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TOTALLY INTEGRALLY CLOSED RINGS AND
EXTREMAL SPACES

M. HOCHSTER

E. Enochs has defined a ring A (all rings are commutative,
with 1) to be totally integrally closed (which we abbreviate
TIC) if for every integral extension h: B—>C the induced map
/ι*: Horn (C, A) —»Horn (B, A) is surjective. Our main result
here is that A is TIC if and only if A is reduced, each residue
class domain of A is normal and has an algebraically closed
field of fractions, and Spec A is extremal (disjoint open sets
have disjoint clopen neighborhoods). We use this fact to settle
negatively the open question, need a localization of a TIC ring
be TIC. The proofs depend on the following apparently new
characterization of extremal spaces: a topological space X is
extremal if and only if there is a Boolean algebra retraction
of the family of all subsets of X onto the family of all clopen
subsets of X which takes every closed set into a subset of it-
self.

1* Basic facts* We summarize here some of the facts about TIC
rings from [2]. Most results are merely stated informally. The proofs
are easy. However, we include simpler proofs of both Lemma 1 (which
is, in substance, the "only if" part of Theorem 1 of [2]) and of the
existence of "the total integral closure" of a reduced ring than are
given in [2], and we also give some useful characterizations of TIC
rings which are not stated (though they are implicit) in [2].

We use the term normal for a domain integrally closed in its
fraction field. When we speak of an integrally closed subring B of a
ring C, we mean that B is integrally closed in C, rather than in, say,
the fraction field of B.

Trivially, a product of TIC rings is TIC; a retract of a TIC ring
is TIC; and an integrally closed subring of a TIC ring is TIC. Pro-
position 3 of [2] asserts that a domain is TIC if and only if it is
normal and has an algebraically closed fraction field. Hence, products
of algebraically closed fields are TIC.

Following [2], we define an extension h\A—*B to be tight if,
equivalents, either (1) for each ideal IΦ (0) of B, h-^I) Φ (0); or (2)
each nonzero element of B has a nonzero multiple in h(A); or (3) if
g: B —• C and g \ h(A) is injective then g is injective.

LEMMA 1. If A has no proper tight integral extension, then A
is reduced.

767



768 M. HOCHSTER

Proof. Suppose c e A, c Φ 0, but c2 — 0. Let t be an indeterminate
over A and let B — A[t]/(f — c, (Ann^ c)t). It is easy to see that every
element of B can be written uniquely in the form a + aT, where T
is the image of ί,αe A, and ae A/AnnA c. Since T2 — c = 0, B is
integral over A. We can complete the proof by showing that AaB
is tight, a contradiction. Let 0 Φ b = a + aTeB. We want to show
bB n A Φ (0). If a = 0, this is clear. If cα ^ 0, then

ca = c(α + αΓ) e (6J5 n -A) - (0) .

If a Φ 0 but cα = 0, then aT = 0 and Γ(α + αT) = ac e φB f] A) - (0).

Notice that if A c B and I is an ideal of B maximal with respect
to the condition I f) A = (0), then A —> 5/J is a tight extension of A.
Hence, if B is integral over A and A has no proper tight integral
extension, then A is a retract of B. With this observation we can
prove:

PROPOSITION 1. The following conditions on a ring A are equiv-
alent.

(1) A is TIC.
(2) A is a retract of every integral extension.
(3) A has no proper tight integral extension.
(4) A is reduced, and A is a retract of an integrally closed

subring of every TIC extension.
(5) A is a retract of an integrally closed subring of a product

of algebraically closed fields.
(6) A is a retract of an integrally closed subring of some TIC

extension.

