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Abstract: Spatial branching processes became increasingly popular in the
past decades, not only because of their obvious connection to biology, but
also because superprocesses are intimately related to nonlinear partial dif-
ferential equations. Another hot topic in today’s research in probability
theory is ‘random media’, including the now classical problems on ‘Brown-
ian motion among obstacles’ and the more recent ‘random walks in random
environment’ and ‘catalytic branching’ models. These notes aim to give a
gentle introduction into some topics in spatial branching processes and su-
perprocesses in deterministic environments (sections 2-6) and in random
media (sections 7-11).
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1. Introduction

Our main purpose is to present some recent topics for branching processes and
superprocesses, with special focus on random media. The choice of the topics
of course reflects the author’s interest in the field and is necessarily incomplete.
There are several excellent expository books on superprocesses in general, for
example by Dawson, Dynkin, Etheridge and Perkins and here we suffice with a
subjective choice of some recent developments.

An outline of these notes is as follows. After defining the basic notions in
Section 2, we turn to the connection between spatial branching processes and
nonlinear partial differential equations (Section 3). In the following section (Sec-
tion 4) we present some results on local extinction and local exponential growth,
which is also a good excuse to discuss a version of the ‘spine technology’, a rel-
atively recent (and, in the author’s opinion, quite beautiful) tool appearing in
the literature. The problem of the Law of large Numbers for spatial branching
processes and superprocesses is discussed in Section 5. At the end of the ‘de-
terministic environment part’, we picked two further topics in superprocesses:
the so-called compact support property and the ‘polar decomposition’ for su-
perprocesses. This second one is somewhat related to the Law of large Numbers
discussed in the previous section, because when dealing with LLN, one many
times first decomposes a certain ‘weighted’ (or h-transformed) superprocess into
its total mass (‘radial’ part) and a Fleming-Viot-type process (‘angular’ part).

In the second part (Sections 7-11) we will discuss spatial branching processes
in random media, first giving a short review on some related classical problems
(without branching), namely on Brownian motion among Poissonian obstacles
and random walks in random environment (Section 7). In the next three sections
we introduce branching processes and superprocesses among Poissonian obsta-
cles: hard obstacles, ‘mild’ obstacles, and some generalizations (Sections 8, 9,
and 10, respectively.) Finally, in the last section we review some basic catalytic
branching problems.

References (including work cited as well as further bibliographic items) are
given at the end of each section. These are not intended to be full bibliographies
on the subjects, but they are sufficient to give the backgrounds for the particular
theorems and problems discussed.

Acknowledgement. This paper is based on notes written for a graduate course
at the University of Bath in July 2007. During the course several people, includ-
ing A. Cox, S. Harris, A. Kyprianou, P. Mörters, J. Pardo Millan and A. Sakai,
contributed with valuable remarks to the lectures. The author owes thanks to
each one of them.

Several helpful suggestions by an anonymous referee are also gratefully ac-
knowledged. Finally, the author is grateful to Prof. Aldous for inviting these
lecture notes for publication in Probability Surveys.
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2. Branching processes and superprocesses — basic notions

2.1. Branching diffusions

Spatial branching processes have two main ingredients : the spatial motion and
the branching mechanism. We start with describing the spatial motion.

Let L be a second order elliptic (differential) operator on the Euclidean do-
main D ⊆ Rd of the form

L =
1

2

d∑

i,j=1

aij(x)
d2

dxi dxj
+

d∑

i=1

bi(x)
d

dxi
,

where aij, bi, i, j = 1..., d, are in the class C1,η(D), η ∈ (0, 1] (i.e. their first
order derivatives exist and locally Hölder-continuous), and the symmetric matrix
(aij(x)) is positive definite on D.

Of course, L can also be written in the slightly different ‘divergence form’:

L =
1

2
∇ · ã∇ + b̃ · ∇.

The operator L then corresponds to a diffusion process (or diffusion) on D
in the following sense. Take a sequence of increasing domains Dn ↑ D with
Dn ⊂⊂ Dn+1

1 and let τDn denote the first exit time from the (open) set Dn.
Then there exists a unique family of probability measures Px, x ∈ D (x is the
starting point) describing the law of a Markov process Y satisfying that

1. Px(Y0 = x) = 1,

2. f(Yt∧τDn
) −

∫ t∧τDn

0
(Lf)(Ys) ds is a martingale for all f ∈ C2(D) and all

n ≥ 1.

We say that the generalized martingale problem on D has a unique solution and
it is the law of the corresponding diffusion process or L-diffusion Y on D.

Note that it is possible that the event limn→∞ τDn < ∞ (‘explosion’) has
positive probability. In fact limn→∞ τDn < ∞ means that the process reaches
∆, the ‘cemetery state’ in finite time, where ∆ is identified with the Euclidean
boundary ofD in the case of a bounded domain, or the Euclidean boundary ofD
augmented by a point ‘at infinity’ in the case of an unbounded domain. In other
words, the process actually lives on D̂ = D∪{∆}, the one-point compactification
of D and once it reaches ∆ it stays there forever.

The connection to linear partial differential equations is well known. For a
bounded continuous function f , consider the parabolic equation:

u̇ = Lu in (0,∞) ×D (1)

with initial condition
u(0, ·) = f(·) in D.

1the notation A ⊂⊂ B means that A is bounded and its closure is still in B.
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This Cauchy problem (generalized heat equation) is then solved by u, where
u(t, x) := Exf(Yt) and Y is the diffusion corresponding to L on D.

Furthermore, if Ttf is defined by Tt(f)(x) := Exf(Yt), then the Markov
property of Y yields that {Tt}t≥0 is a semigroup, that is Tt+s = Tt ◦ Ts for
t, s ≥ 0. Now, (1) gives

lim
h↓0

Tt+hf(x) − Ttf(x)

t
= L(Ttf)(x), t > 0

and formally we obtain (t = 0) that

lim
h↓0

Thf − f

t
= Lf,

which can in fact be verified for a certain class of f ′s. Hence L is often referred
to as the infinitesimal generator of Y .

Diffusion processes behave in a very nice way from the point of view of their
large time behavior, namely there are exactly two cases. Either

∀x ∈ D, ∅ 6= B ⊂⊂ D open, Px(Yt ∈ B for arbitrarily large t’s) = 1

or
∀x ∈ D, ∅ 6= B ⊂⊂ D open, Px(Yt 6∈ B for all t > T (B, ω)) = 1.

In the first case we say that Y is recurrent and in the second we say that Y is
transient.

After describing the motion component (L-diffusion) we now turn to the
branching component. Suppose that we start with a single individual and any
individual has 0,1,2,... offspring with corresponding probabilities p0, p1, p2, ...
and suppose that branching occurs at every time unit. If h is the generating
function of the offspring distribution,

h(z) := p0 + p1z + p2z
2 + ...,

then clearly
h′(1) = p1 + 2p2 + 3p3 + ... =: e,

and e is the expected (or mean) offspring number.
As is well known, there are three cases for the Galton-Watson process defined

above:

1. h′(1) < 1 and the system dies out in finite time (subcritical case)
2. h′(1) = 1 and the system dies out in finite time (critical case)
3. h′(1) > 1 and the system survives with positive probability (supercritical

case)

For example we are talking about strictly dyadic branching when p2 = 1 and in
this case h(z) = z2 and h′(1) = 2.

In the supercritical case en, the expected offspring number at time n, satisfies
en = en and when p0 > 0, d = P (extinction) is the only root of h(z) = z in
(0, 1). (The function h can be shown to be concave upward.)
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Many times, instead of unit time branching one considers random branching
times with exponential distribution. In this case the above classification of sub-
critical, critical and supercritical branching is the same as before. Moreover, if
the exponential rate is β > 0, then the probability of not branching up to time
t is obviously e−βt and a well known limit theorem due to Biggins states that if
Zt is the population size at t then in the supercritical case

∃ lim
t→∞

e−βtZt = N > 0, a.s.,

on the survival set, as long as the offspring number X satisfies that X logX has
finite expectation. (There is a similar theorem for unit time branching too.)

After discussing motion and branching separately, let us try to put the two
ingredients together! To this end, let β ≥ 0 be smooth (more precisely, Holder
continuous with some parameter η ∈ (0, 1]) and not identically zero. The (L, β)−
branching diffusion2 X has the following (informal) definition.

Definition 1 ((L, β)− branching diffusion). Start with one initial particle
located at some point x ∈ D, performing an L-diffusion on D. Her exponen-
tial clock depends on her position in the sense that the instantaneous rate of
branching at y ∈ D is β(y). So for example the probability the particle has not

branched by t > 0 is exp(−
∫ t
0 β(Ys) ds). When the clock rings she is replaced

by two offspring (strictly dyadic branching) 3. The two offspring, starting from
the position of the parent particle perform independent L-diffusions and are
equipped with their independent exponential branching clocks, where again the
instantaneous rate of branching at y ∈ D is β(y); etc. This way one obtains
the stochastic process Z (the value of Zt, t ≥ 0 is a particle configuration, or
discrete measure on D); we will denote by Zt(B) the number of particles at t
in B ⊆ D.

Since β is spatially dependent it is no longer clear what one means by sub-
critical, critical or supercritical case. Also, the criterion for extinction becomes
a nontrivial question. One has to distinguish between extinction and local ex-
tinction.

Definition 2. Z exhibits local extinction if for all B ⊂⊂ D, there exists an a.s.
finite random time τB such that Zt(B) = 0 for all t > τB.

Intuitively, whether or not local extinction occurs should depend on the trade-
off between two properties:

1. how transient Y (corresponding to L) is, and
2. how large β is.

So, for example if Y is ‘very transient’ comparing to the size of β, then the
motion component ‘wins’ and Z exhibits local extinction.

2Sometimes, when the domain is emphasized, one writes (L,β,D)− branching diffusion.
3Obviously one could consider more generally a random number of offspring (possibly zero)

according to any given branching law.
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The ‘strength of transience’ can be measured by a single number λc(L) ≤ 0
called the generalized principal eigenvalue of L on D. We will give a different
definition later but note here that for B ⊂⊂ D open and x ∈ B,

lim
t→∞

1

t
logPx(Ys ∈ B, for all s ≤ t) = λB < 0,

where λB does not depend on x ∈ B, and λBn ↑ λc(L) for a sequence of domains
Bn ↑ D. So λc is loosely speaking the ‘exponential rate of escape from compacts’.

The main result concerning local extinction (we will discuss its more general
form later) is that when β is a positive constant, local extinction occurs if and
only if λc(L) ≤ −β.

We close this section with two definitions of superprocesses — as scaling
limits of branching diffusions4 and also as measure valued Markov processes via
their Laplace functionals. We start with the latter one.

2.2. Superprocess via its Laplace functional

Let D ⊆ Rd be a domain and let B(D) denote the Borel sets of D. We write
Mf (D) and Mc(D) for the class of finite measures resp. the class of finite mea-
sures with compact support on B(D). For µ ∈ Mf(D), denote ‖µ‖ := µ(D)
and let C+

b (D) and C+
c (D) be the class of non-negative bounded continuous

resp. non-negative bounded continuous functions D → R having compact sup-
port. Write Ck,η(D) for the usual Hölder spaces of index η ∈ (0, 1] including
derivatives of order k, and set Cη(D) := C0,η(D).

Let L be given (in divergence form) by

L :=
1

2
∇ · a∇ + b · ∇, (2)

where ai,j, bi ∈ C1,η(D), i, j = 1, ..., d, for some η ∈ (0, 1], and the matrix
a(x) := (ai,j(x)) is symmetric, and positive definite for all x ∈ D. In addition,
let α, β ∈ Cη(D), and assume that α is positive, and β is bounded from above.

Definition 3 ((L, β, α;D)-superdiffusion). With D,L, β and α as above, let
(X,Pµ , µ ∈ Mf(D)) denote the (L, β, α;D)-superdiffusion, where µ denotes
the starting measure X0. That is, X is the unique Mf (D)-valued continuous
(time-homogeneous) Markov process which satisfies, for any g ∈ C+

b (D) ,

Eµ exp 〈Xt ,−g〉 = exp 〈µ,−u(·, t)〉, (3)

where u is the minimal nonnegative solution to

ut = Lu+ βu− αu2 on D× (0,∞),

lim
t↓0

u(·, t) = g(·).




 (4)

As usual, 〈ν, f〉 denotes the integral
∫
D
ν(dx) f(x).

4As already mentioned, branching diffusions are also measure valued processes: Zt(·) =∑
Nt

i=1
δ
Zi

t
(·), where Nt is the population size at time t.
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One usually refers to β as mass creation and α as the intensity parameter
(or variance). Finally, the Markov property is in fact equivalent to the property
that the shift defined by (4) defines a semigroup, which in turn follows from the
minimality of the solution.

2.3. The particle picture for the superprocess

Previously we defined the (L, β, α;D)-superprocess X analytically. In fact, X
also arises as the short life time and high density diffusion limit of a branching
particle system, which can be described as follows: in the nth approximation
step each particle has mass 1/n and lives a random time which is exponential
with mean 1/n. While a particle is alive, its motion is described by a diffusion

process corresponding to the operator L (on D̂ = D ∪ {∆}). At the end of its
life, the particle located at x ∈ D dies and is replaced by a random number of
particles situated at the parent particle’s final position. The law of the number
of descendants is spatially varying such that the mean number of descendants

is 1+ β(x)
n

, while the variance is assumed to be 2α(x). All these mechanisms are
independent of each other.

More precisely, for each positive integer n, consider Nn particles, each of mass
1
n
, starting at points x

(n)
i ∈ D, i = 1, 2, . . . , Nn, and performing independent

branching diffusion according to the motion process Y , with branching rate

cn, c > 0, and branching distribution {p(n)
k (x)}∞k=0, where

en(x) ≡
∞∑

k=0

kp
(n)
k (x) = 1 +

γ(x)

n
,

and

v2
n(x) ≡

∞∑

k=0

(k − 1)2p
(n)
k (x) = m(x) + o(1)

as n → ∞, uniformly in x; m, γ ∈ Cη(D), η ∈ (0, 1] and m(x) > 0. Let

µn =
1

n

Nn∑

i=1

δ
x
(n)
i

.

Let Nn(t) denote the number of particles alive at time t and denote their posi-

tions by {Xn
i (t)}Nn(t)

i=1 . Denote by Mf(D) (Mf(D̂)) the space of finite measures

on D (D̂). Define an Mf(D̂)- valued process Xn by

Xn(t) =
1

n

Nn(t)∑

i=1

δXn
i (t).

