e−λ Γt(µ+G0)) =

(
log
(
1 + 1

λ+µ

)

log
(
1 + 1

µ

)
)t

(244)

2. Laws of Γ1(µ+ G0) and D1(µ+ G0).

The densities of Γ1(µ + G0) and D1(µ+ G0) equal:

fΓ1(µ+G0)(x) =
1

log
(
1 + 1

µ

) e−µx 1 − e−x

x
1[0,∞[(x) (245)

fD1(µ+G0)(x) =
1

log
(
1 + 1

µ

) 1

x
1[ 1

µ+1 , 1
µ ](x) (246)

3. Wiener-Gamma representation of Γt(µ + G0).
For every t ≥ 0:

Γt(µ+ G0)
(law)
=

∫ t

0

1 + exp
(
cotg

(
πu
t

))

1 + µ
(
1 + exp

(
cotg

(
πu
t

))) dγu (247)
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Here is the dual version of Theorem 3.6.

Theorem 3.6*. Let µ ≥ 0 and
(
Γt

(
1

µ+G0

)
, t ≥ 0

)
denote the subordinator

characterized by:

E(e
−λ Γt(

1
µ+G0

)
) = exp

{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e

− x
µ+G0 )

}
(248)

Then:
1. Laplace transform of Γt

(
1

µ+G0

)
·

E
[
e−λ Γt(

1
µ+G0

)] =
[ 1

λ
log
(1 + λ(1 + µ)

1 + λµ

)]t
(249)

2. Laws of Γ1

(
1

µ+G0

)
and D1

(
1

µ+G0

)
·

Γ1

( 1

µ+ G0

)
(law)
= e(U + µ), D1

( 1

µ+ G0

)
(law)
= U + µ (250)

In particular, for µ = 0:

Γ1

( 1

G0

)
(law)
= e · U, D1

( 1

G0

)
(law)
= U (251)

The density of Γ1

(
1

µ+G0

)
equals:

f
Γ1

(
1

µ+G0

)(x) =
( ∫ 1

0

1

µ+ y
exp
(
− x

µ+ y

)
dy
)
1[0,∞[(x) (252)

3. Wiener-Gamma representation of Γt

(
1

µ+G0

)
·

For every µ ≥ 0 and t ≥ 0:

Γt

( 1

µ+ G0

)
(law)
=

∫ t

0

1 + µ
(
1 + exp

(
− cotg πu

t

))

1 + exp
(
− cotg πu

t

) dγu (253)

Remark 3.7.
1) We may take µ = 0 in the statement of Theorem 3.6*, since E

(
log+(G0)

)
<

∞, but not in that of Theorem 3.6.

2) Formula (249), with µ = 0, was obtained by Bondesson
(
[5], Ex. 3.3.1, p. 42

)

and the relation D1

(
1

G0

) (law)
= U has been obtained, independently, by Diaconis

and Freedman
(
[12], Ex. 7.4, p. 74

)
and by Cifarelli and Melilli

(
[9], Ex. 2, p.

1393
)
.

3) The formulaD1

(
1

G0

) (law)
= U may be obtained by letting α −→ 0, in (225) and

formula Γ1

(
1

G0

)
= e.U is formula (225) with α = 0.

3.4.b. Proof of Theorem 3.6.
Point 1 follows immediately from (241), whereas formula (245) is a consequence
of:
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E(e−λ Γ1(µ+G0)) =
log
(
1 + 1

λ+µ

)

log
(
1 + 1

µ

) =
1

log
(
1 + 1

µ

)
∫ λ+µ

λ+µ−1

dv

1 + v

=
1

log
(
1 + 1

µ

)
∫ λ+µ

λ+µ−1

dv

∫ ∞

0

e−x(1+v)dx

=
1

log
(
1 + 1

µ

)
∫ ∞

0

e−xdx

∫ λ+µ

λ+µ−1

exp(−xv)dv

=
1

log
(
1 + 1

µ

)
∫ ∞

0

e−(λ+µ)x 1 − e−x

x
dx

On the other hand, formula (246), which yields the density of fD1(µ+G0) follows
from:

E[e−λ Γ1(µ+G0)] =
log
(
1 + 1

λ+µ

)

log
(
1 + 1

µ

) = E

(
1

1 + λD1(µ + G0)

)

1

log
(
1 + 1

µ

)
∫ 1

µ

1
µ+1

dx

x
· 1

1 + λx

(
after writing

1

x(1 + λx)
=

1

x
− λ

1 + λx

)

Then, the last point in Theorem 3.6 follows, with the help of (242), from:

F−1
µ+G0

(y) = µ+
1

1 + exp tg
(

π
2 (1 − 2y)

)

=
1 + µ(exp(cotg(πy)) + 1)

1 + exp cotg(πy)
(254)

Proof of Theorem 3.6*.
It may be proven by using the duality theorem. From (104) and (245):

fΓ1(µ+G0)(0) = eE(log(µ+G0)) =
1

log
(
1 + 1

µ

)

i.e.:

E
(
log(µ+ G0)

)
= −log

(
log

(
1 +

1

µ

))
(255)

We then apply the duality theorem:

E(e
−λ Γt(

1
µ+G0

)
) = E(e−

1
λ Γt(µ+G0)) · 1

λt
· e−t E

(
log(µ+G0)

)

=

(
log
(
1 + 1

µ

)

λ

)t

·




log
(
1 + 1

1
λ +µ

)

log
(
1 + 1

µ

)




t

(
from (255) and (249)

)

=

[
1

λ
log

(
1 + λ(1 + µ)

1 + λµ

)]t
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We now compute the density of Γ1

(
1

µ+G0

)
by using (104):

f
Γ1

(
1

µ+G0

)(x) = e−E(log(µ+G0))E(e−x D1(µ+G0))

= log
(
1 +

1

µ

)
·
∫ 1

µ

1
µ+1

1

y log
(
1 + 1

µ

) e−xydy

(
from (255) and (246)

)

=

∫ 1

0

1

µ+ y
e−

x
µ+y dy (256)

Formula (250) now follows easily from (256).
We deduce, from Proposition 1.6, that:

E

[
Γ1

(
1

µ+ G0

)]
= E(µ + G0) = E (D1(µ+ G0))

= E(U + µ) =
1

2
+ µ·

In particular, we have:

E(G0) = E(U) =
1

2
·

Finally, the last point of Theorem 3.6* follows from Proposition 1.3 and from
(254).

3.5. Study of the subordinators
(
Γt(G1), t ≥ 0

)
and(

Γt(1/G1), t ≥ 0
)

In this Section
(
see (175)

)
, G1 denotes a uniform r.v. on [0, 1].

Theorem 3.8. Let
(
Γt(G1), t ≥ 0

)
denote the subordinator characterized by:

E(e−λ Γt(G1)) = exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG1)

}
(257)

Then:

1. Laplace transform of Γt(G1).

E(e−λ Γt(G1)) =

(
λλ

(1 + λ)1+λ

)t

λ, t ≥ 0 (258)

2. Laws of Γ1(G1) and D1(G1).
The expressions of the densities of Γ1(G1) and D1(G1) are:

fΓ1(G1)(x) =
1

π

( ∫ 1

0

e−xy sin (π y)dy

yy(1 − y)1−y

)
1[0,∞[(x) (259)
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fD1(G1)(x) =
sin
(

π
x

)

π(x− 1)1−
1
x

1[1,∞[(x) (260)

3. Wiener-Gamma representation of Γt(G1).
For every t ≥ 0:

Γt(G1)
(law)
= t

∫ t

0

dγu

u

(law)
= t

∫ t

0

dγu

t− u
(261)

Here is now the dual version of Theorem 3.8, which is due to Diaconis and
Kemperman [13].