Little needs to be said in the way of proof. (1) => (2) trivially,
taking B — A and C to be the integral extension in question in the
definition of TIC ring. (2) => (3) because the retraction of the tight
integral extension will have to be injective, and therefore an iso-
morphism. (3) => (4) follows from Lemma 1 and the remarks preceding
the statement of Proposition 1 (taking B to be the integral closure of
A in the TIC extension). (4) =* (5) because every reduced ring A can
be embedded in a product of algebraically closed fields (for each prime
P, let kP be an algebraic closure of A/P, and embed i in Π P ^ P in
the obvious way). (5) =» (6) => (1) follows from our various introductory
remarks on TIC rings.

We next observe that every reduced ring A has a tight integral
extension ring B which is TIC. (B is called a total integral closure
of A.) To see this, embed A in any TIC ring C, e.g., a product of
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algebraically closed fields. By Zorn's lemma, A has a maximal tight
integral extension B in C. Now suppose B has a proper tight integral
extension B'. Then the map BaC extends injectively to Bf (since
BaB' is tight), and the image of B' in C under this extension
homomorphism gives a proper tight integral extension of B in C. This
will be a tight integral extension of A as well, contradicting the
maximality of B. Thus, B is TIC.

If B, B' are two total integral closures of A, then there is an
A-homomorphism B —> 5', because 1?' is TIC. Any such homomorphism
is an isomorphism. (It is surjective because B has no proper tight
integral extension.) Thus, the total integral closure of a reduced ring
is unique in the same sense that the algebraic closure of a field is.

We conclude this section with a couple of remarks. It is trivial
that for a TIC ring A, every monic polynomial / = f(t) of positive
degree in A[t], t an indeterminate, has a root in A: Let B = A, let
C = A[t]/(f), and let T be the image of t in C; then the image of T
under any extension of idA to C is the required root. It follows that
every monic polynomial in A[t] factors completely into monic linear
factors.

This will also be true for any residue class ring A/1 of A, although
A/I need not be TIC, even if A is (von Neumann) regular (and I is
radical). See § 5. However, if / is prime, A/1 will be TIC, for every
monic polynomial over a domain has a root in the domain if and only
if the domain is normal and has an algebraically closed fraction field.
Enochs gives examples in [2] to show that A need not be TIC even
if A is reduced and A/P is TIC for every prime P. The missing con-
dition is that Spec A be extremal.

2* Extremal spaces. We develop here the topological material
required in the rest of the paper. Following [5, 326-328], we call a
topological space X extremal if, equivalently, either (1) any two dis-
joint open sets have disjoint clopen neighborhoods; or (2) the interior
of every closed set is clopen; or (3) the closure of every open set is
clopen. The term extremally disconnected is used instead if X is
Hausdorff. Notice that, trivially, a connected subspace of an extremal
space is irreducible (in the sense of algebraic geometry, see [1]). Hence,
the maximal irreducible subspaces (i.e., the irreducible components)
of an extremal space are identical with its connected components.
(Notice that the irreducible components are not, in general, disjoint.)
Every irreducible space is trivially extremal. It is easy to see that
every open and every dense subspace of an extremal space is extremal.

Extremally disconnected spaces have been extensively studied.
Let X be a completely regular Hausdorff space. Then X is extremally



770 M. HOCHSTER

disconnected if and only if any of the following conditions holds (see
[3] for terminology): (1) every open subspace is C*-embedded; (2)
every dense subspace is C*-embedded; (3) the Stone-Cech compactifica-
tion βX of X is extremally disconnected; or (4) the lattice C(X) of
continuous real-valued functions on X is conditionally complete. A
compact space X (compact always means compact Hausdorff; we use
the term quasίcompact if the space is not necessarily Hausdorff) is
extremally disconnected if and only if βY = X for every dense sub-
space Y of X. Every infinite compact space has a closed subspace
which is not extremally disconnected. If X is a countable infinite dis-
crete space, then βX is extremally disconnected but βX — X is a closed
subspace which is not. (These results may be found in [3, p. 23, 1H. 6.,
p. 52, 3N. 6., p. 96, 6M., and p. 98, 6R.]. Condition (4) is treated in detail
in [8] and [9].)