Denote by P
(n)
µn the probability measure on D([0,∞),Mf(D̂)) induced by Xn.

Assume that m and γ are bounded from above. Let w − limn→∞ µn = µ ∈
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Mf (D). (The notation w − lim denotes the limit in the weak topology.) Then

there exists a P ∗
µ ∈ C([0,∞),Mf(D̂)) such that P ∗

µ = w − lim
n→∞

P
(n)
µn . Define

Pµ ∈ C([0,∞),Mf(D)) by Pµ(·) = P ∗
µ(· ∩D) and let X be the process corre-

sponding to Pµ. Then X is an (L, β, α;D)-superprocess, where L corresponds
to Y on D, β(x) = cγ(x) and α(x) = 1

2
cm(x).

Finally, in the particular case when β ≡ 0, an alternative approximation
yields the same superprocess: in the nth approximation step one considers critical
branching diffusions (the motion component corresponds to L and the branching
is strictly binary, i.e. either zero or two offspring), but the branching rate is now
2nα(x). So α(·) in this case can also be thought of as the branching ‘clock’.
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3. Connection between spatial branching processes and nonlinear
partial differential equations; the qualitative behavior of
superprocesses

3.1. Log-Laplace equations

Let us recall the log-Laplace equation for superprocesses: for any g ∈ C+
b (D),

Eµ exp 〈Xt ,−g〉 = exp 〈µ,−u(·, t)〉,

where u is the minimal nonnegative solution to (4). This fact already shows
that there exists a connection between measure valued processes and partial
differential equations.

Remark 1. A similar connection with the (L, β)-branching diffusion Z (with
probability P ) is as follows. For any g ∈ C+

b (D) , u(x, t) = Ex exp 〈Zt ,−g〉
solves

ut = Lu+ β(u2 − u) on D × (0,∞),

lim
t↓0

u(·, t) = e−g(·),

0 ≤ u ≤ 1.





(5)

Note that, unlike in the superprocess case, here the u2 term simply comes from
the fact that the branching is strictly dyadic and so the generating function is
just h(z) = z2. Note also that in (5) one can always ‘switch’ from u2 − u to
v − v2 as v := 1 − u solves

vt = Lv + β(v − v2) on D × (0,∞),

lim
t↓0

v(·, t) = 1 − e−g(·),

0 ≤ v ≤ 1.






⋄

3.2. Exit measure and Brownian snake

Dynkin’s exit measure5 yields yet another connection with semilinear partial
differential equations. Informally, the exit measure XD from a domain D ⊂ Rd

is obtained by ‘freezing’ mass of the superprocess when it first hits the boundary
∂D. One way of defining the exit measure is through the approximating particle
picture: the exit measure can easily be defined for the nth level discrete particle
system, and then one has to verify that as n→ ∞, those discrete exit measures
converge to a limit. (See [5] for more on exit measures.)

Although in this subsection we will talk about Brownian motion, in fact the
method can be extended from Brownian motion (and equations involving ∆) to
general diffusions (and equations with elliptic operators L).

5We will revisit a version of it in Subsection 4.1.
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Dynkin showed that if D is smooth and g is a bounded function on ∂D, then
u(x) = − log Eδx exp−〈XD , g〉, x ∈ D solves the problem

∆u = u2 on D,

u|∂D = g.

}

In order to investigate solutions with boundary blow-up, choose gn ≡ n and then
let n ↑ ∞, quickly leading to the following representation.6

Corollary 1. Let D ⊂ Rd be a bounded regular 7 domain.The function u(x) =
− log Pδx(XD = 0), x ∈ D is the minimal nonnegative solution to the problem

∆u = u2 on D,

u|∂D = +∞.

}

Before turning to the next part, let us quickly mention that Dynkin actually
defined the exit measure not only from spatial but also from space-time domains
(c.f. Subsection 4.1), leading to probabilistic solutions to nonlinear parabolic
boundary value problems. (We do not discuss this further here, the interested
reader should consult [5].)

Le Gall introduced a path-valued process called the Brownian snake and
related it to the exit measure, thus providing yet another probabilistic repre-
sentation for nonlinear PDE’s (in terms of the snake).

The Brownian snake combines the genealogical structure of random real trees
with spatial motions governed by a general Markov process (usually taken as
Brownian motion). Informally, each Brownian snake path corresponds to the
spatial positions along the ancestral line of a vertex in the branching tree. The
precise definition of the Brownian snake is motivated by the ‘coding’ of real
trees. In view of applications to PDE, Le Gall characterized the exit measure
as a measure, which, in a sense, is uniformly spread over the set of exit points
of the Brownian snake paths from D. (See [9] for the precise definition of the
snake and the characterization of the exit measure.)

When the underlying spatial motion is d-dimensional Brownian motion, the
connection between the exit measure and the semilinear PDE ∆u = u2 is as
follows.

Recalling that the snake is a path valued process and that the exit measure is
expressed in terms of the snake, Le Gall defines a σ-finite measure on C(R+,W)
denoted by Nx8, where W is the set of all finite paths (see [9] for the precise
definition of Nx), and proves the following representation (notice the extra factor
4 in the equation).

6In [12, 8] there is a different approach to solutions with boundary blow-up without using
the exit measure.

7The domain D is called regular if every x ∈ ∂D satisfies that inf{t > 0 | ξt 6∈ D} = 0
Px-a.s., where (ξ,P ) is Brownian motion

8It is dubbed the ‘excursion measure away from x’.



János Engländer/Branching diffusions, superdiffusions and random media 314

Proposition 1. Let D be a bounded regular domain. Let g be a continuous
nonnegative function on ∂D. Then u(x) = Nx(1 − exp−〈XD , g〉), x ∈ D solves
the problem

∆u = 4u2 on D,

u|∂D = g.

}

Similarly as before, this leads to the following representation of the solution
with boundary blow-up.

Corollary 2. Let D be a bounded regular domain. Then the function u(x) =
Nx(XD 6= 0), x ∈ D is the minimal nonnegative solution of the problem

∆u = 4u2 on D,

u|∂D = +∞.

}

Due to groundbreaking work of Dynkin, Le Gall and Mselati (see [5, 9, 11]),
we now have a good understanding of the classification and probabilistic repre-
sentation of solutions of ∆u = u2 in a domain.

3.3. Support properties

It turns out that (4) can be used very efficiently in investigating the following
properties of the superprocess.

Definition 4. A path X· survives if Xt 6= 0, ∀t ≥ 0 and becomes extinct
otherwise.

We will use the shorthand S := {Xt 6= 0, ∀t ≥ 0} for the event of survival.
The basic question is to calculate Pµ(S), and in particular to decide whether
this probability is zero (‘extinction’).

Definition 5. The superprocess exhibits local extinction if for every set B ⊂⊂
D there exists a Pµ-a.s. finite random time τB such that Xt(B) = 0, ∀t > τB.

Unlike for discrete particle systems, however, it is not clear whether ‘B be-
comes eventually empty’ is the same as limt→∞Xt(B) = 0. R. Pinsky [12]
introduced the following notions.

Definition 6. Assume that Pµ(S) > 0.

• The support of X is recurrent if

Pµ(Xt(B) > 0, for some t | S) = 1, ∀B ⊂ D open.

• When d ≥ 2, the support of X is transient if

Pµ(Xt(B) > 0, for some t | S) < 1, ∀B ⊂⊂ D s.t.

D \B is connected and supp(µ) ∩B = ∅. [B is the closure of B.]
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• When d = 1, the support of X is transient if

Pµ(Xt(B) > 0, for some t | S) < 1,

either for all B ⊂⊂ D s.t. inf supp(µ) > supB or for all B ⊂⊂ D s.t. sup
supp(µ) < inf B.

It turns out that in the above definitions there is no dependence on the
starting measure, i.e. each property (extinction, survival, local extinction, re-
currence and transience) are either true for all ∅ 6= µ ∈ Mc or not true for any
∅ 6= µ ∈ Mc.

3.4. Weighted superprocess and nonlinear h-transform

A very important tool in the investigations of these support properties is a
transformation that leaves the support invariant but changes the mass. If X is
a superprocess and h > 0 is smooth, then we will define below a weighted super-
process Xh which has the same support but has different motion and branching
mechanism. Let

Xh := hX, i.e
dXh

t

dXt
= h, t ≥ 0,

and notice that the log-Laplace equation with φ = hψ, µ = ν/h yields

Eνe
〈−ψ,Xh

t 〉 = Eµe
〈−φ,Xt〉 = e〈−u(·,t),µ〉,

where u is the minimal nonnegative solution to (4) with φ in place of g.
It is sufficient to restrict the setting on compactly supported measures, ν ∈

Mc ⇔ µ ∈ Mc and test functions, φ ∈ C+
c (D) ⇔ ψ ∈ C+

c (D).
Let A(u) := Lu+ βu − αu2. Now, if v := u/h, then

Eνe
〈−ψ,Xh

t 〉 = e〈−v(·,t),ν〉,

where

vt =
1

h
A(hv)

and v(·, 0) = ψ(·). What this means is that Xh is another superprocess! If we
now introduce the notation Ah(·) := 1

h
A(h·) (analogously to the Doob’s h-

transform for linear operators), then we obtain the log-Laplace equation for the
weighted superprocess Xh in the following form: for any ψ ∈ C+

c (D),

Eν exp 〈Xt ,−g〉 = exp 〈ν,−v(·, t)〉, (6)

where v is the minimal nonnegative solution to

vt = Ah(v) on D × (0,∞),

lim
t↓0

u(·, t) = ψ(·).




 (7)
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That is, if X corresponds to the operator A then Xh corresponds to the operator
Ah. Although Xh is just a weighted version of X, it corresponds to a different
motion and a different branching mechanism, since, as a straightforward com-
putation reveals,

Ah(v) =

(
L+ a

∇h
h

· ∇ +
(L + β)h

h

)
v − αhv2.

So the new motion corresponds to L+a∇h
h
·∇ and the new branching mechanism

corresponds to the term (L+β)h
h v − αhv2.

Just like the transformation X → Xh preserves the support of X, the cor-
responding transformation A → Ah (nonlinear h-transform) preserves some
important properties of the operator. For example, the generalized principal
eigenvalue of the linear part of the operator is invariant under the transforma-
tion.

3.5. Some results

In the previous section we discussed the generalized principal eigenvalue of a
diffusion operator and its connection to local extinction for branching diffusions
(with constant branching rate). We now discuss it in more generality.

Define the generalized principal eigenvalue as

λc = λc(L+ β) := inf{λ | ∃u > 0 s.t. (L+ β − λ)u = 0, }

and note that for constant β, one has λc(L+β) = λc(L)+β. Now a more general
result concerning local extinction is as follows.

Theorem 1. The (L, β, α,D)-superprocess (or the (L, β,D)-branching diffu-
sion) exhibits local extinction if and only if λc ≤ 0.

(The superprocess version of this theorem is due to R. Pinsky.) For super-
processes, since extinction implies local extinction, one obtains that a sufficient
condition for survival w.p.p. is that λc(L) > 0.

It is beyond the scope of these notes to discuss all the support properties,
but as an illustration, we show how one can handle the extinction probability
by using the log-Laplace equation.

First, notice that for µ ∈ Mc,

Pµ(Xt = 0) = Eµ lim
n→∞

e〈−n,Xt〉 = lim
n→∞

Eµe
〈−n,Xt〉 = lim

n→∞
e〈−u

(n)(·,t),µ〉,

where u(n) is the minimal nonnegative solution to (4) with g replaced by n. It is
clear probabilistically that u(n) is monotone increasing in n and it can be shown
that u := limn→∞ u(n) is finite and it is the minimal nonnegative solution to (4)
with g replaced by ∞.

We have obtained
Pµ(Xt = 0) = e〈−u(·,t),µ〉,
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and now letting t ↑ ∞ and defining w(·) = limt→∞ u(·, t) (again, monotonicity
is clear probabilistically), we obtain the probability of extinction:

Pµ(S
c) = e〈−w,µ〉.

As expected, it can be shown that w solves the steady-state equation Lw+βw−
αw2 = 0. The question is now: which (nonnegative) solution of the steady-state
equation is w? This is a subtle issue as w is sometimes the maximal solution
and sometimes it isn’t.

More precisely, it can be shown that the maximal solution wmax always exists
and

Pµ(R ⊂⊂ D) = e〈−wmax ,µ〉,

where R :=
⋃
s≥0 supp(Xs) is the range of the process.

Since w ≤ wmax, Pµ(R ⊂⊂ D) ≤ Pµ(S
c).

Suppose now that the superprocess possesses the compact support property,
that is, if µ is compactly supported then so is

⋃
0≤s≤t supp(Xs) for all t > 0

(this property too is independent of the starting measure). Then, obviously
Pµ(R ⊂⊂ D) ≥ Pµ(S

c), that is Pµ(R ⊂⊂ D) = Pµ(S
c) and w = wmax.

This observation leads to a nice way of proving explosion (no compact support
property) for the superprocess. Namely, all one has to show is that w is not the
maximal nonnegative solution to the steady-state equation. For example, when
we know that the process becomes extinct (and thus w = 0), the existence of a
positive solution yields explosion.

Based on these ideas one can come up with examples where the underlying
process is conservative (i.e. no explosion occurs), but nevertheless the super-
process explodes. This can be shown [7] to be true even in the case of a time
changed one dimensional Brownian motion with β = 0, α = 1 (i.e. in the case of
a (ρ(x)∆u, 0, 1; R)-superprocess), if the time change ρ > 0 is sufficiently large.
(Note that the time change does not effect recurrence and so the time changed
Brownian motion is still conservative.)

Of course one may consider the (ρ(x)∆u, 0, 1; Rd)-superprocess in any dimen-
sion d ≥ 1, and wonder, how large ρ has to be in order to loose the compact
support property. Somewhat surprisingly, it turns out [7] that while the thresh-
old for ρ is quadratic for d ≥ 2, it is cubic for d = 1.
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4. Local extinction versus local exponential growth; the ‘spine’

In this section we present a ‘spine’ construction and its application in the study
of local extinction versus local exponential growth of spatial branching processes.
Although it can be applied to superprocesses too, we will only discuss, the more
intuitive9 branching diffusion case.

Let X denote the (L, β)-branching diffusion in the section. The finite (dis-
crete) starting measure will be denoted by µ.