Theorem 3.8*. Let
(
Γt

(
1

G1

)
, t ≥ 0

)
denote the subordinator characterized

by:

E(e
−λ Γt(

1
G1

)
) = exp

{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e

− x
G1 )
}

(262)

Then:

1. Laplace transform of Γt(1/G1).

E(e−λ Γt(1/G1)) = (e(1 + λ)−
1+λ

λ )t t, λ ≥ 0 (263)

2. Laws of Γ1(1/G1) and D1(1/G1).
The densities of Γ1(1/G1) and D1(1/G1) equal:

fΓ1(1/G1)(x) =
e

π

( ∫ 1

0

e−
x
y

sin (πy)dy

yy+1(1 − y)1−y

)
1[0,∞[(x) (264)

fD1(1/G1)(x) =
e sin(πx)

π

1

xx(1 − x)1−x
1[0,1](x) (265)

3. Wiener-Gamma representation of Γt(1/G1).
For every t ≥ 0:

Γt(1/G1)
(law)
=

1

t

∫ t

0

(t− u) dγu
(law)
=

1

t

∫ t

0

u dγu (266)

Remark 3.9.
1) Theorem 3.8*, and in particular formula (265), are due to P. Diaconis and
J. Kemperman [13]. Formula (265) may also be found in

(
[8], Ex. 4.4, p. 98

)

corrected with multiplication by e in that formula.

2) i) A r.v. Z, which takes values on R, is said to be a Luria-Delbrück r.v. if it
satisfies:

E(e−λZ) = λλ (λ ≥ 0) (267)

and M. Möhle [39] determined the density fZ of this r.v.:

fZ(x) =
1

π

∫ ∞

0

e−
xt
2 cos(x t+ t log t) dt (x ∈ R)

=
1

π

∫ ∞

0

e−x t−t log t(sinπt)dt (268)
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ii) On the other hand, it is proven in
(
[44], § III, 1.3, p. 1251, with α = k = 1

)

that there exists a Wald couple (X,H), which is infinitely divisible and such
that:

• H is positive and X and H are infinitely divisible.

• E(e−
λ2

2 H) · E(eλX) = 1 λ ≥ 0

• E(e−
λ2

2 H) = (1 + λ)−(1+λ)eλ,

• E(eλX) = (1 + λ)1+λe−λ (269)

Thus:
E(eλ(X+1)) = (1 + λ)1+λ (270)

hence, from (258), with t = 1:

Γ1(G1) − (1 +X)
(law)
= Z (271)

iii) We denote by Z̃ a r.v. defined from Z via the following Esscher transform:

E
(
ϕ(Z̃)

)
:= E

(
ϕ(Z) · e−Z

)
(ϕ Borel and bounded)

(
we note that E(e−Z) = 1, from (267)

)
. Thus, we have:

E(e−λZ̃) = E(e−(1+λ)Z) = (1 + λ)1+λ

so that:

Z̃
(law)
= −(1 +X) (272)

hence, from (271):

Γ1(G1) + Z̃
(law)
= Z (273)

We also note that Letac [35] characterized the law defined by (272).

3.5.b. Proofs of Theorems 3.8 and 3.8*.
i) We prove (258), which it suffices to obtain for t = 1. We have:

∂

∂λ
log

(
λλ

(1 + λ)1+λ

)
= log

(
λ

1 + λ

)
= −log

(
1 +

1

λ

)
(274)

whereas:
∫ ∞

0

(1 − e−λx)
dx

x
E(e−x G1) =

∫ ∞

0

(1 − e−λx)(1 − e−x)
dx

x

Hence:

− ∂

∂λ

∫ ∞

0

(1 − e−λx)
dx

x
E(e−x G1) = −

∫ ∞

0

e−λx dx

x
(1 − e−x)

= −log

(
1 +

1

λ

)
(275)
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from Frullani’s integral. (258) now follows from the comparison of (274) and
(275).

ii) We now prove (263):

∫ ∞

0

(1 − e−λx)
dx

x
E(e−

x
G1 ) =

∫ ∞

0

(1 − e−λx)
dx

x

∫ ∞

1

e−ux du

u2

=

∫ ∞

1

du

u2

∫ ∞

0

1 − e−λx

x
e−uxdx (Fubini)

=

∫ ∞

1

du

u2
log

(
1 +

λ

u

)

(
from Frullani’s formula

(
see [34], p. 6, and (3) above

))
.