Now, if X is any set, let &(X) be the Boolean algebra of all
subsets of X, and if X is a topological space, let &(X) be the
Boolean algebra of all clopen subsets of X. Of course, .^(X) is a
subalgebra of &(X). The following characterization of extremal
spaces is the topological crux of the proof of our main result.

PROPOSITION 2. A space X is extremal if and only if there is a
Boolean algebra retraction p of^(X) onto έ@(X) such that for every
closed set K, p(K) c K. For such a p, it is actually true that for
each closed set K, p(K) = Int K, while for each open set U, p(U) —
C1EΛ

Proof <== Suppose that there is such a p. For each closed K,
p(K) c K. Hence, for each open U, ρ(U) z> U, by taking complements.
Now, ρ(K) is clopen and ρ(K) c K => ρ(K) c Int K. But

Int Kc p(Int K) a p(K) ,

so that also Int Kczρ(K). It follows that ρ(K) = Int K. But then
IntK must be clopen for each closed K, so that X is extremal. The
fact that for each open U, p(U) = Cl U follows by taking complements.

=> Now suppose X is extremal. We first define p on the sub-
algebra generated by the closed sets; then extend by Zorn's lemma.
This subalgebra consists of all sets of the form Y = JJ?=i (K% Π E/<),
where each Kt is closed and each ZT* is open. We want to map Y to
Uί=i (Int Ki Π Cl Ui). To do this we must show that if f ^ i {K'% Π Ul) =
ULi (Kt Π Ui), then (JΓ=i (Int K{ Π Cl Ul) = \JU (Int ϋ̂ .Π Cl Ui). Clearly,
it suffices to show that

K Π Z7c U (Ki Π Ui) => Int K n Cl Ucz \J (Int Ki Π Cl Ui) .
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If not, let V = (Int K Π Cl U) - (\JU (Int K, Π Cl Ut)). Then V Φ 0
and V is clopen. We then have V Π Ucz U?=i (#< Π E7<) and 7 c Cl U,
but V* is disjoint from UΓ=i (Int Iξ n Cl E7<). V f] U = 0 contradicts
FcCl£7. Thus, if we let 17' = F n U, we have U'Φ0, ί / ' c U ^ ^ Π 17*),
while U' is disjoint from (J?=i ( I n t ^ ΓΊ Cl £7,) z> U?=i (Int Iζ Π U{).
Then

But U' Φ & is open while JJ?=i ( ^ ~~ I n t •£*) *s a u nion of closed sets
without interior, and so must also be without interior, a contradiction.
This establishes our claim.

Thus, for each Y = U?=i (Ki Γ) £7<), we may define <o(Γ) =
U?=i (In^ ̂ * Π Cl ί7t ), and the value of jθ(F) will not depend on the choice
of representation of Y. Clearly, p will preserve unions, clopen sets
will be mapped to themselves, and for each closed set K, p{K) = Int K.
We next show that p preserves Π. Since Π distributes over (j, we
can reduce to showing that ρ(Y Π Y') = ρ(Y) Π P(Y') when F and F '
are both open or both closed. The case where both are closed is
trivial. For the case where both are open, let K and K' be their
complements. Then, passing to complements, what we need to show
is Int (K U K') = Int K U Int K', i.e., p(K U K') = ρ(K) U ρ(K'), which
we already know. Finally, knowing that p preserves both U and Π,
we can show that ρ(Y) = X — p(X ~ Y) for every Y by proving it
when Y is an open set U or a closed set K. The verification is tri-
vial in each of these cases.

