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1. Introduction and Summary. HilΓs equation is the differential
equation for a one-dimensional linear oscillator with a periodic potential.
In most applications, the question of the existence of a periodic solu-
tion arises. The main purpose of this investigation is to examine the
analytic character of the transcendental function, whose zeros deter-
mine the periodic solutions. For the special case of Mathieu's equation
the results obtained here have previously been used for solving the
inhomogeneous equation, and the cases where Hill's equation has two
periodic solutions have been discussed in detail and applied to the con-
struction of "transparent layers " [1].

We consider the differential equation of Hill's type :

(1.1) y" + 4(oj*±q(x))y=Q,

where q(x) is an even function of period π which can be expanded in
a Fourier series

(1.2) <7θ* )

We shall assume that the constants tn satisfy

(1.3) Σlί»l<°°.
W = l

The most widely investigated problem connected with (1.1) is the
question of the existence of solutions with period π or 2π. Let yι(x),
y z(x) denote the solutions of (1.1) which satisfy the initial conditions

(1.4) 2/i(0) = l, 2/1

/(0) = 0; 2/a(0) = 0, 2/a'(l) = l.

Then the following elementary statements hold (see for instance
Schaefke [5]: Equation (1.1) has

(a) an even solution of period π if and only if yι'(πl2) = 0
(af) an odd solution of period π if and only if y2(πj2) = 0
(β) an even solution of period 2π if and only if yι(πj2) = 0
(βf) an odd solution of period 2π if and only if y2'(πj2) = 0 .
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The conditions (a), {a') and (β), (βf) can be reduced to two single ones
because

(1.5) 2/i

(1.6) 2/i

In order to find directly a solution of (1.1) which has a period π,
we put

(1.7) y= Σ cnexp(2waji),

where

(1.8) cn=c_w

for a real function y(x). (As usual, a bar denotes the conjugate com-
plex quantity). By substituting (1.7) into (1.2) we obtain an infinite
system of homogeneous linear equations for the cn. The determinant
of this system can be written in the form

(1.9) sin2 πω DQ(ω)

where D0(ω) is an infinite determinant of the type

(1.10) D0(ω)=\dn,m\, n, m = 0 , ± 1 , ± 2 , . .

Here

(1.11) * f . ( ^

(1.12) tn-m=tm_n=t\n_m\, tQ=0 .

As usual, δntm=l if n = m and δn,m=0 if nφm.
The vanishing of the expression (1.9) is a necessary and sufficient

condition for (1.1) to have a solution with period π. According to
Whittaker and Watson [7]

(1.13) 2/i(τr) - 1 = - 2D0(ω) sin2 πω .

This shows that the vanishing of (1.5) is an immediate consequence of
the vanishing of the term (1.9) and vice versa. Also, it provides two
alternative ways of approximating the eigenvalues ω for which yi(π)=
1. If we compute yi(π) approximately by applying the Picard iteration
to (1.1), we arrive at trigonometric polynomials or series. If we use
the principal minors of Z)o, we obtain algebraic equations for the ap-
proximate values of ω which will be particularly suitable for large ω.
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To obtain even or odd solutions of (1.1) which are of period π we
may put

(1.14) y=( / o

\~V 2

or

(1.15) 2/=
7 1 - 1

respectively. By substituting (1.14) or (1.15) into (1.1) we obtain an
infinite system of homogeneous linear equations for the cn. After an
appropriate normalization of these equations, we can write the deter-
minants of the resulting systems in the form ω sin(πω)C+ and ω^sin
(πω)S+, where the infinite determinants C+ and S+ can be defined as
follows: Let

(1.16) eTO=2 for m=±l, ±2, ± 3 , •••; e o = l

,sgn m==l for m = l , 2, 3, •••; sgn 0 = 0
(1.17)

sgn m = — 1 for m== — 1 , —2, — 3, •••.

Let the tn be defined by (1.2) and (1.12). Then

(1.18) C+=|(ewem)-1 / 2(l + sgn n sgn m)[δn, m + (ίw.TO + ίn + m)(ωa-wa)-L]|

(n, m=0, 1, 2, ) ,

(1.19) S+=|i«,« + ( U - U K - w a ) - ι | (w, w = l, 2,3, •••) ,

where n denotes the rows and m denotes the columns of the infinite
determinants C+ and S+.

We shall prove the following extension of Equation (1.13):

THEOREM 1. The infinite determinants C+ and S+ can be expressed
in terms of y1'(πj2) and 2/2(π/2) as

(1.20) 2ω sin (πω)C+= —2/1

/(τr/2) ,

(1.21) ω~ι sin (πco)S+ = 2y2(π!2) .

They are related to the infinite determinant Do by

(1.22) D0=C+S+ .