=

∫ 1

0

log (1+λw)dw =
1

λ

(
(1+λ) log(1+λ)−λ

)

Thus:

E(e−λ Γ1(1/G1)) = exp
{
−
∫ ∞

0

(1 − e−λx)
dx

x
E(e

− x
G1 )
}

= exp
{
− 1

λ

(
(1 + λ) log (1 + λ) − λ

)}
=

e

(1 + λ)
1+λ

λ

·

We may also show (263) with the help of the duality Theorem:

E(e−λ Γ1(1/G1)) =
e−E(log G1)

λ
E

(
exp − 1

λ
Γ1(G1)

)

=
e

λ

(
1
λ

) 1
λ

(
1 + 1

λ

)1+ 1
λ

= e(1 + λ)−
1+λ

λ

from (258) and since: E(log G1) = −E(γ1) = −1.

iii) Point 3) of Theorem 3.8 and 3.8* follows easily from Proposition 1.3 and
from the fact that FG1(u) = u (0 ≤ u ≤ 1).

iv) We now prove (264). For this purpose, we use the result of Diaconis and
Kemperman [13], see also [42],

fD1(1/G1)(x) =
e sinπx

π

1

xx(1 − x)1−x
1[0,1](x) (276)

The relation:
Γ1(1/G1) = γ1 ·D1(1/G1)

now implies easily (264).



L.F. James, B. Roynette and M. Yor/GGC and Dirichlet Means 407

v) We show (259) with the help of formula (104) in the duality Theorem:

fΓ1(G1)(x) = eE(log G1) E(e
−x D1(

1
G1

)
)

=
1

e
E(e

−x D1(
1

G1
)
)

=

∫ 1

0

e−xy sinπy

π

dy

yy(1 − y)1−y
(277)

from (276). Finally, in order to show (260), we apply (107):

fD1(G1)(x) = x−1 eE(log G1) fD1(1/G1)

( 1

x

)

=
1

e x

e sin
(

π
x

)

π
1[0,1]

( 1

x

) 1
(

1
x

) 1
x
(
1 − 1

x

)1− 1
x

(from (276))

=
sin
(

π
x

)

π(x − 1)1−
1
x

1[1,∞[ (x)

Appendix

Interpolation between the subordinators
(
Γt(1/G), t ≥ 0

)
and

(γt, t ≥ 0)

We denote, for every u ≥ 0, by σu : R −→ R the decreasing function defined by:

σu(x) :=
x sinhu+ cosh u

x cosh u+ sinhu
=
x tanhu+ 1

x+ tanhu
(278)

Since the image of R+ by σu is equal to ]tanh u, coth u], then for every positive
r.v. G, and every u > 0, we have: E

(
|log σu(G)|

)
<∞.

Let
(
Γt

(
σu(G)

)
, t ≥ 0

)
denote the subordinator defined by:

E
(
exp − λΓt

(
σu(G)

))
= exp

{
− tψσu(G)(λ)

}

= exp
{
− t

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xσu(G))

}
(279)

Since σ0(G) = 1
G and σ∞(G) = 1, we have:

(
Γt

(
σ0(G)

)
, t ≥ 0

)
=
(
Γt(1/G), t ≥ 0

)
(
Γt

(
σ∞(G)

)
, t ≥ 0

)
=
(
γt, t ≥ 0

)

Thus, the family of subordinators
(
Γt

(
σu(G)

)
, t ≥ 0

)
interpolates, as u de-

scribes R+, between
(
Γt(1/G), t ≥ 0

)
and (γt, t ≥ 0).