We now apply Zorn's lemma and assume that p is a Boolean
algebra retraction of a subalgebra £*, containing the closed sets, of
&*(X) onto &(X) such that ρ{K) = Int K for each closed set K, and
that p is maximal,i.e., cannot be extended to a larger subalgebra. If
Sf = &*(X) we are done. Otherwise, let Ye^(X) - £f. The sub-
algebra £f' of &(X) generated by S? and Y consists of all sets of
the form (S Π F) U (T - F), S, T e Sf. We wish to define a set
l f G . ^ ( I ) in such a way that for all S,S',T, and T" in ^ ,

( S n r ) u (T- F) - (Sr nF) u (T'-Y) =>(p(S)n w) u (P(T)-W) =
(p(S') nW)ϋ (ρ(T') - W). (This will enable us to extend p further,
giving the desired contradiction.) The condition on W can be broken
up into two parts:

(1) For all S, S' in ^ , S Π F = S' Π F=> ̂ (S) n T7 = ^(S') n TF;
and

( 2 ) For all Γ, T' in ^ , Γ - F = T - Y=>ρ(T) -W = ρ(Tf) - W.
We can rephrase (1) thus: Yd X - (SAS') => Waρ(X - (SAS')), and,
similarly, (2) can be rephrased: TA T' c Y=> p(TA T') c W. Here,



772 M. HOCHSTER

SAS' = (S - S') U (S' - S). Since all the sets TA Tf, X - {SASr)
are in ^ , we merely require that W be a clopen set which contains
all the ρ(T) for Γ c Γ and is contained in all the ρ(S) for YaS.
Now, T c Γ c S - ^ Γ l c p ί S ) , so that £7 = \Jτ<zv P(T) a Γivclfi ρ(S)K.
Moreover, since each p(T) and p(S) is clopen, [7 is open and K is
closed. Thus, we need only choose W to be any clopen set between U
and if, such as Cl ?7 or Int if.

We define p' on j ^ 7 ' by

^((S n η u ( τ - Y)) = (P(S) nw)u (p(T) ~ w).

By virtue of the conditions put on W, the value of p' does not depend on
the choice of S and T in the representation. Moreover, p\S^r) c £%{X)
and /O' extends p. Finally, it is trivial that pr preserves unions and
complements. Since p was supposed to be maximal, we have a contra-
diction. Sf must have equalled ^(X).

We can now tie up the questions of whether a given ring A is
TIC and whether Spec A is extremal. For basic facts about Spec A
used here, see [1].

PROPOSITION 3. Let A be a TIC ring. Let X ~ Spec A. Then
there is a Boolean algebra retraction p of ^(X) onto ,^{X) such that
for each closed set if, p(K) = Int if. Thus, Spec A is extremal.

Proof. We do not distinguish notationally between points of
Spec A and prime ideals of A. Embed A in ΐ[PeχAIP = C as usual,
and let B be the integral closure of A in C. Since A is TIC, we must
have a retraction homomorphism φ\B-+A. The restriction of φ to
the idempotents of B is a retraction onto the idempotents of A. The
idempotents of B are identical with those of C (c2 — c = 0 => c is inte-
gral over A), and these are in one-to-one correspondence with &*{X)
via the same map (regard A as a subring of C). Thus, ψ induces a
retraction p of ^(X) onto &(X). Since ψ preserves products, p
preserves intersections, and since φ preserves sums (in particular, the
relation cx + c2 = 1), p preserves complements. Thus, p is a Boolean
algebra retraction.

It remains to show that for each closed set if, p(K) = Int if, and
by Proposition 2, it will be enough to show that for each closed set
if, p{K) c if. Consider the idempotent c eC which vanishes precisely
on if. For each a e A, a e cC if and only if a vanishes on if, in which
case a — ca. But a = ca => φ(a) = φ(c)φ(a) => a — φ(c)a. Since if is

closed, for each P g if there is an a e A that vanishes on if but not
at Py whence φ(c) does not vanish at P. Thus, φ(c) vanishes only on
a subset of if.
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In the next section we show that this extra topological condition
is just what we need to give a reasonably concrete characterization
of TIC rings.