4.1. The spine decomposition

A ‘natural martingale’. Let B ⊂⊂ D be a nonempty domain. Suppose that
supp (µ) ⊂ B. Let Ft denote the natural filtration of X up to time t ≥ 0 and
let Xt,B denote Dynkin’s exit measure from B × [0, t). Loosely speaking, Xt,B

is obtained by ‘freezing’ particles on ∂B at the time they hit it and so Xt,B is
a discrete measure on (B × {t}) ∪ (∂B × (0, t)).

Let λ denote the generalized principal eigenvalue10 of L + β on B. It is a
standard fact that there exists a unique nonnegative function φ which solves
(L+β− λ)φ = 0 on B with Dirichlet boundary condition. Define for each fixed
t ≥ 0, φt : B × [0, t] → [0,∞) such that φt(·, u) = φ(·) for each u ∈ [0, t]. (Here
B denotes the closure of B). We claim that

{
Mφ
t := e−λt

〈φt, Xt,B〉
〈φ, µ〉 : t ≥ 0

}

is a (mean one) Pµ-martingale. To see this note that on account of the so-
called Dynkin’s Markov property of exit measures and the Dirichlet boundary
condition for φ,

Eµ(M
φ
t+s | Ft) =

Eµ

(
e−λ(t+s) 〈φt+s, Xt+s,B〉

〈φ, µ〉

∣∣∣∣Ft
)

= e−λtEXt

(
e−λs

〈φs, Xs,B〉
〈φ, µ〉

)

for s, t ≥ 0. We have to show that the righthand side equals Mφ
t a.s. On account

of the branching property it is enough to show that Eδx(e−λt〈φt, Xt,B〉) = φ(x)
for all t ≥ 0 and x ∈ B. To show this latter property, note that from the
stochastic representation for backward equations: v(x, 0) := Eδx(e−λt〈φt, Xt,B〉)
where v solves −v̇ = (L + β − λ)v on B × (0, t) with v = φt on ∂t,B and ∂t,B

is the union of ∂B × (0, t] and B × {t}. The boundary condition follows from
the regularity properties of the underlying diffusion. Therefore, by parabolic
uniqueness, we obtain that v(·, 0) = φ(·), t ≥ 0.

Our goal is to define a change of measure with this ‘natural’ martingale. (For
the reader unfamiliar with this notion: if the new measure Q for a continuous

9The author’s wife is not a mathematician. After listening to phone conversations with A.
Kyprianou she asked ‘who this Martin Gale was’ and ‘what was wrong with his spine’.

10which is just the usual principal Dirichlet eigenvalue.
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time stochastic process with filtration {Gt} is defined by

dQx

dPx

∣∣∣∣
Gt

= Mt, (8)

then it is easy to show that M must be a mean one Px-martingale. Conversely,
every mean one martingale defines a proper law for the stochastic process with
the definition under (8).) Before we do that, let us first define two changes of
measures: the first is for the motion component and the second is for a Poisson
point process.

As before B will always denote a nonempty open set compactly embedded in
D with a smooth boundary.

Girsanov change of measure. Let λ = λc (L + β, B) . Just like before, φ
denotes the eigenfunction satisfying

(L+ β − λ)φ = 0 in B with φ = 0 on ∂B.

Let τB = inf{t ≥ 0 : Yt /∈ B} and assume that the diffusion (Y,Px) is adapted
to some filtration {Gt : t ≥ 0} . Then under the change of measure

dPφx
dPx

∣∣∣∣
Gt

=
φ (Yt∧τB )

φ (x)
exp

{
−
∫ t∧τB

0

λ− β (Ys) ds

}

the process
(
Y,Pφx

)
corresponds to the h-transformed (h = φ) generator (L +

β − λ)φ = L+ aφ−1∇φ · ∇.
It can be shown that the process

(
Y,Pφx

)
is ergodic on B (i.e. it is positive

recurrent).
Change of measure for Poisson point processes. Given a nonnegative

bounded continuous function g(t), t ≥ 0, the Poisson point process η is defined
as follows. Let {n = nt; t ≥ 0} be a Poisson process with instantaneous rate
g(t), and let η = {{σi : i = 1, ..., nt} : t ≥ 0} be the corresponding Poisson point
process on [0,∞) (σi is the ith ‘arrival’). Let Lg denote the law of η.

If η is adapted to {Gt : t ≥ 0}, then

dL2g

dLg

∣∣∣∣
Gt

= 2nt exp

{
−
∫ t

0

g(s)ds

}
.

Combining the change of measure for the motion component and for the
Poisson point process leads to a change of measure for the spatial branching
process X. Our ‘spine’ result here is as follows.

Theorem 2. Suppose that µ is a finite measure with supp µ ⊂ B. For branching
particle process we can thus take µ =

∑
i δxi where {xi} is a finite set of (not

necessarily distinct) points in B. Define P̃µ by the martingale change of measure

dP̃µ
dPµ

∣∣∣∣∣
Ft

= Mφ
t .
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Define

Pφφµ =

∫

B

µ (dx)
φ (x)

〈φ, µ〉 Pφx,

that is, we randomize the starting point of (Y,Pφ· ) according to the probability

distribution φµ/〈φ, µ〉. Note in particular that when µ = δx, Pφφµ = Pφx.

Suppose that g ∈ C+
b (D) and ug is the minimal positive solution to u̇ =

Lu + βu2 − βu on D× (0,∞) with limt↓0 u(·, t) = g(·). Then

Ẽµ

(
e−〈g,Xt〉

)
=

∑

i

φ(xi)

〈φ, µ〉




Eφxi
L2β(Y )(e−g(Yt)

nt∏

k=1

ug(Yσk , t− σk))
∏

j 6=i
ug(xj, t)




 (9)

The decomposition suggest that (X, P̃µ) has the same law as a process con-
structed in the following way. From the configuration µ =

∑
i δxi pick a point

x′ ∈ {xi} with probability φ(x′)/〈φ, µ〉. From the remaining points, independent

(L, β;D)-branching processes are initiated. From the chosen point, a (Y,Pφx′ )-
diffusion is initiated along which (L, β;D)-branching processes immigrate at
space-time points {(Yσi , σi) : i ≥ 1} where n = {{σi : i = 1, ..., nt} : t ≥ 0} is a
Poisson process with law L2β(Y ).

This decomposition relates to a spectrum of similar results that exist in
the literature for both superprocesses and branching processes by S. Evans,
A. Etheridge, R. Williams, S. Roelly, A. Rouault and others 11. Theorem 2 of-
fers decompositions with the particular feature that the spine is represented by
a diffusion conditioned to stay in the compactly embedded domain B.

Now, obviously the new measure is absolutely continuous with respect to the
old one up to time t. However this does not mean that this is true ‘up to time
infinity’. Nevertheless, we have the following result.

Lemma 1. Suppose that suppµ ⊂ B and λ = λc (L+ β, B) > 0. Then Mφ
t

converges to its almost sure limit Mφ
∞ in L1 (Pµ) , and furthermore P̃µ ≪ Pµ.

4.2. Application to local extinction and exponential growth

After all these preparations, let us see how one can attack the problem of local
extinction and (local) exponential growth for the branching diffusion.

Theorem 3 (Local extinction vs. local exponential growth). Let 0 6= µ
be a measure with supp µ ⊂⊂ D.

(i) Under Pµ the process Z exhibits local extinction if and only if there exists
a function h > 0 satisfying (L + β)h = 0 on D, that is, if and only if
λc ≤ 0. In particular, the local extinction property does not depend on the
starting measure µ.

11The spine decomposition presented in this notes was proved by A. Kyprianou and the
author and to a large extent it was inspired by a result of R. Lyons, R. Pemantle and Y. Peres.
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(ii) When λc > 0, for any λ < λc and any open ∅ 6= B ⊂⊂ D,

Pµ

(
lim sup
t↑∞

e−λtZt(B) = ∞
)
> 0 and Pµ

(
lim sup
t↑∞

e−λctZt(B) <∞
)

= 1.

Remark 2 (Total mass). In Theorem 3 we are concerned with the local be-
havior of the population size. When considering the total mass process ‖Zt‖ :=
Zt(D), the growth rate may actually exceed λc. Indeed, take for example the
(L, β;D)-branching diffusion with a conservative diffusion corresponding to L on
D and with λ0 := λc(L,D) < 0, and let β > 0 be constant. Then λc(L+β,D) =
β + λ0 < β, but – since the branching rate is spatially constant and since there
is no ‘loss of mass’ by conservativeness – a classical theorem on Yule’s processes
tells us that e−βt‖Zt‖ tends to a nontrivial random variable as t → ∞, that is,
that the growth rate of the total mass is β > λc. ⋄

Before the proofs we present a proposition, which is not hard to prove by an
application of the Borel-Cantelli lemma.

Proposition 2. For any nonempty open set B ⊂ D and finite µ,

Pµ

(
lim sup
t↑∞

Zt(B) ∈ {0,∞}
)

= 1.

4.3. Proof of Theorem 3 (i)

(a) Assume that λc ≤ 0. Then there exists an h > 0 solving (L + β)h = 0. We
claim that {〈h, Zt〉 : t ≥ 0} is a positive Pµ-supermartingale for all supp(µ) ⊂⊂
D. Indeed, it is not hard to show that Eδx〈h, Zt〉 ≤ h(x) for t ≥ 0 and x ∈ D.
From a standard application of the Markov property and the branching property,
it then follows that {〈h, Zt〉 : t ≥ 0} is a Pµ-supermartingale.

Now in the possession of this supermartingale it follows for Borel B ⊂⊂ D,
that

lim sup
t↑∞

Zt (B) ≤ C lim sup
t↑∞

〈h, Zt〉 <∞ (10)

Pµ-almost surely where C is a constant. When B is open, by Proposition 2 it
follows that limt↑∞ Zt (B) = 0 Pµ− a.s. Since every compactly embedded Borel
can be fattened up to an open B ⊂⊂ D, local extinction follows by comparison.

(b) Assume now that λc > 0. Since it is assumed suppµ ⊂⊂ D, we can
choose a large enough B for which suppµ ⊂ B and λ = λc (L+ β, B) > 0.
Choose 0 6= g ∈ C+

c so that g ≤ 1B ; obviously, it suffices to prove that

Pµ
(
lim supt↑∞〈g, Zt〉 > 0

)
> 0. Let Mφ

t and P̃µ be as in Theorem 2. By Lemma

1, it is enough to show that P̃µ
(
lim supt↑∞〈g, Zt〉 > 0

)
> 0, or equivalently,

that Ẽµ
(
e− lim supt↑∞〈g,Zt〉

)
< 1. Let ε > 0. Use first Fatou’s Lemma and then

Theorem 2 to obtain the estimate

Ẽµ

(
e− lim supt↑∞〈g,Zt〉

)
≤ lim inf

t↑∞
Ẽµ

(
e−〈g,Zt〉

)
≤ lim inf

t↑∞
Eφφµ

(
e−g(Yt)

)
(11)
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The ergodicity of (Y,Pφφµ) implies that the right hand side of (11) is less than
one, finishing the proof. �

Note the intuition behind the last part of the proof: the spine particle visits
every part of B for arbitrarily large times because it is an ergodic diffusion; this
forces the process itself to do the same.

4.4. Proof of Theorem 3 (ii)

We may assume without loss of generality that λ ∈ (0, λc). By standard theory,
there exists a large enough B∗ ⊂⊂ D with a smooth boundary so that

λ∗ := λc (L+ β, B∗) ∈ (λ, λc].

Further, we can also choose B∗ large enough so that supp(µ) ⊂⊂ B∗.
We first claim that if Ω0 := {limt↑∞ e−λtZt (B∗) = ∞}, then Pµ (Ω0) > 0.

Indeed, if Ẑ is defined as the (L, β;B∗)-branching process then

Pµ (Ω0) ≥ Pµ

(
lim inf
t↑∞

e−λ
∗tZt (B

∗) > 0

)
≥ Pµ

(
lim inf
t↑∞

e−λ
∗t‖Ẑt‖ > 0

)

≥ Pµ

(
lim
t↑∞

e−λ
∗t〈φ∗, Ẑt〉 > 0

)
,

where (L + β − λ∗)φ∗ = 0 in B∗ and φ∗ = 0 on ∂B∗. Note it is implicit in the

definition of Ẑ that particles are killed on the boundary ∂B∗. Since λ∗ > 0,
Lemma 1 implies that the last term in the last inequality is positive.

Now let B be any open set with ∅ 6= B ⊂⊂ D. Let p := infx∈B∗ p(1, x, B) > 0,
where {p(t, ., dy) : t > 0} is the transition measure for (Y,P). Let 0 < q < p
and An := {Zn+1(B) ≥ qZn(B∗)}. It follows from the law of large numbers
and the Markov property that on Ω0, limn↑∞P (An | Zn, ..., Z1) = 1. Using the
extended Borel-Cantelli lemma, it easily follows that lim supt↑∞ e−λtZt(B) =
∞ Pδx−a.s. on Ω0. �
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5. The Law of Large Numbers for spatial branching processes and
superprocesses

In this section we would like to give a brief review on the problem of the Law of
Large Numbers for spatial branching processes. Here Z will denote the (L, β,D)-
branching diffusion and X will denote the (L, β, α,D)-superprocess.

5.1. The question

Consider Z and assume that it starts with a (finite) discrete measure µ. Let us
first assume that Y is conservative (i.e. never reaches the cemetery state ∆) and
β is a positive constant. Since the total mass process |Z| is a non-spatial Yule’s
process (pure birth process), it is well known that e−βt|Zt| has an a.s. positive
limit as t → ∞. That is, |Zt| ∼ eβtNµ, where Nµ > 0 a.s. Let pL(t, x, ·) denote
the kernel corresponding to the diffusion Y (or, equivalently, to L). It is natural
to ask then whether it is true that for B ⊂⊂ D,

Zt(B) ∼ |Zt| · pL(t, x, B)?

This would be a kind of Law of Large Numbers, because what it says is that
the proportion of particles in B at t is given by the probability that a single
particle is in B at t. In other words, the question is whether

Zt(B) ∼ eβtNµ · pL(t, x, B),

and since eβt · pL(t, x, ·) = pL+β(t, x, ·) is the kernel corresponding to L+ β, we
can rewrite this in the form

Zt(B) ∼ Nµ · pL+β(t, x, B).

Of course this last formula makes sense even for spatially dependent β’s.
Moreover, it is known (and easy to derive) that pL+β(t, x, B) is just the expec-
tation of Zt(B) starting from µ = δx (‘first moment formula’). So, for a general
β one has the following conjecture:

Zt(B)

EδxZt(B)
∼ Nx.