The aim of this appendix is to show that one may compute “explicitly” the
Laplace transform, the density, and the Wiener-Gamma representation of the
r.v.’s Γt

(
σu(G)

)
in terms of those of

(
Γt(G), t ≥ 0

)
, for every u ≥ 0.
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Theorem A.1. We have, for every u ≥ 0:

1) − ψG(σu(λ)) + ψσu(G)(λ) = log (λ coshu+ sinhu) + ku (280)

with ku = E

[
log

(
G

G sinhu+ cosh u

)]
(281)

2) F−1
σu(G)

(y) = σu

(
F−1

G (1 − y)
)

(0 ≤ y ≤ 1) (282)

hence:

Γt

(
σu(G)

) (law)
=

∫ t

0

dγs

σu

[
F−1

G (1 − s
t
)
] (law)

=

∫ t

0

dγs

σu

[
F−1

G ( s
t
)
] (283)

3) The density fΓt(σu(G))of Γt

(
σu(G)

)
, equals:

fΓt(σu(G))(x)

=
e−x tanh u−t ku

cosh u
E

{
e−Γt(G) tanh u

(
Γt(G)

x

) 1−t
2

· Jt−1

(
2
√
y Γt(G)

cosh u

)}
1x>0

= xt−1 e
−x tanh u−t ku

Γ(t)
E
[(

cosh u+Dt(G) sinhu
)−t

e
− x Dt(G)

cosh u(cosh u+Dt(G) sinh u

]

(284)

Remark A.2.
1. For u = 0, we have: σ0(G) = 1

G , k0 = E(logG) and the preceding formulae
and indeed those of Theorem 2.1.

2. As u −→ ∞, the relation (283) becomes, by passage to the limit:

Γt

(
σ∞(G)

) (law)
=

∫ t

0

dγs = γt (285)

and it is not difficult to see, starting from (284), that:

fΓt(σu(G))(x) −→
u→∞

1

Γ(t)
e−x xt−11[0,∞[(x) = fγt

(x)

3. More generally than (280), if we take:

σ(x) :=
ax+ b

cx+ d
and σ̃(λ) :=

dx+ b

cx+ a
, we have :

−ψG (σ̃(λ)) + ψσ(G)(λ) = log (cλ+ a) + k(σ) (286)

with k(σ) := E

(
G

aG+ b

)
(287)
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We observe that (286) and (287) follow immediately from:

−ψG

(
σ̃(λ)

)
+ ψσ(G)(λ) = −E

[
log

(
1 +

σ̃(λ)

G

)]
+E

[
log

(
1 +

λ

σ(G)

)]

= E

[
log

(
1 +

λ(cG+ d)

aG+ b

)]
− E

[
log

(
1 +

dλ+ b

cλ + a

1

G

)]

= E

[
log

(
(aG+ b) + λ(cG+ d)

aG+ b
· (cλ + a)G

(cλ + a)G+ dλ+ b

)]

= E

[
log

(cλ + a)G

aG+ d

]
·

Proof of Theorem A.1.
Point 1) is a particular case of point 3 of Remark A.2 and point 2) of Theorem
A.1 is trivial. Let us prove point 3. From (280), after multiplying by t, and
exponentiating, we deduce:

E
[
e−λ Γt(σu(G))

]
= e−tku E

[
e−Γt(G)σu(λ) 1

(λ coshu+ sinhu)t

]
(288)

then, multiplying each side of (288) by exp(−βλ) and integrating in λ from
-tanh u to +∞, we obtain:

E

(∫ ∞

−tanh u

e−λ Γt(σu(G))−βλdλ

)

= e−tku E

(∫ ∞

−tanhu

e−Γt(G)σu(λ)−βλ dλ

(λ cosh u+ sinhu)t

)
(289)

Making, on the LHS of (289) the change of variable: λ cosh u + sinhu = µ, we
obtain:

E

[
1

(β + Γt(σu(G))
e(tanh u)(Γt(σu(G))+β)

]

=
e−tku

coshu
E


e−Γt(G)tanh u+β tanh u

∫ ∞

0

e
− 1

cosh u

(
Γt(G)

µ +βµ
)

µt
dµ




Thus, after simplifying by exp(β tanh u) and using formula 5.10.25, p. 109 in
[34], we obtain:

E

[
1

(β + Γt(σu(G))
etanh u Γt(σu(G))

]

=
2e−tku

coshu
E

[
e−Γt(G)tanhu

(
Γt(G)

β

) 1−t
2

·K1−t

(
2
√
β Γt(G)

cosh u

)]

We then use the inversion formula of the Stieltjes transform, and thanks to a
very similar computation to the one made in section 2.2.b, we arrive to the