A similar factorization theorem can be proved for the infinite
determinant arising in the problem of determing whether (1.1) has a
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solution of period 2π.
Equations (1.19) and (1.21) show that S+ and 2/2(τr/2) depend in a

special way on ω. We shall wτrite S+(ω) for S+ and 2/2(7r/2, ώ) for yt{π\2)
if we wish to emphasize the dependency on ω. S+(ω) has poles of
the first order (at most) at ω = ± l , ± 2 , •••. Since the individual
terms in the determinant S+(ω) tend to 8Ht m as |ω|—>oo, we may expect
that S+(oή~>l as |ω|->oo. Therefore we may expect that (1.21) will
lead to a formula of the type

α oo\ / ic% \ v~i S i n 7ΓCO

. 2 3 ) 2 / ( r / 2 ω ) Σ ^

where #„ are constant coefficients. Now the form of the infinite series
on the right-hand side of (1.23) suggests that it can also be written as

(1.24) ( " G(θ)exv(2iωθ)dθ,
J-rt/2

which would imply the existence of a formula of the type

(1.25) Γ 2/2(τr/2, ω)exp(-2iωθ)dω = 0 for |0 |> π .
J-°° 2

Actually, a result more general than (1.25) is true. We shall prove
the following formula for the Fourier transformation with respect to
ω ,

THEOREM 2. Let the tn in (1.12) be real constants satisfying

and let y(x, ώ) be the solution of (1.1) for a real value of ω which satis-
fies the initial conditions

(1.26) 2/(0, ω)=α, 2/'(0, ω)=b.

Then there exists a function G(x, θ) of the real variables x and θ which
is defined in the region —\x\<LΘ<L\x\ such that

(1.27) y(x,ω) = acos2ojχ-h[ G{x, θ)e2ίωθdθ ,

(1.28)

(1.29)
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ί b
(1.30) Gθ(x, X)=^—GQ(X, — x)=2Σ tn sin nx\a sin nx + - cos nx

n = i ( n

•f a Σ -w m si

Here Gθ stands for 3G/30.

2 Proof of Theorem l Since Theorem 1 involves the determinants
of infinite matrices, it is important to know something about their
finite " sections " . We shall define these sections as follows: Let N
be a nonnegative integer, and let (M) be an infinite matrix. If the
rows and columns of (M) are labeled by subscripts running from one
to infinity, we denote by {MN) the square matrix of order N which
results if we let the subscripts in (M) run from one to N only. If
the rows and columns in (M) are labeled by the subscripts 0, 1, 2, ,
we define {MN) by the rows and columns of (M) for which the sub-
scripts run from zero to N. Finally, if the subscripts in (M) run from
-co to +00, then in (MN) we let them run from — N to -fiV only.
In each case, (MN) is called the iVth section of (M). The determinant
of (M) is defined as the limit of the determinants of {MN) as iV-»co.

We shall denote by (Z)), (C), (S) the matrices whose elements are
given respectively by the elements of the infinite determinants Do, C+,
and S+. In addition, we shall introduce the matrix (T) with the general
element rw,m(w, ra=0, ± 1 , ±2, •••), where

(2.1) rMf TO=(δn> m + sgn nd^ ro)(en)
1/8.

As usual the first subscript n in rw> m denotes the rows of (T) and the
second subscript denotes the columns. The matrix (T) has a formal
inverse (Ύ~Ί), whose general element is given by

(2.2) (3n,ro + sgnmδ_WiTO)(eJ-1/2.

In fact it follows from an easy computation that the general element
of {T){T~ι) is

(2.3) {dnι m(l + sgn n sgn m) + d-n, m(sgnn-h$gn m)}(εnεm)-m = δn, m .

It is important to observe that the JVth section (T^1) of (T']) is the
inverse of the iVth section (TΛ7) of T .

Now we shall compute, in a purely formal way, the elements of
the matrix

(2.4) (D*)

By a simple computation we find from (1.11), (1.12), (2.1) and (2.2)
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that the general element d*, m of (D*) is given by

(2.5) (eΛem)1/a d% m=dn> JX 4- sgn n sgn m) -f δ1lt _m(sgn n -4- sgn m)

-f —w~m (1 + sgn n sgn m) + --w---—(sgn n + sgn m ) .
ω 2 — w2 ωz — 72̂

Equation (2.5) shows that cZ*m=O if w and m are both different from
zero and of different sign. It also shows that for n, m = 0, 1, 2, 3,
the elements of (Z)*) are exactly those of (C). In fact, for n>.0, m;>
0, we always have δnt -.TO(sgnw + sgnm)=0, and sgnw-f s g n m = l 4 - sgn n
sgnm, unless n=m=0. But in this case, tn_m = tn+m=O, and again
eZ*m is equal to the corresponding element of C+ in (1.18). Similarly,
we find that for n, ra= — 1 , —2, —3, •••, the elements of (D*) are ex-
actly those of (S) if we " i n v e r t ' ' the labeling of the elements of (S)
by substituting for every subscript its opposite (negative) value.

