## POSITIVE HOLOMORPHIC DIFFERENTIALS ON KLEIN SURFACES

NEWCOMB GREENLEAF AND WALTER READ

Let  $\mathfrak X$  be a compact Klein surface with boundary  $\partial X$ , and let  $\mathcal O$  be an orientation of  $\partial X$ . We conjecture that there is a holomorphic differential which is positive on  $\mathcal O$  if and only if  $\mathcal O$  is not induced by an orientation of X, and we prove this when  $\mathfrak X$  is elliptic or hyperelliptic.

Let  $\mathfrak X$  be a Klein surface, with underlying topological space X, and let  $\eta$  be a meromorphic differential on  $\mathfrak X$  (for basic definitions and results see [1], [2]). If  $g \in E(\mathfrak X)$  is a nonconstant meromorphic function, then there is a unique  $f \in E(\mathfrak X)$  such that  $\eta = f \cdot dg$ .

Let B be an oriented component of  $\partial X$ , and let -B be the same component with the opposite orientation. For  $x \in B$  choose a local parameter  $g \in E(\mathfrak{X})$  such that g is increasing on B near x. We say that  $\eta$  is positive on B at x if  $\eta = \mathfrak{f} \cdot dg$  with  $0 < \mathfrak{f}(x) < \infty$ , and that  $\eta$  is positive on B if it is positive at all  $x \in B$ . It is easily checked that this definition does not depend on the choice of local parameters. Further  $\eta$  is positive on B or -B if and only if it has no zeros or poles on B, and if  $\eta$  is positive on B, then  $-\eta$  is positive on -B.

By an orientation  $\mathcal{O}$  of  $\partial X$  we mean an orientation of each component of  $\partial X$ . If  $\partial X$  has r components, then it has  $2^r$  orientations. If X is orientable, then two of these are induced by the two possible orientations of X. If  $\eta$  is positive on each component of  $\mathcal{O}$ , we will say that it is positive on  $\mathcal{O}$ , and that  $\mathcal{O}$  has a positive differential.

In this note we investigate the following question: if  $\mathfrak{X}$  is a compact Klein surface and  $\mathcal{O}$  is an orientation of  $\partial X$ , does  $\mathcal{O}$  have a positive holomorphic differential. Our first result is in the negative direction.

THEOREM 1. Let  $\mathfrak{X}$  be a compact orientable Klein surface, and let  $\mathscr{O}$  be an orientation of  $\partial X$  induced by an orientation of X. Then  $\mathscr{O}$  has no positive holomorphic differentials.

*Proof.* Let  $\mathfrak{X}_1$  be the analytic structure which is contained in the dianalytic structure  $\mathfrak{X}$  and which corresponds to the orientation of  $\mathfrak{X}$  which induces  $\mathscr{O}$ . If  $\eta$  is a holomorphic differential on X, we can as well regard it as a differential on  $\mathfrak{X}_1$ , and we can then apply the Cauchy integral theorem to obtain  $\int_{\mathscr{O}} \eta = 0$ . If  $\eta$  were positive on  $\mathscr{O}$ , this integral would be strictly positive. Note that this proof

extends to meromorphic differentials of the second kind which have no poles on  $\partial X$ .

We conjecture that if an orientation  $\mathcal{O}$  is not induced by an orientation of X, then it has a positive holomorphic differential, but we can so far prove this only in the cases  $\mathfrak{X}$  elliptic or  $\mathfrak{X}$  hyperelliptic (i.e., when  $\mathfrak{X}$  can be represented as a double cover of the compactified upper half plane  $\mathfrak{D}$ ).

THEOREM 2. Let  $\mathfrak{X}$  be an elliptic or hyperelliptic Klein surface and let  $\mathscr{O}$  be an orientation of  $\partial X$  not induced by any orientation of X. Then  $\mathscr{O}$  has a positive holomorphic differential.