This conjecture is wrong! The reason is the possibility of local extinction. If
local extinction occurs, then the left hand side becomes zero in finite time (and
stays zero).

In terms of our spectral criterion for local extinction this means that there is
no Law of Large Numbers, or more generally, there is no scaling for Zt(B) when
λc = λc(L+ β) ≤ 0. The correct question therefore is this: is there a dichotomy
in the sense that either

(i) Z suffers local extinction (λc ≤ 0), or
(ii) the (local) Law of Large Numbers holds for Z(λc > 0)?
This is not an easy question! In fact, since the spectral criterion of local

extinction for superprocesses is the same, one can ask if the same dichotomy
holds for the superprocess X. Moreover one has to clarify of course, what exactly
‘∼’ means in the formulas.
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5.2. Some answers

There are only partial answers in this direction. For superprocesses, it has been
proven in [5] that if D = Rd and λc > 0 and furthermore a certain spectral

condition holds for L + β, then for all 0 6= g ∈ C+
c , the ratio 〈Xt,g〉

Eµ〈Xt,g〉 has a

(non-degenerate) limit (depending only on µ) in law.
One equivalent way of formulating the spectral condition is as follows. In gen-

eral pL+β(t, x, B) ∼ eλct× possible subexponential term. The spectral condition
is then equivalent to not having a subexponential term (the scaling is ‘purely
exponential’). For example, when Y is d-dimensional Brownian motion and β is
positive constant, one has pL+β(t, x, B) ∼ eβt · t−d/2, and therefore this case is
not included in the setting. On the other hand, if one replaces Brownian motion
with the Ornstein-Uhlenbeck process (or, in fact, with any positive recurrent
process), then it is included.

It is important to point out however that, for nonconstant β’s, the underlying
motion corresponding to L does not have to be positive recurrent (it can even be
transient), it is the operator L+ β, involving branching too, that has to satisfy
a certain spectral condition. In fact, an auxiliary diffusion, corresponding to a
particular h-transform of the operator L + β − λc is positive recurrent. This
other diffusion also appears in a ‘backbone’12 construction.

This result was improved in [6] in the sense that a general Euclidean domain
D ⊆ Rd was considered instead of D = Rd and convergence in law was upgraded
to convergence in probability; recently it was further extended [4] to certain
cases when the scaling is not purely exponential, including the case when Y is
d-dimensional Brownian motion and β is positive constant.

Convergence in probability is far from being satisfying. In fact, by a well
known theorem [1, 8], the analogous result for branching Brownian motion (with
constant β) holds even in the strong sense (i.e. the convergence is a.s.), thus there
is no real reason to assume that the convergence only holds in probability for
superprocesses.

In three very recent papers [2, 3, 7] a.s. convergence was finally settled for
certain classes of branching diffusions [3, 7] and superprocesses [2]. Despite the
somewhat restrictive conditions, [2] seems to be the first time when SLLN is
demonstrated for superprocesses, and it represents a major step in the direction
of establishing the ‘local extinction vs. SLLN ’ dichotomy for superprocesses in
terms of the associated generalized principal eigenvalue. Another nice feature
of the paper is that besides symmetric diffusions, symmetric Levy processes are
treated too. An essential difficulty is compounded in the fact that the method
of [3] for replacing discrete times with continuous times does not carry through.
The authors of [2] manage to overcome this difficulty with a highly nontrivial
application of the martingale formulation for superprocesses.

At this point it seems to be a serious challenge to prove/ disprove the full
dichotomy (without additional scaling assumptions) for both kinds of processes.

12‘Backbone’ constructions for superprocesses are similar to the ‘spine’ constructions for
branching diffusions.
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6. Further topics in superprocesses: compact support property and
polar decomposition

6.1. The compact support property

In this subsection we will consider superprocesses with a somewhat more general
branching mechanism. For simplicity, we take D = Rd, although most of the
results are true for general Euclidean domains. 13

In this case the evolution equation appearing in the log-Laplace formulation
is of the form

ut = Lu+ βu − αup in Rd × (0,∞);

u(x, 0) = f(x) in Rd;

u(x, t) ≥ 0 in Rd × [0,∞),

(12)

where p ∈ (1, 2]. When 1 < p < 2 the variance is no longer finite and only
the moments up to p exist in the particle process approximation, whereas the
scaling of the clock becomes np−1. Finally, the paths of the superprocess are not
continuous but only càdlàg when 1 < p < 2.

Let µ ∈ Mc(R). Since D = Rd, the measure-valued process corresponding to
Pµ possesses the compact support property if

Pµ




⋃

0≤s≤t
supp X(s) is bounded



 = 1, for all t ≥ 0. (13)

The definition is independent of the choice of the nonzero compactly supported
starting measure.

There are four objects, corresponding to four different underlying probabilis-
tic effects, which can influence the compact support property:

1. L, the operator corresponding to the underlying motion;
2. β, the mass creation parameter of the branching mechanism;
3. α, the nonlinear component of the branching mechanism, which can be

thought of as the variance parameter if p = 2;
4. p, the power of the nonlinearity, which is the scaling power and is con-

nected to the fractional moments of the offspring distribution in the par-
ticle process approximation to the measure-valued process.

We shall see that both L and α play a large role in determining whether or not
the compact support property holds; β and p play only a minor role.

The connection with partial differential equations is that the compact support
property turns out to be equivalent to a uniqueness property for solutions to
(12).

Result 1. The compact support property holds for one, or equivalently all,
nonzero, compactly supported initial measures µ if and only if there are no non-
trivial solutions to (12) with initial data f ≡ 0.

13The results of this subsection are joint with R. Pinsky.
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Remark 3. Result 1 suggests a parallel between the compact support prop-
erty for measure-valued processes and the non-explosion property for diffusion
processes. Indeed, the non-explosion property for the diffusion process Y cor-
responding to the operator L is equivalent to the nonexistence of nontrivial,
bounded positive solutions to the linear Cauchy problem with 0 initial data:

ut = Lu in Rd × (0,∞);

u(x, 0) = 0 in Rd;

u ≥ 0 in Rd × (0,∞).

(14)

It is natural for bounded, positive solutions to be the relevant class of solutions
in the linear case and for positive solutions to be the relevant class of solutions
in the semi-linear case. Indeed, by Ito’s formula, the probabilities for certain
events related to Y are obtained as bounded, positive solutions to the linear
equation, and by the log-Laplace equation, the negative of the logarithm of the
probability of certain events related to X can be obtained as positive solutions
to the semi-linear equation. ⋄

The class of operators L satisfying the following assumption will play an
important role.

Assumption 1. For some C > 0,

1.
∑n

i,j=1 aij(x)νiνj ≤ C|ν |2(1 + |x|2), x, ν ∈ Rd;

2. |b(x)| ≤ C(1 + |x|), x ∈ Rd.

We have the following basic result.

Result 2. Let p ∈ (1, 2] and let the coefficients of L satisfy Assumption 1.

1. There is no nontrivial solution to (14); thus, the diffusion process Y does
not explode.

2. If
inf
x∈Rd

α(x) > 0,

then there is no nontrivial solution to (12) with initial data f = 0; thus,
the compact support property holds for X.

The conditions in Assumption 1 are classical conditions which arise frequently
in the theory of diffusion processes. Result 2 shows that if the coefficients of L
obey this condition and if the branching coefficient α is bounded away from zero,
then everything is well behaved—neither can the underlying diffusion process
explode nor can the measure-valued process fail to possess the compact support
property.

The following result shows that the compact support property can fail if
infx∈Rd α(x) = 0. It also demonstrates that the effect of α on the compact
support property cannot be studied in isolation, but in fact depends on the
underlying diffusion.
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Theorem 4. Let p ∈ (1, 2] and let

L =
1

2

d∑

i,j=1

ai,j
∂2

∂xi∂xj
, where

C−1
0 (1 + |x|)m ≤

d∑

i,j=1

ai,j(x) ≤ C0(1 + |x|)m, m ∈ [0, 2], for some C0 > 0.

1. If
α(x) ≥ C1 exp(−C2|x|2−m),

for some C1, C2 > 0, then the compact support property holds for X.
2. If

α(x) ≤ C exp(−|x|2−m+ǫ) and β(x) ≥ −C(1 + |x|)2−m+2δ,

for some C, ǫ > 0 and some δ < ǫ, then the compact support property does
not hold for X.

(By Result 1, to prove this theorem, it is necessary and sufficient to show
that if α is as in part (1) of the theorem, then there is no nontrivial solution
to (12) with initial data f = 0, while if α is as in part (2) of the theorem, then
there is such a nontrivial solution.)

As a complement to Theorem 4, we note the following result.

Result 3. Let p ∈ (1, 2].

1. Let d ≥ 2 and let

L = A(x)∆, where A(x) ≥ C(1 + |x|)m, for some C > 0 and m > 2.

Assume that
sup
x∈Rd

α(x) <∞ and β ≥ 0.

Then the compact support property does not hold for X.
2. Let d = 1 and let

L = A(x)
d2

dx2
, where A(x) ≥ C(1+ |x|)m, for some C > 0 and m > 1+p.

Assume that
sup
x∈Rd

α(x) <∞ and β ≥ 0.

Then the compact support property does not hold for X.
3. Let d = 1 and let

L = A(x)
d2

dx2
, where A(x) ≤ C(1+|x|)m, for some C > 0, and m ≤ 1+p.

Assume that
inf
x∈Rd

α(x) > 0 and β ≤ 0.

Then the compact support property holds for X.
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Remark 4. It follows from Result 3 that if d = 1 and L = (1 + |x|)m d2

dx2 , with
m ∈ (2, 3], and say α = 1 and β = 0, then the compact support property will
depend on the particular choice of p ∈ (1, 2]. ⋄
Remark 5. If d = 2 and L = (1 + |x|)m∆, with m > 2, and say α = 1 and
β = 0, then by Result 3, the compact support property does not hold, yet the
underlying diffusion does not explode since it is a time-change of a recurrent
process; namely, of two-dimensional Brownian motion. ⋄

The proof is based on the fact that, by Result 1, it is necessary and sufficient
to show that under the conditions of parts (1) and (2), there exists a nontrivial
solution to (12), while under the conditions of part (3) there does not.

A useful comparison result is as follows.

Proposition 3. Assume that
β1 ≤ β2

and
0 < α2 ≤ α1.

If the compact support property holds for β = β2 and α = α2, then it also holds
for β = β1 and α = α1.

Theorem 4 and Result 3 demonstrate the effect of the underlying diffusion Y
on the compact support property in the case that L is comparable to (1+|x|)m∆.
We now consider more generally the effect of the underlying diffusion process
on the compact support property.

Theorem 5. Let p ∈ (1, 2] and assume that the underlying diffusion process Y
explodes. Assume that

sup
x∈Rd

α(x) <∞ and inf
x∈Rd

β(x) > −∞. (15)

Then the compact support property does not hold.

Remark 6. Theorem 5 shows that if the branching mechanism satisfies (15),
then the compact support property never holds if the underlying diffusion is
explosive. The converse is not true—an example was given in Remark 2 following
Result 3, and another one appears in the remark following Corollary 3. ⋄

The next result shows that the restriction supx∈Rd α(x) < ∞ in Theorem 5
is essential.

Proposition 4. Let p ∈ (1, 2]. Let m ∈ (−∞,∞),

L = (1 + |x|)m∆ in Rd,

β = 0 and
α(x) ≥ c(1 + |x|)m−2,

for some c > 0. Then the compact support property holds for the measure-valued
process X. However, if m > 2 and d ≥ 3, the diffusion process Y explodes.
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We now discuss how the concept of a measure-valued process hitting a point
can be formulated and understood in terms of the compact support property.

Similarly to the range define also Rt =
(
∪s∈[0,t] supp(X(s))

)
. A path of the

measure-valued process is said to hit a point x0 ∈ Rd if x0 ∈ R. If X exhibits
local extinction, then x0 ∈ R if and only if x0 ∈ Rt for sufficiently large t. Thus,
we have:

If X exhibits local extinction, then

Pµ(X hits x0) > 0 if and only if there exists a t > 0 such that

Pµ(∪0≤s≤t supp(X(s)) is not compactly embedded in Rd − {x0}) > 0.

(16)

Now although we have assumed in this section that the underlying state space is
Rd, everything goes through just as well on an arbitrary domainD ⊂ Rd. Recall
that the compact support property is defined with respect to the domainD, and
the underlying diffusion will explode if it hits ∆ in finite time. In particular,
Result 1 still holds with Rd replaced by D.

In light of the above observations, consider a measure-valued process X cor-
responding to the log-Laplace equation (12) on Rd with d ≥ 2. The underlying
diffusion process Y on Rd corresponds to the operator L on Rd. Let Ŷ denote
the diffusion process on the domain D = Rd − {x0} with absorption at x0 and
corresponding to the same operator L. (Note that if x0 is polar for Y , then
Y and Ŷ coincide when started from x 6= x0. In fact, x0 is always polar un-
der the assumptions we have placed on the coefficients of L.) Let X̂ denote
the measure-valued process corresponding to the log-Laplace equation (12), but
with Rd replaced by D = Rd −{x0}. It follows from (16) that if X suffers local
extinction, then the measure-valued process X hits the point x0 with positive
probability if and only if X̂ on Rd − {x0} does not possess the compact support
property. Furthermore, the above discussion shows that even if X does not suf-
fer local extinction with probability one, a sufficient condition for X to hit the
point x0 with positive probability is that X̂ on Rd − {x0} does not possess the
compact support property.

A similar analysis can be made when d = 1. (The process X̂ above must
be replaced by two processes, X̂+ and X̂−, defined respectively on (x0,∞) and
(−∞, x0).) In the sequel, we will assume that d ≥ 2.

Consider now the following semi-linear equation in Rd − {0}:

ut =
1

2
∆u− up in (Rd − {0})× (0,∞);

u(x, 0) = 0 in Rd − {0};
u ≥ 0 in (Rd − {0}) × [0,∞).

(17)

By Result 1, the measure-valued process corresponding to the semi-linear
equation ut = 1

2∆u−up in Rd−{0} will possess the compact support property
if and only if (17) has a nontrivial solution. The following result was recently
proved by P. Baras, and M. Pierre [1], and later by R. Pinsky [6], using a different
method.
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Result 4. Let p > 1 and d ≥ 2.