L.F. James, B. Roynette and M. Yor/GGC and Dirichlet Means 410

identity:

ex tanh ufΓt(σu(G))(x)=
e−tku

cosh u
E

[
e−Γt(G)tanh u

(
Γt(G)

x

) 1−t
2

Jt−1

(
2
√
xΓt(G)

cosh u

)]

then to (286), by using the series development of Jt−1:

fΓt(σu(G))(x)

=
e−x tanh u−tkuxt−1

Γ(t)
E
{(

cosh u+Dt(G)sinhu
)−t

e
− xDt(G)

cosh u(cosh u+Dt(G)tanh u)

}

Remark A.3. Formulae (284) and (285), in the more general situation when:
σ(G) = aG+b

cG+d
become:

fΓt(σ(G))(x) =
e−x a

c −tk(σ)

c
E

(
e−

d
c Γt(G)

(
Γt(G)

x

) 1−t
2

Jt−1

(
2
√
xΓt(G)

c

))

(290)
where k(σ) is given by (287), and:

fΓt(σ(G))(x) =
xt−1

Γ(t)
e−x a

c −tk(σ)E
{
(c+ dDt(G))−t e

− x Dt(G)

c(c+dDt (G))
}

(291)
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List of notations

G,X, Z denote r.v.’s.
µG: law of G; fG : density of G; FG : cumulative distribution function of G;
F−1

G : inverse function of FG.
Γ: GGC r.v. with associated Thorin measure µ.
m: total mass of µ.

γa: Gamma r.v. with parameter a (a > 0) ; γ1
(law)
= e, a standard exponential r.v.

βa,b: a beta r.v. with parameters a, b (a, b > 0).
U : a uniform r.v. on [0, 1].
C: a standard Cauchy r.v.
Yp: a Bernoulli r.v. (0 ≤ p ≤ 1).

(
P (Yp = 1) = p ; P (Yp = 0) = 1 − p

)

Sα: a standard positive stable r.v., with index α (0 < α < 1), and density fα.
γ1

γδ
: a Pareto r.v. of index δ (γ1 and γδ independent).

Gθ generic notation for random variables considered in sections 2.5 and 2.6.
(Gα, 0 ≤ α ≤ 1) the family of r.v.’s introduced in 3.1. In particular:

G1/2
(law)
= β 1

2
, 1
2
, G0

(law)
=

1

1 + exp πC
, G1

(law)
= U

Γm(G) a GGC r.v. with associated Thorin measure m · µG.
(γt, t ≥ 0): standard gamma process

(
i.e.: subordinator with Lévy measure:

dx
x
e−x

)
.

(D
(m)
t , 0 ≤ t ≤ m) Dirichlet process with parameter m.(

Γt(G), t ≥ 0
)
: GGC subordinator with Thorin measure µG, and Lévy density:

1
x E(e−xG).
ψG: the Bernstein function of the subordinator

(
Γt(G), t ≥ 0

)
:

ψG(λ) =

∫ ∞

0

(1 − e−λx)
dx

x
E(e−xG)

Γ̃t(h) =
∫ t

0
h(s) dγs the Wiener-Gamma integral of h.

Dt(G) r.v. whose law is characterized by Γt(G)
(law)
= γt Dt(G)

Dt(G) satisfies:

Dt(G)
(law)
=

∫ t

0

1

F−1
G (u/t)

du (D(t)
u )

(Ct, t ≥ 0), (St, t ≥ 0), (Tt, t ≥ 0): hyperbolic subordinators.

(J (ν)
t , t ≥ 0), (K(ν)

t , t ≥ 0): subordinators associated to the functions Iν
and Kν .
Kν , Iν , Jν: modified and unmodified Bessel functions with index ν .
S(t)(X): Stieltjes transform with index t of the positive r.v. X:

S(t)(X)(λ) := E

(
1

(λ +X)t

)
(λ ≥ 0)
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(
Sα(t), t ≥ 0

)
standard stable subordinator, with index α (0 < α < 1).

fα(x): density of Sα =(law) Sα(1).
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