*Proof.* Let  $\mathfrak{X}$  be an elliptic or hyperelliptic with  $r \geq 1$  boundary components. We can find meromorphic functions  $\mathfrak{f}$ ,  $\mathfrak{g}$  which generate  $E(\mathfrak{X})$  over the reals, with  $\mathfrak{f}^2 = H(\mathfrak{g})$ , where H is a real polynomial of degree n without multiple factors. Then the mapping associated with  $\mathfrak{g}$  represents  $\mathfrak{X}$  as a double cover of  $\mathfrak{D}$ , which is ramified at the zeros of H, and also at  $\infty$  if n is odd. If H has no real zeros, then r=1 or r=2, depending on whether n/2, the number of ramified points in the interior of  $\mathfrak{D}$ , is odd or even. If H has  $m \geq 1$  real zeros, then  $r=\lceil (m+1)/2 \rceil$ .

The genus of  $\mathfrak{X}$  is  $\gamma = [(n-1)/1]$ , and the differentials  $\{dg/\mathfrak{f}, g \cdot dg/\mathfrak{f}, \dots, g^{\gamma-1} \cdot dg/\mathfrak{f}\}$  form a basis over R for the space of holomorphic differentials on  $\mathfrak{X}$  (see [3], p. 293).  $\mathfrak{X}$  may have two real points, one real point, or one complex point at infinity. The differential  $dg/\mathfrak{f}$  has all of its zeros at infinity. In the first case it has zeros of order  $\gamma - 1$  at each such point, in the second a zero of order  $2\gamma - 2$ , and in the third a zero of order  $\gamma - 1$ .

Assume now that H has no real zeros. Then X is orientable. If r=1, then every orientation of  $\partial X$  comes from an orientation of X, so there is nothing to prove. If r=2, then  $\gamma-1=n/2-2$  is even. The differential  $(g^{\gamma-1}+1)\cdot dg/\mathfrak{f}$  has no zeros on  $\partial X$  and hence is positive with respect to some orientation  $\mathcal{O}$ , and its negative is positive on  $-\mathcal{O}$ .

Now assume that H has  $m \ge 1$  real zeros. By choosing, if necessary, a new generator for  $R(\mathfrak{g})$ , we may assume that  $\mathfrak{X}$  has a single complex point at infinity. Then H has 2r real zeros, and n=2(r+s), where s is the number of irreducible quadratic factors of H. Let the real zeros of H, in increasing order, be  $a_1, b_1, \dots, a_r, b_r$ , and pick  $c_j$  between  $b_j$  and  $a_{j+1}, j=1, \dots, r-1$ . Then the components of  $\partial X$  lie over the intervals  $[a_j, b_j], j=1, \dots, r$ . Let  $J \subset \{1, \dots, r-1\}$  be any set of cardinality at most  $\gamma-1$ , and set

Each of the differentials  $\pm \eta_J$  is positive with respect to a different orientation of  $\partial X$ . Hence for  $\gamma \geq r$  we obtain positive differentials for all  $2^r$  possible orientations of  $\partial X$ , and the theorem is proved. So assume that  $\gamma < r$ . Since r+1=n/2=r+s, we must have s=0 and  $\gamma = r-1$ . Because s=0, X is orientable, and because  $\gamma = r-1$  we can use all subsets J except  $J=\{1,\cdots,r-1\}$ . We have thus obtained positive differentials for  $2^r-2$  different orientations of  $\partial X$ , and have completed the proof of the theorem.

## REFERENCES

- 1. N. Alling and N. Greenleaf, Klein surfaces and real algebraic function fields, Bell. Amer. Math. Soc. 75 (1969), 869-872.
- 2. N. Alling and N. Greenleaf, *Klein surfaces*, Springer Lecture Notes in Mathematics (to appear)
- 3. G. Springer, Introduction to Riemann surfaces, Reading, Mass., 1957.

Received August 5, 1969. The first author was partially supported by a National Science Foundation research grant, and the second author was supported by a National Defense Education Act fellowship.

THE UNIVERSITY OF CALIFORNIA, BERKELEY THE UNIVERSITY OF ROCHESTER