3* The main result* The usual (Zariski) topology on Spec A
is defined by taking as a basis for the closed sets the sets K(a) —
{P e Spec A: ae P}, ae A. If these sets and their components are taken
as a subbasis for the open sets of a topology on Spec A, Spec A becomes
a Boolean space, i.e., a totally disconnected compact (Hausdorff) space.
We refer to this topology as the strong topology on Spec A. See
[6, §§ 2 and 8] for details. With this observation, we are ready to
prove

THEOREM 1. A ring A is TIC if and only if the following three
conditions hold:

(1) A is reduced.
(2) For each prime P of A, A/P is normal and has an alge-

braically closed field of fractions.
( 3) X — Spec A is extremal.

Proof. We already know that the conditions are necessary. Now
assume (1), (2), and (3). Embed A in C = ΐlpeχA/P just as in the
proof of Proposition 3. Thus, a is identified with the element of C
which has the image of a modulo P as its P-component. Let B be
the integral closure of 4 in C. C is TIC, and hence so is B. To
complete the proof, we need only show that A is a retract of B.

For each 7 c l , let e(Y) be the element of C which has P-
component lAfP for each P e Y and 0AίP for each P & Y. (Henceforth,
we drop the subscript A/P.) e is the bijection of &*(X) onto the set
of idempotents of C (equivalently, of B) utilized in the proof of Pro-
position 3. We know e ( . ^ ( I ) ) c 5 . We shall show that e{.^(X)) is
a basis for B as an ^.-module. In fact, it suffices to show that given
beB, there is a finite cover {Y^ 1 ^ i <̂  n) of X and for each i an
element a{ of A such that for each i, b\Yi = ai\Yi. For then b =

Let b be given, and let feA[t] be a monic polynomial in the
indeterminate t of degree d ^ 1 such that f(b) = 0. Let P e l be
given. By virtue of (2), we can choose d elements aP(v), 1 ^ v ^ d,
of A such that g(t) = f(t) — ΠLi (t — aP(v)) has all its coefficients in
P. Let YP be the set of all primes of A which contain all the coef-
ficients of g(t). Then for each P, YP is open in the strong topology
on Spec A and P e YP1 so that {YP: P e X} is a strongly open cover of X,
and has a finite subcover. Thus, it suffices to restrict attention to a
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single YP in looking for the sets Yi and elements α̂  of A. But since
fφ) = 0 and g = 0 modulo Q for each Q in YP, we have that for each
Q in YP the Q-component of b is identical with the Q-component of one
of the aP(v), which is exactly what we need.

Thus, every beB can be expressed in the form Σ?=iaie(Yi)> Y%c: -3Γ>
for some w. Fix a Boolean algebra retraction p of &(X) onto &(X)
such that p(iθ = Int i£ for each closed set K. This is possible be-
cause X is extremal (Proposition 2). Notice that for F c l , e(p(Y)) e A
(it is a priori an idempotent of B, and turns out to be in A because
ρ(Y) is clopen in X). We now define φ\B-*A by 0(Σ?=i a>AYi)) =
ΣίW^d 0 ^;))- If w e c a n show that ^ is a well-defined A-module
homomorphism we will be done, because it is obviously then a retrac-
tion, and preserves multiplication (this last because, since the e(Y)
are a basis for B over A, it suffices to show that for all Y,
Y'aX,φ(e(Y)e(Y')) = φ(e(Y))φ(e(Y')); but this is an immediate con-
sequence of the fact that p preserves D). Thus, to complete the proof
we need only check that if y^uiaie(Y^ = 0 then so does Σ* ^(^(Y^)),
l<^i<kn. The Boolean subalgebra %/ of &(X) generated by the Yt