1. If d < 2p
p−1 , then there exists a nontrivial solution to (17).

2. If d ≥ 2p
p−1 , then there is no nontrivial solution to (17).

Here p > 1 is unrestricted, even though of course there is no probabilistic
import when p > 2.

In terms of the superprocess, the following was shown in [4] (see also the
remark at the end of this subsection).

Theorem 6. Let p > 1 and d ≥ 2. Let X denote the measure-valued process on
the punctured space Rd − {0} corresponding to the semi-linear equation ut =
1
2
∆u+ βu − up in (Rd − {0}) × (0,∞). Consider the Cauchy problem

ut =
1

2
∆u+ βu − up in (Rd − {0}) × (0,∞);

u(x, 0) = 0 in Rd − {0};
u ≥ 0 in (Rd − {0})× [0,∞).

(18)

Assume that

d <
2p

p− 1
.

Let

β0 =
d(p− 1) − 2p

(p− 1)2
< 0.

1. If

β(x) ≥ β0 + κ

|x|2 , for some κ ∈ (0,−β0],

then there exists a nontrivial solution to (18); hence, the compact support
property does not hold for X.

2. If
lim sup
x→0

|x|2β(x) < β0,

then there is no nontrivial solution to (18); hence, the compact support
property holds for X.

Remark 7. The restriction κ ≤ −β0 is made to ensure that β is bounded from
above. ⋄

We have the following corollary of Result 4 and Theorem 6.

Corollary 3. Let X denote the measure-valued process on all of Rd, d ≥ 2,
corresponding to the semi-linear equation ut = 1

2
∆u+ βu− up in Rd × (0,∞).

1. If β is bounded from below and d < 2p
p−1 , then X hits any point x0 with

positive probability;
2. If β ≤ 0 and d ≥ 2p

p−1 , then X hits any point x0 with probability 0;
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3. If β ≤ 0, d < 2p
p−1 and β has a singularity at the origin such that

lim sup
x→0

|x|2β(x) <
d(p− 1) − 2p

(p− 1)2
,

then X hits 0 with probability 0.

When β = 0, part (1) follows immediately from Result 4, Result 1 and the
discussion preceding Result 4. The general case requires a little more works as
one needs to compare different β’s. (Recall that we are always assuming here
that β is bounded.)

When β ≤ 0, it is well-known that the super-Brownian motion in the state-
ment of the corollary becomes extinct. Thus, part (2) follows from Result 4,
Result 1 and the discussion preceding Result 4, while part (3) follows from
Theorem 6, Result 1 and the discussion preceding Result 4.

Remark 8. When β = 0, the results in parts (1) and (2) of Corollary 3 state
that critical, super-Brownian motion hits a point with positive probability if
d < 2p

p−1 , and with zero probability if d ≥ 2p
p−1 . (Note that this also yields an

example where X does not possess the compact support property even though
the underlying diffusion process does not explode.14) This result was first proved
by D. Dawson, I. Iscoe, and E. Perkins [2], and by E. B. Dynkin and S. Kuznetsov
[3]. Their methods were different than the one presented here. ⋄

6.2. Polar decomposition

As we have already seen in the beginning of the previous section, the total mass
process of a branching diffusion is sometimes easier to handle than the whole
process. This is true for superprocesses too. In fact, one can even think of the
superprocess until its extinction as a process of two components: the total mass
process, as ‘radial component’ and the process normalized by the total mass
(which is a probability measure valued process) as the ‘angular component’.
We are going to demonstrate this for the critical super-Brownian motion (the
(1
2∆, 0, 1, Rd)-superprocess).

To this end, let us have a review first on the Fleming-Viot superprocess which
is of independent interest too. Imagine that we have N individuals on the lat-
tice Zd and each of them perform independent symmetric random walk. In the
genetic setting Zd is the space of genetic types and the random walks are mu-
tations. Each individual has her own independent exponential clock with rate
γ > 0 (sampling rate) and when the clock rings, she jumps to a position ran-
domly chosen from the current empirical distribution of the population (sam-
pling mechanism). Note that we can consider this mechanism as branching: one
individual dies and another one is born somewhere. Also, the process can be
viewed as a (discrete) measure valued process.

14It is easy to find the connection and we leave this to the reader.
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Let us rescale now the model as follows: assign mass 1/N to each individual
(and so the measure valued process becomes a probability measure valued pro-
cess). Furthermore speed up time by factor N and reduce lattice mesh by factor
1/

√
N . (So the mutation part will converge to Brownian motion).

Formally, let VN (t, A) :=
∑

j/
√
N∈A p(Nt, j), where A ⊂ Zd and p(s, j) is the

proportion of the population at the point j at time s ≥ 0. Let N → ∞ now. If
VN (0, ·) converges to the probability measure ν on Rd weakly, then the process
{VN (t, ·); t ≥ 0} converges to a process {V (t, ·); t ≥ 0} weakly. This limiting
(probability measure valued) process is the Fleming-Viot superprocess.

Let us write X in a ‘polar coordinates’: Xt = rt · θt, where rt := |Xt| and
θt := Xt

|Xt| for rt > 0, (otherwise rt = 0, Xt = 0). Then it is easy to show

that r is a diffusion process (‘Feller’s diffusion) on D = [0,∞) corresponding to

the operator L = x d2

dx2 . (This diffusion will hit zero with probability one and
afterwards it stays at zero.) A result due to P. March and A. Etheridge then
states that θ is a Fleming-Viot superprocess, except that the sampling rate is
replaced by 1/rt. This ‘skew-product’ representation is the polar decomposition
for critical super-Brownian motion.
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7. Classical problems for random media: Brownian motion among
Poissonian obstacles and related topics

In this section we give a brief (and surely not comprehensive) review on some
of the classical problems in random media.

7.1. Brownian survival among Poissonian traps

As usual, B(x, r) denotes the open ball of radius r around x. Let W denote the
d-dimensional Brownian motion (Wiener-process) starting at the origin (the
corresponding probability will be denoted by P) and let us define the Wiener-
sausage up to time t with radius a:

V at = Vol




⋃

0≤s≤t
B(Wt, a)



 .

It turns out that this object is intimately related to the problem of Brownian
survival among Poissonian traps. Let ω denote the Poisson point process (PPP)
with intensity ν(dx) on Rd. (The corresponding probability will be denoted by
P.) That is, the number of points in A ⊂ Rd bounded is Poisson with parameter
ν(A) and the number of points in A ⊂ Rd and the number of points in B ⊂
Rd are independent random variables if A and B are disjoint. So for example
P(A is empty) = e−ν(A). Unless indicated otherwise we will set ν(dx) = ν ·
dx, ν > 0.

The (random) set

K :=
⋃

xi∈supp(ω)

B(xi, a)

is a trap configuration, or obstacle.
If T denotes the first hitting time of K by our Brownian motion, then we

would like to know what the asymptotic behavior of the probability of {T > t} is.
Of course this question can be asked in two different ways: what the asymptotics
of (E ⊗ P )(T > t) is, or what the P-a.s. asymptotics of P (T > t) is. In the first
case one talks about the annealed asymptotics and in the second one, about the
quenched one.

Now, the annealed asymptotics is in fact just the same as the asymptotics
for the Laplace transform of the Wiener sausage. Indeed,

(E ⊗ P )(T > t) = (E ⊗ P )



⋃

0≤s≤t
B(Wt, a) is empty


 = Ee−νV

a
t .

A little more than 30 years ago Donsker and Varadhan proved that for all
a, ν > 0,

lim
t→∞

t−d/(d+2) logE exp(−νV at ) = −c̃(d, ν),



János Engländer/Branching diffusions, superdiffusions and random media 337

where c̃(d, ν) is an explicitly given positive constant (we are using c̃ because
there is another constant c(d, ν) in the quenched case). Equivalently,

Ee−νV
a

t = exp[−c̃(d, ν)td/(d+2)(1 + o(1))].

Note that the scaling is milder than exponential, it is often referred to as
‘stretched exponential ’. For example in two dimension the Laplace transform
behaves like e−const

√
t.

Of course, the same is then true for the annealed survival probability:

(E ⊗ P )(T > t) = exp[−c̃(d, ν)td/(d+2)(1 + o(1))].

The easy part is

lim inf
t→∞

t−d/(d+2) logE exp(−νV at ) ≥ −c̃(d, ν),

because all one has to do is to ‘advise’ a survival strategy which is realized (at
least) with probability exp[−c̃(d, ν)td/(d+2)(1+o(1))], whereas in order to verify

lim sup
t→∞

t−d/(d+2) logE exp(−νV at ) ≤ −c̃(d, ν),

one has to show that the advised strategy is actually optimal.
In the context of Brownian survival among Poissonian traps these (and also

the quenched asymptotics) were settled by A. S. Sznitman.
Let us see now how to ‘advise’ a survival strategy. An obvious observation is

that if B(0, Rt+ a) is empty (such an empty ball is called a clearing), and if W
is confined to B(0, Rt) up to t, then T > t. That is,

(E ⊗ P )(T > t) ≥ P(B(0, Rt + a) is empty) · P (τB(0,Rt) > t),

where τB(0,Rt) denotes the exit time of W from the ball. It is not hard to

show that P (τB(0,Rt) > t) ≥ c(d)e−λd/R
2
t ·t, where λd is the principal Dirichlet

eigenvalue of −∆ on the unit ball. Hence

(E ⊗ P )(T > t) ≥ c(d)e−νωd(Rt+a)
d−λd/R

2
t ·t,

where ωd is the volume of the d-dimensional unit ball. So

log(E ⊗ P )(T > t) ≥ log c(d) − νωd(Rt + a)d − λd/R
2
t · t. (19)

Of course, one wants to get the optimal (strongest) lower estimate. In order
to achieve this, we match the orders of the last two terms (the constant will
be lower order and thus negligible), which happens when Rt = O(t1/(d+2)).
If Rt = kt1/(d+2), then we have to maximize f(k) := νωdk

d + λd

k2 , which is

found easily (by differentiation): k =
(

2λd

dνωd

)1/(d+2)

. The rest is straightforward.

Setting Rt :=
(

2λd

dνωd

)1/(d+2)

· t1/(d+2) in (19), dividing by td/(d+2) and finally

taking lim inf gives the desired lower estimate.
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As we have mentioned, the proof of the upper estimate is much harder and
it is definitely beyond the scope of these notes.

As far as the quenched problem is concerned, the asymptotics is different. If
a is sufficiently small such that the origin belongs to an infinite trap free cluster
with positive P-probability, then on that set P-a.s,

P (T > t) = exp

(
−c(d, ν) t

(log t)2/d
(1 + o(1))

)
,

where again c(d, ν) is an explicitly given positive constant.
Finally let us note that the annealed and quenched asymptotics hold also for

soft obstacles (so far we have been talking about hard ones), where the meaning
of being ‘soft’ is as follows. Let b > 0 (the size of b plays no role) and for a given
realization of ω let

P (T > t) = exp

(
−b
∫ t

0

1K(Ws) ds

)
.

(This is not the usual formulation because we do not add up the rates on over-
lapping balls, but it does not matter from the point of view of asymptotics
and this is what we will need.) That is, as long as W is inside K it ‘feels’ an
exponential killing rate, whereas in the ‘Swiss cheese’ Kc it is ‘safe’.

7.2. Random walk in random environment

Let us first assume d = 1. There are two basic models for random walk in
random environment (RWRE):

• Site randomness (this is what usually meant by RWRE). For a given
realization of the environment ω, {Xn} is a Markov-chain on Z. The walker
located at x ∈ Z moves to x+1 with probability p(x, ω) and to x−1 with
probability q(x, ω) = 1−p(x, ω), where {p(x, ω), x ∈ Z} are i.i.d. random
variables with values in [0, 1].

• Bond randomness (sometimes called ‘random conductivity’ model). Here
{cx,x+1(ω), x ∈ Z} are i.i.d. with values in (0,∞) and for a given realiza-
tion {Xn} is a Markov-chain on Z with probability

p(x, ω) :=
cx,x+1(ω)

cx−1,x(ω) + cx,x+1(ω)

of jumping to x+ 1 and with probability q(x, ω) = 1− p(x, ω) of jumping
to x− 1, in which case the {p(x, ω), x ∈ Z} are of course no longer i.i.d..

Site randomness goes back to Chernov [2] in the early sixties, while bond ran-
domness goes back to Fatt [3] in the fifties.

Of course it is no problem to define these models in higher dimensions
too. However, the higher dimensional case is significantly harder than the one-
dimensional one, and much less is known. In the sequel we keep assuming d = 1.
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One of the natural questions concern the speed of the random walk. Now, in
the bond randomness model one can show that for almost all realizations of ω,
Xn

n
tends to zero, which is interpreted as ‘vanishing limiting velocity’. However,

for the site randomness case, the situation is far more subtle. Here we suffice
with citing the classical result of Solomon [4].

Theorem 7. Let ρ(x, ω) := q(x,ω)
p(x,ω)

and ρ := ρ(0, ω). If P corresponds to the

environment and P ω to the walk given ω, then there are three cases.

1. E[logρ] < 0 and limnXn = +∞,
2. E[logρ] > 0 and limnXn = −∞,
3. E[logρ] = 0 and lim infnXn = −∞ but lim supnXn = +∞,

where all the limits are meant P ⊗ P ω-a.s.
Furthermore, Xn

n → v P ⊗ P ω-a.s. as n → ∞, where, again, there are three
cases.

1. Eρ < 1 and v = 1−Eρ
1+Eρ

∈ (0, 1),

2. Eρ ≥ 1, E[ρ−1] ≥ 1 and v = 0,

3. Eρ−1 < 1 and v = Eρ−1−1
1+Eρ−1 ∈ (−1, 0).

Remark 9. To understand the statements better, note the following.
(i) In the third case Eρ−1 < 1 automatically implies Eρ > 1, by Jensen. Also

by Jensen, Eρ < 1 implies E[logρ] < 0 and Eρ−1 < 1 implies E[logρ] > 0.
(ii) When v = 0, it is known that the propagation can be as slow as (logn)2

per n steps.
(iii) It is easy to show (again by Jensen), that Eρ < 1 implies v ≤ Ep − Eq,

where p = p(0, ω) and q = 1−p. Similarly Eρ−1 < 1 implies v ≥ Ep−Eq. These
inequalities are strict (unless p is deterministic), which shows the ‘slowdown’ of
the walk relative to the naive guess that the speed is simply v∗ := Ep− Eq. ⋄
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8. Spatial branching processes among Poissonian obstacles: hard
obstacles

We now start putting Poissonian obstacles and spatial branching together.15

Let T denote the hitting time of K (defined in the previous section) by
Z, where Z denotes branching Brownian motion (BBM) with strictly dyadic
branching and constant rate β > 0, starting with a single particle at the origin.
That is T is the time the first particle hits any trap:

T := inf{s ≥ 0, Ws ∈ K}.