Therefore (1.22) would be proven if we could deal with infinite
determinants in the same way as with finite ones. In the particular
problem under consideration this is actually the case. If we form the
matrix (TN)(DN){T^) we obtain (D%) for all N and we find that its
determinant actually equals the product of the determinants of (SΛr)
and (Cjy) because its elements are those of (S^) and (CΛT) respectively.
Equation (1.22), namely D0=C+S+, follows if we simply let N tend
towards infinity.

Next we must prove equations (1.20) and (1.21). It suffices to do
this for arbitrary but fixed real values of tlf t2, ί3, •••. Indeed, it is
not difficult to show that both sides in (1.20) and (1.21) depend
analytically on any particular parameter tv (v=l , 2, •). Then the only
variable which matters is ω. As mentioned above, we shall write
y-z(πj2, ω) and yx'(π\ίλ1 ώ) for yt(πl2) and 2//(7r/2) whenever we wish to
exhibit the dependency on ω of these quantities; similarly, we shall
write C+(ω) and S+{ω) for C+ and S+. It is easily seen that both sides
in (1.20) and (1.21) are entire functions of ω and also entire functions
of λ=ω\

Now we can prove (1.20) and (1.21) by proving the following
lemmas:

LEMMA 1. The quotients

/n Q\ 2ω sinj7rω C+(ω) ω~

ω) ' 2y2(πl2, ω)

are entire functions of ω- = λ .

Proof. It has been mentioned in the introduction that the numera-
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tor and denominator of (2.6) vanish for the same values of λ=ω2. It
remains merely to be shown that the denominators have simple zeros
only. We observe first that these zeros are real, because any solution
or derivative of a solution of (1.1) that vanishes at x=0 and x=nj2 is
a solution of a Sturm-Liouville problem. Since

(2.7) ^yt(π!2)=My2'(πl2)}~ι[12 {y2(xψdx
dλ Joo

(2.8) lyι'(πl2)=
dλ

the right-hand sides of (2.7) and (2.8) are different from zero and
therefore the denominator in (2.6) has simple zeros. This completes
the proof of Lemma 1.

LEMMA 2. The quotients (2.6) are entire functions without zeros.

Proof. From (1.5), (1.13), (1.22) we see that the product of the
quotients (2.6) equals — 1 .

LEMMA 3. The quotients (2.6) are independent of Λ=ω2.

Proof. This lemma follows from the fact that for both the
numerators and the denominators of the quotients (2.6) the order of
growth with respect to λ does not exceed 1/2. For 2/2(π/2, ω) we can
show this by solving (1.1) with the help of Picard's iteration method.
Putting

(2.9) uQ(x, ω) = (sm2ωx)l(2ω) ,

(2.10) un(x, α > H — 2-\*8in2ω(x-ξ)q(ξ)un-i(e, ω)dξ , (n=l,2, •••),
ω Jo

we have

(2.11) y2(x, ω)=Σiun(x1 ω).

In order to estimate \y^\ for large values of \ω\, let Q be a positive

constant such that

(2.12) \q(ξ)\<Q

for all real values of ξ. Let |ω|;>2. Then obviously |%0|<I exp (2|ω|a?)
for real positive x. From this it follows by induction and by using
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(2.10) that for real positive values of x

(2.13) \un(x, iuJI^^QVl" !^ !)-^^)-"- 1 .

Therefore we have from (2.11) for |ω|>2 :

(2.14) |̂ (τr/2, ω)\< exv(π\ω\ + Qττ/2) .

A similar estimate can be derived for yL'(πl2, ω). Since the right-
hand side of (2.14) is of order of growth unity with respect to ω, its
order of growth with respect to λ is 1/2.

The corresponding statement for the numerators in (2.6) can be
derived from Hadamard's inequality for determinants. If we write

(2.15)

for (sin πω)l(2ώ), and if we multiply each row of S+ by the correspond-
ing factor of (2.15), the numerator involving S+ in (2.6) becomes a
determinant for which the sum of the squares of the absolute values
of the nth row is at most σn, where

(2.16) ^n={

We have from Hadamard's inequality

(2.17) |(2ω)-1(sin πω)S+(ω)\<2π-τ II K} 1 / 2.
n = \

Now we wish to estimate \σn\. From (1.2) we find that there exists
a constant M such that for all n=l, 2, 3,

(2.18) \ t ±

Therefore

(2.19)

and

(2.20) Π { ^

Together with (2.17), this shows that the left-hand side of (2.17) is of
order of growth <l/2 with respect to λ=ω\ An analogous proof can
be given for |2ωsin7rωC+(ω)|.