is finite: let {W3: 1 ^ j ^ h} be an enumeration of the minimal non-
empty sets in it. Then the W's form a finite partition of X, and every
set in <%/ (in particular, each Y{) can be expressed as a disjoint
union of W's. Let Y, = Ul=i^<i,«> Since ΣnaΆYi) = °̂  and since
e(Yi) = ΣiVu=ie(WJ(i,u))(for the union is disjoint), we have Σ?=i<β(TΓy) = 0,
where αj is the sum of those ^ such that for some u, 1 ^ u ^ v(i),
J(i, u) — j . Since the W3 are mutually disjoint, we then have that
a] vanishes on W for each j . But then a] vanishes on Cl W3 , and
ρ(Wj) c p(Cl Wj) c Cl Wj, so that a, vanishes on p(W3) for each j , and
thus Σ ^ i < ^ ( ^ )) - 0 . Now, for each i, e(^(r,)) = e ίUlS^^^, . , ) ) -
Σ«iie(/θ(T^(i,w,))(for the W's mutually disjoint =* the ρ(W)'s mutually
disjoint). Substituting, we find YΛiaie(p(Yi)) = ΣJ-^a^piW,)) = 0, as
required.

COROLLARY 1. Let A be a reduced ring such that Spec A is ex-
tremal. Then the following conditions are equivalent.

(1) A is TIC.
(2) Every monic feA[t] of positive degree factors into monic

linear factors.
(3) Every residue class domain of A is normal and has an

algebraically closed fraction field.

Proof. (1) ==> (2), and (2) passes to homomorphic images, so that
(2) =- (3), while (3) => (1) by Theorem 1.

COROLLARY 2. Let A be TIC. Let B be a reduced homomorphic
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image of A, or a localization of A. Then B is TIC if and only if
SpecB is extremal.

Proof. B is reduced, and condition (2) of Corollary 1 is inherited
by B.

4* The extremality of Spec A. In this section, we want to put
as concrete as possible an interpretation on the extremality of a top-
ological space X of the form Spec A for some ring A. We regard two
cases as well understood: the case where X is Boolean, so that ex-
tremal means extremally disconnected, and the case where X is irre-
ducible (=> extremal). We want to reduce the general case to a kind of
composite of these two cases.

Consider any space X of the form Spec A for some ring A. Let
Min X be the set of points of X which are not in the closure of any
other point. (These correspond to the minimal primes of A.) Let ^ ( X )
be the set of irreducible components of X (each of which is the set of
primes containing a certain minimal one), and let / : Min X—* ^ (X) by
f(x) — C\{x). / is a bisection. Let MinX have the relative topology
from X, and whenever ^ ( X ) is a partition of X, let ̂ ( X ) have the
quotient topology. In this case, / is continuous.

PROPOSITION 4. Suppose X ^ Spec A for some ring A. Then the
following conditions are equivalent.

(1) X is extremal.
(2) Conditions (a), (b), and (c) below hold.
( a) For every open subset of U of Min X or of X, the union of

the irreducible components of X which meet U is open.
(b) ^(X) is the set of connected components of X.
( c ) f is a homeomorphism, and both Min X and ^ ( X ) are

extremally disconnected Boolean spaces.
(3) Conditions (b') and (c') below hold.
(b') // x, x1 e Min X and x Φ x', then Cl {x} Π Cl {x'} = 0 .
(c ;) Min X is extremal.

Proof. We show (1) => (2) => (3) =» (1). Assume (1). To prove (a),
we first observe that the set of irreducible components which an open
set U of X meets is determined by U f] MinX: U meets f(x) if and
only if x e U. Since the quasicompact open sets form a basis for X,
we may assume without loss of generality that U is a quasicompact
open subset of X. Then by the first corollary in § 2 of [6], Cl U =
U*ei7nMiiiz/(aO Since U is open and X is extremal, C1Ϊ7 is open,
establishing (a). We already know (b). It thus makes sense to give
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the quotient topology. We know / is a continuous bijection,
and (a) is precisely the condition we need to make f~ι continuous. Now
Min X is Hausdorff [4, Corollary 2.4] and Min X is extremal because
it is dense in the extremal space X; on the other hand, r(f{X) is
quasicompact because it is a quotient of the quasicompact space X, and
since / is a homeomorphism, we obtain at once that both Min X and
rέ?{X) are extremally disconnected Boolean spaces.