Our question is again the asymptotic behavior of the probability of {T > t}.

8.1. Constant trap intensity

Let P be as in the previous section and let P denote the probability correspond-
ing to the BBM.

Theorem 8. When d ≥ 2, the annealed asymptotics is as follows:

lim
t→∞

1

t
log(P ⊗ P )(T > t) = −β,

and this is also true for the supercritical super-Brownian motion starting with
unit mass at the origin. More precisely, if X is the (1

2∆, β, α; Rd)-superprocess
with α, β positive constants and d ≥ 2, then

lim
t→∞

1

t
log(P ⊗ Pδ0)(T

∗ > t | S) = −β,

where P corresponds to X, T ∗ := inf{t ≥ 0 | Xt(K) > 0} and S is the event
that X survives forever.

Although this result is far from being trivial, in a sense it is not too exciting
because it indicates the overwhelming influence of the branching over the spatial
motion. For example, in case of Z, the probability of not branching at all up to t
is e−βt and by the Donsker-Varadhan result we know that a single particle avoids
K up to t with a subexponentially small probability. Therefore, we immediately
obtain the lower bound

lim inf
t→∞

1

t
log(P ⊗ P )(T > t) ≥ −β,

for all d ≥ 1. That this actually coincides with the upper bound for d ≥ 2,
shows that in a sense suppressing the branching is the ‘best the system can do’
in order to avoid the traps, and the cost of doing so is the dominating factor
on a logarithmic scale. Because of the conditioning for X however, the lower
estimate for the superprocess is not easy.

15Results of the first subsection are due to the author, results in the second one are joint
with F. den Hollander.
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8.2. Decaying trap intensity

In order to treat the more delicate one-dimensional case of the previous sub-
section, we are going to discuss a setting when the trap intensity decays at the
order |x|d−1 as |x| → ∞, which includes are previous one-dimensional case. So
let us consider now a trap intensity satisfying that

dν

dx
∼ ℓ|x|1−d,

where ℓ is a fine tuning constant. Considering the same process Z under P as
before and the same killing rule (we kill Z when the first particle hit K) we
have the following annealed asymptotics for the tail of the survival probability.

Theorem 9.

lim
t→∞

log
1

t
(P ⊗ P )(T > t) = −I(ℓ, β, d),

where T is as before and I(ℓ, β, d) > 0 can be computed in terms of a variational
problem.

Instead of writing down the variational problem, let us see the optimal sur-
vival strategy the variational problem ‘encodes’.

First, it turns out that there is a crossover at a critical value of ℓ, which
we will denote by ℓcr = ℓcr(β, d). (This crossover is the reason we chose this
particular order for ν . If the density is higher or lower order than |x|1−d, then
we fall into one of the regimes already present when dν

dx ∼ ℓ|x|1−d, and ℓ > ℓcr
or ℓ < ℓcr , respectively.) If ℓ∗cr := s−1

d

√
β/2, where sd is the surface of the d-

dimensional unit ball, then for d = 1, ℓcr = ℓ∗cr , while for d ≥ 2, ℓcr < ℓ∗cr . In the
theorem below we try to explain the optimal survival strategy in words rather
than by using the precise formulation. Roughly speaking, the optimal survival
strategy means that, conditioned on survival, the system, consisting of the BBM
as well as the traps, behaves in a certain way up to time t with P⊗P -probability
tending to one as t → ∞. We will distinguish between a ‘low intensity’ (ℓ < ℓcr)
and a ‘high intensity’ (ℓ > ℓcr) regime. Note, that the case ℓ = ℓcr is left open.

Concerning the optimal survival strategy, we have the following result. (The
first part is actually just an interpretation of the precise statement which will
be given in the theorem after this result.)

Result 5. Conditional on {T > t}, the following holds.

• (Low intensity regime) For ℓ < ℓcr, the ball B(0,
√

2βt) is emptied, the
system stays inside this ball and branches at rate β.

• (High intensity regime) For ℓ > ℓcr,

– d = 1: a B(0, o(t)) ball is emptied, while Z suppresses branching until
t and stays inside this ball,

– d ≥ 2: There are two numbers (these are actually the unique min-
imizers of the variational problem for I(ℓ, β, d)), 0 < η∗ < 1 and
c∗ > 0, such that Z suppresses branching until η∗t, empties a ball of
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radius
√

2β(1 − η∗)t around a point at distance c∗t from the origin;
during remaining time (1 − η∗)t the BBM branches at its normal β
rate.

Furthermore, for d ≥ 2, ℓ 7→ I(ℓ, β, d) is continuous and strictly increasing, with
limℓ→∞ I(ℓ, β, d) = β (see Fig. 1) and ℓ 7→ η∗(ℓ, β, d) and ℓ 7→ c∗(ℓ, β, d) are
both discontinuous at ℓcr and continuous on (ℓcr,∞), with

lim
ℓ→∞

1 − η∗(ℓ, β, d)

c∗(ℓ, β, d)
= 1, lim

ℓ→∞
c∗(ℓ, β, d) = 0. (20)

Finally, c∗ >
√

2β (1 − η∗) for all ℓ > ℓcr.

0

sβ

ℓcr = ℓ∗cr

(i)

0 ℓcr ℓ∗cr

s

β

(ii)

Fig. 1 ℓ 7→ I(ℓ, β, d) for: (i) d = 1; (ii) d ≥ 2.

Remark 10. By the last statement, the clearing never contains the origin for
ℓ > ℓcr. However, for ℓ < ℓcr, it does. So, the discontinuity mentioned in the
theorem means that, surprisingly, when ℓ crosses its critical value, both c∗ (the
distance of the clearing normalized by t) and

√
2β(1 − η∗) (the radius of the

clearing normalized by t) have a jump. So in a sense, the clearing ‘jumps away’
from the origin and its size ‘jumps down’. We have no intuitive explanation for
this phenomenon. ⋄

The precise statement regarding the optimal survival strategy is as follows.

Theorem 10 (optimal survival strategy). Fix β, a. For r, b > 0 and t ≥ 0,
define

C(t; r, b) = {∃x0 ∈ Rd : |x0| = b, Brt(x0t) ∩K = ∅}. (21)
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(i) For d = 1, ℓ < ℓcr or d ≥ 2, any ℓ, and 0 < ε < 1 − η∗,

lim
t→∞

(E × Pδ0)
(
C
(
t;
√

2β (1 − η∗ − ε) , c∗
)
| T > t

)
= 1,

lim
t→∞

(E × Pδ0)
(
|Z(t)| ≥ ⌊eβ(1−η∗−ε)t⌋ | T > t

)
= 1. (22)

(ii) For d ≥ 1, ℓ < ℓcr and ε > 0,

lim
t→∞

(E × Pδ0)
(
B

(1+ε)
√

2β t
(0) ∩K 6= ∅ | T > t

)
= 1,

lim
t→∞

(E × Pδ0)
(
R(t) ⊆ B

(1+ε)
√

2β t
(0) | T > t

)
= 1,

lim
t→∞

(E × Pδ0)
(
R(t) * B

(1−ε)
√

2β t
(0) | T > t

)
= 1. (23)

(iii) For d ≥ 1, ℓ > ℓcr and 0 < ε < η∗,

lim
t→∞

(E × Pδ0)
(
|Z((η∗ − ε)t)| ≤ ⌊td+ε⌋ | T > t

)
= 1. (24)

(iv) For d = 1, ℓ > ℓcr and ε > 0,

lim
t→∞

(E × Pδ0)
(
Bεt(0) ∩K 6= ∅ | T > t

)
= 1,

lim
t→∞

(E × Pδ0)
(
R(t) ⊆ Bεt(0) | T > t

)
= 1. (25)

When d = 1 we get an answer for the one dimensional constant intensity
case. In fact, the analysis shows that the optimal strategy is more extreme: in
the low intensity regime I(ℓ, β, d) grows linearly with ℓ and reaches the value β,
while in the high intensity regime it is always β (see Fig. 1). This corresponds
to the picture that in the low intensity regime there is neither suppressing of
branching nor dislocation (η∗ = c∗ = 0), but an interval around the origin must
be emptied, whereas in the high intensity regime, the branching is completely
suppressed (η∗ = 1, c∗ = 0).

The following problems are open:

– For d = 1 and ℓ > ℓcr , what is the radius of the o(t)-ball that is emptied
and how many particles are there inside this ball at time t?

– For d ≥ 2 and ℓ > ℓcr, what is the shape of the “small tube” in which
the system moves its particles away from the origin while suppressing the
branching? How many particles are alive at time η∗t?

– What can be said about the optimal survival strategy at ℓ = ℓcr?
– Instead of letting the trap density decay to zero at infinity, another way

to make survival easier is by giving the Brownian motion an inward drift
while keeping the trap density field constant. Suppose that dν/dx ≡ ℓ and
that the inward drift radially increases like ∼ κ|x|d−1, |x| → ∞, κ > 0. Is
there again a crossover in ℓ at some critical value ℓcr = ℓcr(κ, β, d)? What
is the optimal survival strategy?
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We close this section with discussing briefly another killing rule, which we
call ‘individual killing rule’. We now only kill Z when all its particles have been
absorbed. So the death time becomes

T̃ := inf{t ≥ 0 | |ZKt | = 0},

where ZK is the BBM with killing at ∂K.
What can we say about the tail behavior of the survival probability then?

Well, actually there is no tail behavior because there is no tail at all! And this
is true for any locally finite trap intensity!

More precisely, the following holds.

Theorem 11. Fix d, β, a. For any locally finite intensity measure ν,

lim
t→∞

(E × Pδ0)(T̃ > t) > 0. (26)

Theorem 11 follows from the assertion that the system may survive by empty-
ing a ball with a finite radiusR > R0, where R0 is chosen such that the branching
rate β balances against the killing rate λ(B(0, R0)), the principal Dirichlet eigen-
value of −∆/2 on the ball B(0, R0): λ(B(0, R0)) = β. Indeed, it can be shown,
that for any R > R0 there is a strictly positive probability (denoted by pR) that
at all times at least one particle has not yet left B(0, R0). Consequently, the sur-
vival probability is bounded from below by supR>R0

{pR exp[−ν(B(0, R0))]}.
The following two problems for individual killing are open:

– What is the limit in (26), say, when dν/dx is spherically symmetric?
– If the Brownian motion is given an outward drift, then for what values of

the drift does the survival probability decay to zero?
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9. Spatial branching processes among Poissonian obstacles: ‘mild’
obstacles

9.1. Basic notions and questions

Let us consider now a mechanism which is ‘milder’ than killing but still reduces
the population size. The purpose is to study a spatial branching model with
the property that the branching rate is decreased in a certain random region.
More specifically we will use a natural model for the random environment: mild
Poissonian obstacles.

We are going to work with slightly different notation relative to the previous
sections. As before, let ω be a Poisson point process (PPP) on Rd with intensity
ν > 0 and let now P denote the corresponding law. Furthermore, let a > 0 and
0 < β1 < β2 be fixed. We define the branching Brownian motion (BBM) with
a mild Poissonian obstacle, or the ‘(ν, β1, β2, a)-BBM’ as follows. Let B(z, r)
denote the open ball centered at z ∈ Rd with radius r and let K denote the
random set given by the a-neighborhood of ω:

K = Kω :=
⋃

xi∈supp(ω)

B(xi, a).

Then K is a mild obstacle configuration attached to ω. This means that given
ω, we define P ω as the law of the strictly dyadic (i.e. precisely two offspring)
BBM on Rd, d ≥ 1 with spatially dependent branching rate

β(x, ω) := β11Kω(x) + β21Kc
ω
(x).

An equivalent (informal) definition is that as long as a particle is in Kc, it obeys
the branching rule with rate β2, while in K its reproduction is suppressed and
it branches with the smaller rate β1. (We assume that the process starts with
a single particle at the origin.) The process under P ω is called a BBM with
mild Poissonian obstacles and denoted by Z. The total mass process will be
denoted by |Z|. Further, W will denote d-dimensional Brownian motion with
probabilities {Px, x ∈ Rd}.
Remark 11 (self-duality). The discrete setting has the advantage that when
Rd is replaced by Zd, the difference between the sets K and Kc is no longer
relevant. Indeed the equivalent of a Poisson trap configuration is an i.i.d. trap
configuration on the lattice, and then its complement is also i.i.d. (with a dif-
ferent parameter). So, in the discrete case ‘Poissonian mild obstacles’ give the
same type of model as ‘Poissonian mild catalysts’ would. This nice duality is
lost in the continuous setting as the ‘Swiss cheese’ Kc is not the same type of
geometric object as K. ⋄

Consider now the following natural questions (both in the annealed and the
quenched sense):

1. What can we say about the growth of the total population size?
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2. What are the large deviations? (E.g., what is the probability of producing
an atypically small population.)

3. What can we say about the local population growth?

As far as (1) is concerned, recall that the total population of an ordinary
(free) BBM grows a.s. and in expectation as eβ2t. (Indeed, for ordinary BBM,
the spatial component plays no role, and hence the total mass is just a β2-rate
pure birth process X. As is well known, the limit N := limt→∞ e−β2tXt exists
a.s and in mean, and P (0 < N < ∞) = 1.) In our model of BBM with the
reproduction blocking mechanism, how much will the suppressed branching in
K slow the global reproduction down? Will it actually change the exponent β2?
(We will see that although the global reproduction does slow down, the slowdown
is captured by a sub-exponential factor, being different for the quenched and
the annealed case.)

Consider now (2). Here is an argument to give a further motivation. Let us
assume for simplicity that β1 = 0 and ask the simplest question: what is the
probability that there is no branching at all up to time t > 0? In order to
avoid branching the first particle has to ‘resist’ the branching rate β2 inside
Kc. Therefore this question is quite similar to the survival asymptotics for a
single Brownian motion among ‘soft obstacles’ — but of course in order to
prevent branching the particle seeks for large islands covered by K rather then
the usual ‘clearings’. In other words, the particle now prefers to avoid the Kc

instead of K. Hence, (2) above is a possible generalization of this (modified)
soft obstacle problem for a single particle, and the presence of branching creates
new type of challenges.

Finally, for further mathematical models in population biology see e.g. [4].