Now we can prove Lemma 3 by using a known theorem about
factorization of functions of an order of growth < 1 (See Nevanlinna
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[2, pp. 205-213] or Titchmarsh [6, Chap. VIII]. According to this
theorem we have for both the numerators and the denominators of
the quotients (2.6) a representation of the form

A ω*a π
W = l

where the an are the simple roots common to the numerator and
denominator if both are considered as functions of λ=ω\ Therefore,
the quotients in (2.6) are independent of ω, as stated in Lemma 3.

Now we can prove (1.20) and (1.21) by computing the value of the
quotients in (2.6) for α -noo. It is easily seen that for <U-HOO both S+

and C+ tend toward unity. From (2.9), (2.10) and (2.11) we can show
that 2/2(ττ/2, ω)[uo(ω) tends also towards unity as ω^ico, regardless of
the particular nature of q(x). The behavior of y1

/(πj2f ω)l{2ω sin πω)
can be described in a similar manner, and this completes the proof of
Theorem 1.

3 Proof of Theorem 2* In this section, we shall use a theorem
given by Paley and Wiener [3, Theorem X, p. 13]. According to this
theorem, the following two classes of functions are identical:

(I) The class of all entire functions F(ω) satisfying

(3.1) \F(ω)\=o{e2A\ω\) (|ω|->oo)

for a positive real value of A; and

(II) The class of all entire functions of the form

(3.2) F(ω)=\ f(θ)e*Mdθ,
J-Λ

where f(θ) belongs to L2 over ( — A, A).

In proving Theorem 2 we shall confine ourselves to the case where
a=0, y=y>ι{x, ω). If we construct yt in the manner described by (2.9),
(2.10), (2.11), we find from (2.13) that for α>0 and |ω|->oo:

(3.3) \yi(x, ω)~{ulx, α>)+...+wn(α, ω)}|=0(|ω|-Λ-Vl-l»)

and

(3.4) \un(x, α;)| = 0(|ω|-w-1βalβ'a').

Now it follows from an application of Paley and Wiener's theorem
that

(3.5) y%(x, ω)=[X eιί«θG(x, θ)dθ,ιί«θ

-x
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where

(3.6) G{x, θ)=±gn(x, θ ) ,

(3.7) gn(x, ^ H ^ Γ e-^Unix, ω)dω.

It follows from (3.4) that for w>0, gn(x, θ) is (n — 1) times differentiable
with respect to θ, with a continuous (n — l) s t derivative. Outside the
interval — x<θ<x, all of the gn(x, θ) vanish identically. Therefore at
θ=±x only gQ(x, θ) and gτ(x, θ) contribute to the value of G(x, θ) and
to its first derivative with respect to θ. These contributions can be
found by a direct computation. In the same way, it can be verified
that gQ, gl9 g>z are twice differentiable within the region —x<Cβ<C%y
having one-sided continuous derivatives at θ=±x, provided that
Σrc 2 |£j<oo.

The only part of Theorem 2 that now remains to be proved is
equation (1.28). If we substitute the expression (3.6) for G into (1.28),
it will suffice to prove that for n=l, 2, 3, ,

(3.8) ψf— *%

and for n=Q

(3.9) 3 > . - 3 3 f l
v J dx* dθ

Since go=ll2 for — #<#<>, it is trivial to show that (3.9) holds.
Equation (3.8) may be verified for n=l directly by observing that

(3.10) gΛx, ^)==Σ -n-cosnx (cosnx — cosnθ).

For n>2 we may proceed as follows. It suffices to prove, instead of
(3.8), that

(3.11) (" ( ^ - ^
J-χ\ oX^ do"

for all values of ω. Since the left-hand side of (3.11) is an analytic
function of ω, it suffices to show that it vanishes for all real values
of ω. We shall prove this by expressing the left-hand side of (3.11)
in terms of the un(x, ω) which satisfy the recurrence relations

(3.12) ψ?- + 4ω*
oxz
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((3.12) can be derived easily from (2.9) and (2.10)). It follows from
(3.5) and (3.7) that

(3.13) un(x, ω)=

Therefore we have for

(3.14) ^

since any term derived by differentiating the integral in (3.13) with
respect to its limits vanishes for n^>2. For the same reason we find
from an integration by parts that

(3.15) - Γ ^exv(2iωθ)dθ=4ω*un(x, θ).
J-α dxz

Equations (3.15), (3.13), (3.12) show that (3.11) and (3.12) are equivalent.
Since (3.12) is true, the proof of Theorem 2 has been completed.
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