(2) => (3) is trivial, since (b) => (b') and (c) => (c') Now assume (3).
We wish to show that X is extremal. Let U, V be disjoint open sets
in X. Then U Π Min X is disjoint from V Π Min X, and by virtue of
(c'), these sets have disjoint clopen neighborhoods S and T in Min X.
We can assume T — MinX — S. By the first corollary in § 2 of [6],
the sets U' = \Js,sf(s) and V = \Jteτf(t) are closed, by (b') they are
disjoint, their union is X, since the union of S and T is MinX, and
thus they constitute disjoint clopen neighborhoods of U and V.

This enables us to give a very concrete characterization of TIC
rings, which involves only the notion of extremally disconnected Boolean
space, rather than the more elusive notion of arbitrary extremal space.

PROPOSITION 5. The ring A is TIC if and only if the following
conditions hold.

(1) A is reduced.
(2) For each prime P of A, A/P is a normal domain whose

fraction field is algebraically closed.
( 3) Distinct minimal primes of A are comaximal.
(4) The set of minimal primes of A, in the inherited Zariski

topology, is an extremally disconnected Boolean space.

Using this result, it is not difficult to show that a completely
regular Hausdorff space is extremally disconnected if and only if its
ring of continuous complex-valued functions is TIC. See [7].

We note that in a TIC ring A, for each ae A> AnnA a is generated
by an idempotent. To see this, let D(a) = {P e Spec A: a £ P). Cl D(a)
is clopen. Thus, it will suffice to show that Cl D(a) is the set of primes
containing Ann^ a. But, by the first corollary in § 2 of [6], Cl D(a) =
{PeSpecA:P contains a prime not containing α}, and P contains a
prime not containing a if and only if the image of a in AP is not zero
if and only if Ann^αcP, as required. We will need this in § 5.

Now, let X be any space of the form Spec A such that X is
extremal. Composing the quotient map X—> (ίf{X) with f~\ we obtain
a closed, open, continuous retraction of X onto Min X which we denote
by r. It is quite easy to verify (see Proposition 4 and its proof):
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PROPOSITION 6. Y\-> r(Y) is a bisection of &{X) onto ^ (MinX).

5* Localization and total quotient rings*

PROPOSITION 7. Let S be a multiplicative system in the TIC ring
A generated by a family of elements which contains at most finitely
many zero divisors. Then S^A is TIC. Also, for each prime P of
A, AP is a TIC domain.

Proof. It suffices, for the first statement, to show that Spec S"1 A
is extremal. We can break the problem up into two cases: (1) S is
finitely generated, and (2) S contains no zero divisors. In the first
case, Spec S^A is open in Spec A, hence extremal, while in the second,
Ac:S~~1A==> SpecS^A dense in Spec A, hence, extremal.

To prove the second statement, it will suffice to show that AP is
a domain, for then Spec AP is irreducible => extremal. Since A is
reduced, so is AP, and the problem therefore reduces to showing that
P contains at most one minimal prime of A; but the minimal primes
are pair wise comaximal.

We recall that a ring A is (von Neumann) regular if for each
aeA there is a ue A such that a2u — a. A regular ==> A reduced, and
a reduced ring A is regular «=* every prime is maximal <=* Spec A is Tt.
In fact, if Spec A is Tx then it is a Boolean space (totally disconnected
compact Hausdorίf space). (The properties of regular rings are devel-
oped in [1, pp. 172-3, Exercise (15), (16), and (17)], where the term
absolument plat is used.) Thus, a regular ring A is TIC if and only
if each residue class field is algebraically closed and Spec A is extre-
mally disconnected.