9.2. Some results on the population growth

Let us consider the total population size first. Since the behavior of the total
population size does not seem to be easy to handle, let us first try to handle its
expectation and then trusting in the Law of Large Numbers (i.e. that the total
population size behaves as its expectation), we will at least know, what we want
to prove.

Concerning the expected global growth rate we have the following result,
which, although not at all trivial, can very easily be derived from the Donsker-
Varadhan result.

Lemma 2 (Expected global growth rate). On a set of full P-measure,

Eω|Zt| = exp

[
β2t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
, as t→ ∞ (27)

(quenched asymptotics), and

(E⊗ Eω) |Zt| = exp[β2t− c̃(d, ν)td/(d+2)(1 + o(1))], as t → ∞ (28)
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(annealed asymptotics), where

c(d, ν) := λd

(
d

νωd

)−2/d

,

c̃(d, ν) := (νωd)
2/(d+2)

(
d+ 2

2

)(
2λd
d

)d/(d+2)

,

and ωd is the volume of the d-dimensional unit ball, while λd is the principal
Dirichlet eigenvalue of −1

2∆ on it.

Notice that

1. β1 does not appear in the formulas,
2. the higher the dimension is, the smaller the expected population size is.

Remark 12. Let us pretend for a moment that we are talking about an ordinary
BBM. Then at time t one has eβ2t particles with probability tending to one as
t → ∞ (the population size divided by eβ2t has a limit, to be precise). For t
fixed take a ball B = B(0, R) (here R = R(t)) and let K be so that B ⊂ Kc

(such a ball left empty by K is called a clearing). Consider the expected number
of particles that are confined to B up to time t. These particles do not feel the
blocking effect of K, while the other particles may have not been born due to
it.

Optimize R(t) with respect to the cost of having such a clearing and the
probability of confining a single Brownian motion to it. This is precisely the same
optimization as for the classical Wiener-sausage. Hence one gets the expectation
in the theorem as a lower estimate.

One suspects that the main contribution in the expectation in (28) is coming
from the expectation on the event of having a clearing with optimal radius R(t).
In other words, denoting by pt the probability that a single Brownian particle
stays in the R(t)-ball up to time t, one argues heuristically that pte

β2t particles
will stay inside the clearing up to time t ‘for free’ (i.e. with probability tending
to one as t → ∞).

The intuitive reasoning is as follows. If we had independent particles instead
of BBM, then, by a ‘Law of Large Numbers type argument’ (using Chebysev
inequality and the fact that limt→∞ pte

β2 = ∞), roughly pte
β2t particles out of

the total eβ2t would stay in the R(t)-ball up to time t with probability tending
to 1 as t ↑ ∞. One suspects then that the lower estimate remains valid for
the branching system too, because the particles are ‘not too much correlated’ .
This kind of argument (in the quenched case though) can be made precise by
estimating certain covariances.

To understand the difference between the annealed and the quenched case
note that in the latter case large clearings (far away) are automatically (that is,
P-a.s.) present. Hence, similarly to the single Brownian particle problem, the
difference between the two asymptotics is due to the fact that even though there
is an appropriate clearing far away P-a.s., there is one around the origin with
a small (but not too small) probability. Still, the two cases will have a similar
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element when one drops the expectations and investigate the process itself, and
show that inside such a clearing a large population is going to flourish. This
also leads to the intuitive explanation for the decrease of the population size as
the dimension increases. The radial drift in dimension d is (d− 1)/2. The more
transient the motion is (that is, the larger d is), the harder it is for the particles
to stay in the appropriate clearings. ⋄
Let us prove now the expectation result. First we need a lemma.

Lemma 3 (Expectation given by Brownian functional). Fix ω. Then

Eω|Zt| = E exp

[∫ t

0

β(Ws)

]
ds. (29)

Proof. It is well known (‘first moment formula’ of spatial branching pro-
cesses), that Eωx |Zt| = (Tt1)(x), where u(x, t) := (Tt1)(x) is the minimal solu-
tion of the parabolic problem:

∂u

∂t
=

(
1

2
∆ + β

)
u on Rd × (0,∞),

u(·, 0) = 1, (30)

u ≥ 0.

(Here {Tt}t≥0 denotes of course the semigroup corresponding to the generator
1
2∆ + β on Rd.) This is equivalent (by the Feynman-Kac formula) to (29). �

Proof of Lemma 2.: Since β := β11K + β21Kc = β2 − (β2 − β1)1K , we can
rewrite the equation (29) as

Eω|Zt| = eβ2tE exp

[
−
∫ t

0

(β2 − β1)1K(Ws) ds

]
.

The expectation on the righthand side is precisely the survival probability among
soft obstacles of ‘height’ β2 − β1. (As we have already mentioned, that one
does not sum the shape functions on the overlapping balls, does not make any
difference with regard to the asymptotics) . The statements thus follow from
the Donsker-Varadhan asymptotics for soft obstacles . �

We now investigate the behavior of the (quenched) global growth rate.
As already mentioned in these notes, it is a notoriously hard problem to prove

the Law of Large Numbers in full generality for spatial branching systems, and
the not purely exponential case is particularly challenging.

To elucidate this point, let us consider the (L, β,D)-branching diffusion with
some Euclidean domain D ⊂ Rd. Let 0 6≡ f be a nonnegative compactly sup-
ported bounded measurable function onD. If λc, the generalized principal eigen-
value of L + β on D is positive and S = {St}t≥0 denotes the semigroup corre-
sponding to L+β onD, then (Stf)(·) grows (pointwise) as eλct on an exponential
scale. However, in general, the scaling is not precisely exponential due to the
presence of a subexponential term.
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In the present case it turns out that the resulting operator 1
2∆ + β does not

scale precisely exponentially P-a.s. Replacing f by the function g ≡ 1, it is still
true that the growth is not precisely exponential – this is readily seen in Claim
2 and its proof.

Since the process in expectation is related to the semigroup S, therefore
purely exponential scaling indicates the same type of scaling for the expectation
of the process (locally or globally). Although, if one is interested in the scaling
of the process itself (not just the expectation), the case when there is an ad-
ditional subexponential factor is much harder, in our model the randomization
of the branching rate β helps, as β has some ‘nice’ properties for almost every
environment ω, i.e. the ‘irregular’ branching rates ‘sit in the P-zero set’.

Define the average growth rate by

rt = rt(ω) :=
log |Zt(ω)|

t
.

Replace now |Zt(ω)| by its expectation Zt := Eω |Zt(ω)| and define

r̂t = r̂t(ω) :=
logZt
t

.

Recall from Lemma 2, that on a set of full P-measure,

lim
t→∞

(log t)2/d(r̂t − β2) = −c(d, ν). (31)

It turns out that an analogous statement holds for rt itself.

Theorem 12 (LLN). On a set of full P-measure,

lim
t→∞

(log t)2/d(rt − β2) = −c(d, ν) in Pω − probability. (32)

One interprets Theorem 12 as a kind of quenched law of large numbers.
Loosely speaking,

rt ≈ β2 − c(d, ν)(log t)−2/d ≈ r̂t, t→ ∞,

on a set of full P-measure.
While the lower estimate is hard, the upper estimate follows easily from the

expectation result. We only show here the latter one, but we will explain the
‘philosophy’ for the lower estimate too.

Upper estimate. Let ǫ > 0. Using the Markov inequality along with the
expectation formula (27), we have that on a set of full P-measure:

P ω
[
(log t)2/d(rt − β2) + c(d, ν) > ǫ

]

= P ω
{
|Zt| > exp

[
t
(
β2 − c(d, ν)(log t)−2/d + ǫ(log t)−2/d

)]}

≤ Eω|Zt| ·
(
exp

[
t
(
β2 − c(d, ν)(log t)−2/d + ǫ(log t)−2/d

)])−1

= exp
[
−ǫt(log t)−2/d + o

(
t(log t)−2/d

)]
→ 0, as t → ∞. �
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Lower estimate (sketch). Let us just outline the strategy of the proof.
A key step is introducing three different time scales, ℓ(t), m(t) and t where
ℓ(t) = o(m(t)) and m(t) = o(t) as t → ∞. For the first, shortest time interval,
one uses that there are ‘many’ particles produced and they are not moving ‘too
far away’, for the second (of length m(t)−ℓ(t)) one uses that one particle moves
into a clearing of a certain size at a certain distance, and in the third one (of
length t −m(t)) one uses that there is a branching tree emanating from that
particle so that a certain proportion of particles of that tree stay in the clearing
with probability tending to one.

It turns out that for example the following choices of ℓ andm are appropriate:
let ℓ(t) and m(t) be arbitrarily defined for t ∈ [0, e], and

ℓ(t) := t1−1/(log log t), m(t) := t1−1/(2 log log t), for t ≥ t0 > e.

Also, regarding the Poissonian environment one needs the following fact: let

R0 = R0(d, ν) :=

√
λd

c(d, ν)
=

(
d

νωd

)1/d

,

(where λd is the principal Dirichlet eigenvalue of −1
2
∆ on the d-dimensional

unit ball, and ωd is the volume of that ball) and let

ρ(ℓ) := R0(log ℓ)1/d − (log log ℓ)2 , t ≥ 0.

Then,

P(∃ ℓ0(ω) > 0 such that ∀ℓ > ℓ0(ω) ∃ clearing B(x0, ρ(ℓ)) with |x0| ≤ ℓ) = 1.

The full proof is beyond the scope of these notes.

9.3. Some results on the spatial spread

One may wonder how much the speed (spatial spread) of free BBM reduces due
to the presence of the mild obstacle configuration. Note that we are not talking
about the bulk of the population (or the ‘shape’) but rather about individual
particles traveling to very large distances from the origin.

As is well known, ordinary ‘free’ branching Brownian motion with constant
branching rate β2 > 0 has radial speed

√
2β2. Let Nt denote the population size

at t ≥ 0 and let ξk (1 ≤ k ≤ Nt) denote the position of the kth particle (with
arbitrary labeling) in the population. Furthermore, let m(t) denote a number
for which u(t, m(t)) = 1

2 , where

u(t, x) := P

[
max

1≤k≤Nt

‖ξk(t)‖ ≤ x

]
.

In a classic paper, Bramson considered the one dimensional case and proved
that as t → ∞,

m(t) = t
√

2β2 −
3

2
√

2β2
log t+ O(1). (33)
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Since the one-dimensional projection of a d-dimensional branching Brownian
motion is a one-dimensional branching Brownian motion, we can utilize Bram-
son’s result for the higher dimensional cases too. Namely, it is clear, that in
high dimension the spread is at least as quick as in (33). The asymptotics (33)
is derived for the case β2 = 1; the general result can be obtained similarly.

Studying the function u has significance in analysis too as u solves

∂u

∂t
=

1

2
uxx + β2(u

2 − u), (34)

with initial condition
u(0, ·) = 1[0,∞)(·). (35)

We will see below that the branching Brownian motion with mild obstacles
spreads less quickly than ordinary branching Brownian motion by giving an
upper estimate on its speed.

Remark 13. A related result was obtained earlier by Lee-Torcaso [10], but,
unlike in (33), only up to the linear term and moreover, for random walks
instead of Brownian motions. Their approach was to consider the problem as
the description of wave-front propagation for a random KPP equation. ⋄

Before turning to the upper estimate, we discuss the lower estimate. We are
going to show that, if in our model Brownian motion is replaced by Brownian
motion with constant drift γ in a given direction, then any fixed nonempty ball
is recharged infinitely often with positive probability, as long as the drift satisfies
|γ| < √

2β2.
For simplicity, assume that d = 1 (the general case is similar). Fix the envi-

ronment ω. Recall Doob’s h-transform of second order elliptic operators:

Lh(·) :=
1

h
L(h·).

Applying an h-transform with h(x) := exp(−γx), a straightforward computation
shows that the operator

L :=
1

2

d2

dx2
+ γ

d

dx
+ β2

transforms into

Lh =
1

2

d2

dx2
− γ2

2
+ β2 .

Then one can show that the generalized principal eigenvalue for this latter op-

erator is −γ2

2 + β2 for almost every environment. Since the generalized prin-

cipal eigenvalue is invariant under h-transforms, it follows that −γ2

2 + β2 > 0
is the generalized principal eigenvalue of L. By subsection 3.2 then, any fixed
nonempty interval is recharged infinitely often with positive probability.

Turning back to our original setting, the application of the ‘spine’-technology
seems also promising. As we have seen in section 3., the spine method uses
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a Girsanov-type change of measure on the branching diffusion. The question
of uniform integrability for the martingale density can be checked and under
the new measure, the process can be represented ‘directly’ by a ‘spine’ type
construction. The ‘spine’ represents a special ‘deviant’ particle performing a
motion which has important properties from the point of view of the problem
regarding the original branching process. The question regarding ‘going back to
the original measure’ is then related to the UI property of the martingale.

In our case perhaps it is not very difficult to show the existence of a ‘spine’
particle (under a martingale-change of measure) that has drift γ as long as
|γ| < √

2β2.
We close this section with an upper estimate (without proof) in which the

order of the correction term is larger than the O(log t) term appearing in Bram-

son’s result, namely it is O
(

t
(log t)2/d

)
. (All orders are meant for t → ∞.) The

following theorem says that, whatever β1 ∈ (0, β2) is, loosely speaking, at time
t the spread is not more than

t
√

2β2 − c(d, ν)

√
β2

2
· t

(log t)2/d
.

Recall the notation: c(d, ν) := λd
(
νωd

d

)2/d
, ωd is the volume of the unit ball in

Rd, and λd is the principal Dirichlet eigenvalue of −1
2∆ on it.

Theorem 13. Define the functions

f(t) := c(d, ν)
t

(log t)2/d
and n(t) := t

√
2β2 ·

√

1 − f(t)

β2t
.

Then

n(t) = t
√

2β2 − c(d, ν)

√
β2

2
· t

(log t)2/d
+ O

(
t

(log t)4/d

)
; and if

At := {no particle has left the n(t) − ball up to t}

=





⋃

0≤s≤t
supp(Zs) ⊆ B(0, n(t))




 ,

then on a set of full P-measure,

lim inf
t→∞

P ω(At) > 0.

9.4. Branching L-diffusion with mild obstacles

We now generalize the setting for the case when the underlying motion is a
diffusion. Let P be as before but replace the Brownian motion by an L-diffusion
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Y on Rd, where L is a second order elliptic operator as in Subsection 2.1. The
branching L-diffusion with the Poissonian obstacles can be defined analogously
to the case of Brownian motion.