For any ring A, let A* be the total quotient ring of A, i.e., S~\A,
where S is the set of elements of A which do not divide zero. A — A*
if and only if every noninvertible element of A is a zero divisor, in
which case we say that A is a total quotient ring. We always have
A a A*, and an induced embedding Spec A* c Spec A, where the image
is the set of primes of A consisting entirely of zero divisors, and always
contains MinSpecA.

PROPOSITION 8. // A is a total quotient ring and A is TIC then
A is regular. An arbitrary ring A is TIC if and only if A* is TIC
and A is integrally closed in A*, in which case Spec A* may be identi-
fied with Min Spec A under the induced inclusion Spec A* c Spec A.

Proof. To prove the first s tatement, let aeA be given, and let

e be the idempotent generator of Ann^ α. e + a is not a zero divisor
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in A, for b(e + a) = 0 => be = - 6 α => (6β)2 = (δe)(-δα) = -b2ea = 0 =>
be — 0=>b = bfe for some b' =>b = b'e = bfee — be = 0, as required. Then
e + α has an inverse %, and α = cm(e + α) = a2u + uea = α%.

We proceed to the second statement. If A* is TIC and A is inte-
grally closed in A*, then A is certainly TIC. On the other hand, if
A is TIC, A* is as well, by Proposition 7, and the integral closure of
A in A* will be a tight integral extension of A and hence must equal
A. In this situation, the image of Spec A* in Spec A is a Hausdorff
space containing MinSpecA; hence it must equal MinSpecA.

We note that if A is TIC and S is any multiplicative system in
A then S^A*) = (S^A)*. For clearly, S^A*) c (S-χA)*; but, S-ι(A*)
is a localization of a regular ring, hence regular, hence a total quotient
ring already. With this observation, we can easily prove:

PROPOSITION 9. Let A be a TIC ring and S a multiplicative
system in A. Then the following conditions are equivalent.

(1) S-XA is TIC.
(2) S-'A* is TIC.
( 3 ) The set of minimal primes of A which fail to meet S (which

is always a closed subspace of Min Spec A) is extremally disconnected.

Proof. Let Y be the set of primes described in (3). We have
obvious homeomorphisms Y F& Min Spec S-1A ^ Spec S^A*. Y is closed
because it is a quasicompact subspace of a Hausdorff space. Then
(1) => (2) <=> (3) is clear, while (2) => (1) because A integrally closed in
A*=>S~1A integrally closed in S^A*. (That (3)=>(1) is also easy to
see using Proposition 4 and Corollary 2 to Theorem 1.)

We conclude by considering some consequences of this theory of
localization. We note, for example, that by Proposition 6 the finite
direct product (direct sum) decompositions of a TIC ring are in one-
to-one correspondence with those of its total quotient ring. We also
note that a TIC ring always has localizations which are not TIC unless
it is a finite product of TIC domains. In fact, by virtue of Proposi-
tion 9 and the preceding remark, we can pass to the case where A is
regular, TIC, and Spec A is an infinite Boolean space. Then X = Spec A
has a closed subspace Y which is not extremally disconnected (cf. the
second paragraph of § 2). Let S be the multiplicative system of ele-
ments of A not vanishing anywhere on Y, and let I the ideal of ele-
ments of A vanishing everywhere on Y. Then it is easy to see that
I = Ker (A—•S-M.), and that the induced homomorphism A/I—^S^A
is actually an isomorphism, so that Spec S"1 A ^ Spec A/Ie& Y. Since
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Y is not extremally disconnected, S^A (and A/1) are not TIC. These
are the examples mentioned in § 1.

To be completely specific, we first note that if X is any extremally
disconnected Boolean space, and Ω is any algebraically closed field,
then the ring A of locally constant functions from X to Ω is regular,
TIC, and, in fact Spec A may be identified with X. (See the proof
of Theorem 6 (c) in [6, §7].) Let N be the space of nonnegative
integers in the discrete topology, let X — βN, let Ω be the field of
complex numbers, and let Y = βN — N. (See § 2.)
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