The following result demonstrates that the local behavior of the process ex-
hibits a dichotomy. The crossover is given in terms of the local branching rate
β2 and λc(L): as already explained in Subsection 2.1, local extinction occurs
when the branching rate inside the ‘free region’ Kc is not sufficiently large to
compensate the transience of the underlying L-diffusion; if it is strong enough,
then local mass grows exponentially.

There is, however, an interesting new feature of the result: neither β1 nor the
intensity ν of the obstacles play role .

Claim 1 (Quenched exponential growth/local extinction). Given the
environment ω, denote by P ω the law of the branching L-diffusion.

(i) Let β2 > −λc(L) and let ν > 0 and β1 ∈ (0, β2) be arbitrary. Then the
following holds on a set of full P-measure: For any ǫ > 0 and any bounded
open set ∅ 6= B ⊂ Rd,

P ω

(
lim sup
t↑∞

e(−β2−λc(L)+ǫ)tZt(B) = ∞
)
> 0.

and

P ω

(
lim sup
t↑∞

e(−β2−λc(L))tZt(B) <∞
)

= 1.

(ii) Let β2 ≤ −λc(L) and let ν > 0 and β1 ∈ (0, β2) be arbitrary. Then
the following holds on a set of full P-measure: For any bounded open set
B ⊂ Rd there exists a P ω-a.s. finite random time t0 = t0(B) such that
Xt(B) = 0 for all t ≥ t0, (local extinction).

Proof. In order to be able to use Theorem 3, we compare the rate β with another,
smooth (i.e. Cγ) function V . Recalling that K = Kω :=

⋃
xi∈supp(ω)B(xi, a),

let us enlarge the obstacles:

K∗ = K∗
ω :=

⋃

xi∈supp(ω)

B(xi, 2a).

Then (K∗)c ⊂ Kc. Recall that β(x) := β11K (x)+β21Kc(x) ≤ β2 and let V ∈ Cγ

(γ ∈ (0, 1]) with16

β21(K∗)c ≤ V ≤ β. (36)

In fact it is easy to see the existence of such functions which are even C∞ by
writing β = β2−(β2−β1)1K and considering the function V := β2−(β2−β1)f ,
where f ≥ 1K∗ and f is a C∞-function obtained as follows. Let f be a sum
of compactly supported C∞-functions fn, n ≥ 1, with disjoint support, where

16The existence of a continuous function satisfying (36) would of course immediately follow
from Uryson’s Lemma.
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supp(fn) is in the ǫn-neighborhood of the nth connected component of K∗,
with appropriately small 0 < ǫn’s. Consider the operator L + V on Rd and let
λc = λc(ω) denote its generalized principal eigenvalue. Since V ∈ Cγ , we are in
the setting of Theorem 3, and furthermore, since V ≤ β2, λc ≤ λc(L) + β2 for
every ω.

On the other hand, one gets a lower estimate on λc as follows. Fix R > 0.
Since β21(K∗)c ≤ V , by the homogeneity of the Poisson point process, for almost

every environment the set {x ∈ Rd | V (x) = β2} contains a clearing of radius R.
Hence, by comparison, λc ≥ λ(R), where λ(R) is the principal Dirichlet eigenvalue
of L+β2 on a ball of radius R. Since R can be chosen arbitrarily large and since
limR↑∞ λ(R) = λc(L) + β2 , we conclude that λc ≥ λc(L) + β2 for almost every
environment.

From the lower and upper estimates, we obtain that

λc = λc(L) + β2 for a.e. ω. (37)

Consider now the branching processes with the same motion component L but
with rate V , respectively constant rate β2. The statements (i) and (ii) of Claim
1 are true for these two processes by (37) and Theorem 3. As far as the original
process (with rate β) is concerned, (i) and (ii) of Claim 1 now follow by ω-wise
comparison.
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10. Generalizations and open problems for mild obstacles

In this section we suggest some further problems and directions for research.

10.1. More general branching

It should also be investigated, what happens when the dyadic branching law is
replaced by a general one (but the random branching rate is as before). In a
more sophisticated population model, particles can also die — then the obstacles
do not necessarily reduce the population size as they sometimes prevent death.

10.1.1. Supercritical branching

When the offspring distribution is supercritical, the method of our paper seems
to work, although when the offspring number can also be zero, one has to con-
dition on survival for getting the asymptotic behavior.

10.1.2. (Sub)critical branching

Critical branching requires an approach very different from the supercritical
one, since taking expectations now does not provide a clue: Eω|Zt(ω)| = 1,
∀t > 0, ∀ω ∈ Ω.

Having the obstacles, the first question is whether it is still true that

P ω(extinction) = 1 ∀ω ∈ Ω.

The answer is yes. To see this, note that since |Z| is still a martingale, it has
a nonnegative a.s. limit. This limit must be zero; otherwise |Z| would stabilize
at a positive integer. This, however is impossible because following one Brow-
nian particle it is obvious that this particle experiences branching events for
arbitrarily large times.

Setting β1 = 0, the previous argument still goes through for almost all en-
vironments, because for almost all environments, the generic Brownian particle
will eventually branch, and so in fact it will branch infinitely often. Let τ denote
the almost surely finite extinction time for this case. One of the basic questions is
the decay rate for P ω(τ > t). Will the tail be significantly heavier than O(1/t)?
[Of course 1/t would be the rate without obstacles.]

The subcritical case can be treated in a similar fashion. In particular, the
total mass is a supermartingale and P ω(extinction) = 1 ∀ω ∈ Ω.

10.2. Superprocesses with mild obstacles

An alternative view on the BBM with mild obstacles is as follows. Arguably, the
model can be viewed as a catalytic BBM as well — the catalytic set is then Kc
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(in the sense that branching is ‘intensified’ there). Catalytic spatial branching
(mostly for superprocesses though) has been the subject of vigorous research
in the last twenty years initiated by Dawson, Fleischmann and others. In those
models the individual branching rates of particles moving in space depend on
the amount of contact between the particle (‘reactant’) and a certain random
medium called the catalyst. The random medium is usually assumed to be a
‘thin’ random set (that could even be just one point) or another superprocess.
Sometimes ‘mutually’ or even ‘cyclically’ catalytic branching is considered. (See
the next section for more on catalytic branching.)

Although there is a large amount of ongoing research on catalytic superpro-
cesses, in those models, one usually cannot derive sharp quantitative results.

In light of this connection with catalytic superprocesses, a further goal is to
generalize our setting by defining superprocesses with mild obstacles analogously
to the BBM with mild obstacles.

Consider the (L, β, α,Rd)–superdiffusion, X. The definition of the superpro-
cess with mild obstacles is straightforward: the parameter α on the (random)
set K is smaller than elsewhere.

Similarly, one can consider the case when instead of α, the ‘mass creation
term’ β is random, for example with β defined in the same way (or with a
mollified version) as for the discreet branching particle system. Denote now by
P ω the law of this latter superprocess for given environment. We suspect that
the superprocess with mild obstacles behaves similarly to the discrete branch-
ing process with mild obstacles when λc(L + β) > 0 and P ω(·) is replaced by
P ω(· | X survives). The upper estimate can be carried out in a manner similar
to the discrete particle system, as the expectation formula is still in force for
superprocesses.

10.3. Unique dominant branch

Having discussed the growth rate of the population, the next step can be as fol-
lows. Once one knows the global population size |Zt|, the model can be rescaled
(normalized) by |Zt|, giving a population of fixed weight. In other words, one
considers the discrete probability measure valued process

Z̃t(·) :=
Zt(·)
|Zt|

.

Then the question of the shape of the population for Z for large times is given
by the limiting behavior of the random probability measures Z̃t, t ≥ 0. (Of
course, not only the particle mass has to be scaled, but also the spatial scales
are interesting — see last paragraph.)

Can one for example locate a unique dominant branch (or, even if it is not
unique, there are perhaps just a ‘few’ of them) for almost every environment,
so that the total weight of its complement tends to (as t → ∞) zero?

The motivation for this question comes from the proof of the lower estimate
for Theorem 12. It seems conceivable that for large times the ‘bulk’ of the
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population will live in a clearing(s) within distance ℓ(t) and with radius

ρ(t) := R0[log ℓ(t)]1/d − [log log ℓ(t)]2.

10.4. Strong Law

Last but not least, one cannot be fully satisfied with the convergence in proba-
bility in Theorem 3. To prove a.s. convergence (which, if true, is a kind of SLLN)
seems to be rather challenging. In particular, the easy upper estimate does not
work any longer.
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11. Some catalytic branching problems

11.1. A discrete model

Let us start with a discrete catalytic model studied by H. Kesten and V. Sido-
ravicius. Here the branching particle system on Zd is so that its branching is
catalyzed by another autonomous particle system on Zd. There are two types
of particles, the A-particles (‘catalyst’) and the B-particles (‘reactant’). They
move, branch and interact in the following way. Let NA(x, s) and NB(x, s) de-
note the number of A- [resp. B-]particles at x ∈ Zd and at time s ∈ [0,∞). (All
NA(x, 0) and NB(x, 0), x ∈ Zd are independent Poisson variables with mean µA
(µB).)

Every A-particle (B-particle) performs independently a continuous-time ran-
dom walk with jump rate DA (DB). In addition a B-particle dies at rate r,
and, when present at x at time s, it splits into two in the next ds time with
probability βNA(x, s)ds+o(ds). Conditionally on the system of the A-particles,
the jumps, deaths and splitting of the B-particles are independent.

Kesten and Sidoravicius showed for instance that for large β there exists a
critical rc such that it separates local extinction regime (r ≥ rc) from local
survival regime (r < rc). They also explained why the B-particles may survive
if β is large enough compared to the other parameters, even if one starts with
only one A-particle and one B-particle in the entire system.

11.2. Catalytic superprocesses

The definition of catalytic superprocesses requires more care. The simplest case
was introduced by D. Dawson and K. Fleischmann who investigated a one
dimensional critical super-Brownian motion with a single point catalyst. This
means formally that we set β = 0 and α = δ0 (the Dirac-delta at zero). In-
tuitively this means that branching occurs only at a single point but there it
occurs at an ‘infinitely high’ rate17. The precise definition is given through the
log-Laplace equation, in which case (4) is replaced by an appropriate integral
equation.

One of the interesting properties of this process is that if P denotes the
corresponding probability, then

Pµ(|Xt| > 0, ∀t > 0, but |Xt| → 0 as t→ ∞) = 1

for all 0 6= µ ∈ Mf , and Xt(B) → 0 in Pµ-probability for all B ⊂⊂ R, even
if µ is the Lebesgue measure. (The definition of a superprocess starting with a
σ-finite measure is straightforward: it is the independent sum of superprocesses
starting with finite measures.)

Another interesting case is, when, instead of the singular coefficient δ0 in
the branching mechanism, one imagines that the catalytic set, where branching

17Recall that since β ≡ 0, one can now identify α with the ‘clock’.
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occurs, is given by the support of another superprocess (in low dimensions). Note
that this is already the case of a random catalyst, that is, we are talking about
a superprocess in a random medium (but, unlike in the cases we discussed, the
medium evolves in time.) Since branching is critical, it is detrimental for the
reactant to spend too much time in catalytic areas.

For d ≤ 3, Dawson and Fleischmann investigated the qualitative properties
of this superprocess. They showed for example, that in dimension one, if both
the catalyst and the reactant starts from Lebesgue measure then the reactant
process survives locally.18 This is dramatically different behavior from that of a
classical one dimensional super-Brownian motion, since the latter would suffer
local extinction even starting from µ = Lebesgue.

In two dimension, again starting both processes from Lebesgue measure, Daw-
son and Fleischmann proved that although the catalyst dies out locally, this is
true only in probability. In particular, there is not a finite time after which a
given ball becomes and remains empty. Consequently, at late times T , huge clus-
ters of the catalyst (their height turns out to be of order logT ) come back to
any given finite window in R2 and (since critical binary branching with infinite
rate degenerates to pure killing) could kill all the (recurrent) reactant particles
there. Thus it is somewhat surprising that in fact, the reactant survives locally.

Now let us go one step further, and imagine that we have two one dimensional,
critical super-Brownian motions and they catalyze each other. That is, the first
process only branches in the presence of the second process, and vice versa
(‘mutually catalytic branching ’). Then, of course it becomes a nontrivial business
to rigorously prove that such a model is well defined; in fact the log-Laplace
equation approach breaks down. Such a model was first studied by D. Dawson
and E. Perkins [7]. The definition uses a system of stochastic partial differential
equations (SPDE’s) for the densities of the two superprocesses, which by a result
of L. Mytnik [19], uniquely determine the model.

Further models, including the cyclically catalytic setting, are beyond the
scope of these lecture notes. We suffice here by merely defining the latter model.
Cyclically catalytic super-Brownian motion is a spatial branching process with
K types of populations involved (K ≥ 2). Each process Xk is (catalytic) super-
Brownian motion in one dimension but with a branching rate that is governed by
the density of the succeeding type Xk+1. Hence the K single processes interact
in a cyclic fashion:

0 → K − 1 → K − 2 → · · · → 1 → 0.

The literature of catalytic spatial branching processes and superprocesses is
huge and we have just glimpsed at it. The interested reader is referred to the
survey paper [16].

18In fact, they showed that for almost all realizations of the catalytic medium (starting
with Lebesgue measure), the reactant at t converges (stochastically) to the starting Lebesgue
measure.
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12. Concluding remarks

Spatial branching processes is a huge area. So is spatial random media. Although
we tried to cull some interesting problems, there is no doubt that many papers
that should have been mentioned were unfortunately skipped.

As far as superprocesses are concerned, it is impossible even to sketch the
research that has been carried out by Aldous, Dawson, Delmas, Donelly, Dynkin,
Evans, Fleischmann, Klenke, Kurtz, Le Gall, Le Jan, Mörters, Mytnik, Mueller,
Perkins, Pinsky and others. (And for discrete branching processes, there are
those work of Athreya, Biggins, S. Harris, T. Harris, Jagers, Kyprianou, Ney,
Pemantle, Wakolbinger, and the whole French school, to name just a few...)

Similarly, we did not even attempt to describe all the contributions made to
the field of spatial random media by scholars like Bolthausen, Comets, Cranston,
Donsker, Gärtner, den Hollander, van den Berg, Molchanov, Sznitman, Varad-
han, Zeitouni, Zerner and others.

My hope is that those whose work was not mentioned in these notes will
(forgive the author and) send me their critical comments.
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