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DOMAIN-PERTURBED PROBLEMS FOR ORDINARY
LINEAR DIFFERENTIAL OPERATORS

J. FROESE

The variation of the eigenvalues and eigenf unctions of an
ordinary linear self-adjoint differential operator L is considered
under perturbations of the domain of L. The basic problem
is denned as a suitable singular eigenvalue problem for L on
the open interval ω- < s < ω+ and is assumed to have at least
one real eigenvalue λ of multiplicity k. The perturbed problem
is a regular self-adjoint problem denned for L on a closed
subinterval [a, b] of (ω_, ω+). It is proved under suitable con-
ditions on the boundary operators of the perturbed problem
that exactly k perturbed eigenvalues μ*δ --»Λ as a,b—> ω-y ω+.
Further, asymptotic estimates are obtained for μ*b — λ as
a,b—>ω-f ω+. The other results are refinements which lead
to asymptotic estimates for the eigenf unctions and variational
formulae for the eigenvalues.

Let L be the n-th. order ordinary linear differential operator

defined by

(1.1) L ±±Lx ±Pi(s)x(s)
k(s) <=o

on the open interval ω_ < s < ω+, where k and piy i = 0,1, •• ,n are

real-valued functions on this interval with the properties that

( i ) pi G O-^ftL., α>+), i = 0 ,1, •, n;

(ii) k is piecewise continuous on (ω_, ω+); and

(iii) p0 and k are positive-valued. Furthermore the operator k L

is assumed to be formally self-adjoint, i.e. k-L coincides with its

Lagrangian adjoint [k L)+ where

(1.2) [k L]+x = Σ ( - l Γ - f e p - ^ .

The points ω+ and ω_ are in general singularities for L; the possibility

that they are ±oo is not excluded.

It will be convenient to use the following notations:

S t

x(u)y(u)k(u)du, ω_ ^ $ < t ^ ω+

(1.4) (a?, y)a - (a,!/);+; (x, y)h = (x, y)l_

(1.5) (x, y) - (x, y)lt
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(1.6) [xy](s) = ± .+ZmJ-iyx{k)(s)lPn-

(1.7) [xy](±) = lim [xy](s) .
s—*ω±

Since the operator k L is formally self-ad joint Green's symmetric
formula has the form

(1.8) (Lx, y)l - (x, Ly)* = [xy](t) - [xy](s) .

Let H, H[a, b] denote the Hubert spaces which are the Lebesgue spaces
with respective inner products (x, y), (x, y)\ and norms \\x\\ = (x, x)1'2,
\\x\\ba = [(&> %)IY!\ (*)_ <^ a < b ^ ω+. For c any intermediate point,
o)_ < c < ω+, the symbols H(ω__, c], H[c, ω+) will similarly denote the
Lebesgue spaces with respective inner products (x, y)% (x, y)c and norms
\\x\\e= [(x, x)ψ*, \\x\\c = [(a?, x)cY

ι\ From (1.8) it is clear that [xy]( + )
(or [xy]( —)) exists provided x, y, Lx, Ly are in H[c, ω+) (or x, y, Lx, Ly
are in H(ω_, c]).

Let α0 and δ0 be fixed numbers satisfying ω_ < a0 < δ0 < co+ and
let iϋ0 be the rectangle in the a — δ-plane described by the inequalities
<o_ < a <. a0, b0 <z b < ω+. Then every closed, bounded interval [α, δ],
ύ)_ < a ^ aQ, δ0 ^ δ < α>+, can be associated in a one-to-one manner
with a point of RQ. For fc = 0,1, , n — 1, let αίΛ(α), i = 1, 2, , m,
and βjkφ), j — 1,2, , n — m be real-valued functions defined on the
respective intervals ω__ < a ^ a0, bQ ^ b < co+, such that for every
[α, δ] G i?0 the boundary operators

(1.9)
il/ - Σ aik(q)y<k)(a), i = 1, 2, . . . , m

k

(b), j = l,2,' ,n-m

yield a linearly independent self-adjoint set of boundary conditions

[Uiy = 0, i = 1, 2, . . . , m

k=ΰ

^ ' 0 ) !C7% = 0, i = 1, 2, . . . , n - m

for L (see [3] Chapter 11). Also for each [α, δ] eR0 let D[a, b] denote
the set of all y e H[a, b] which have the properties that

( i ) ye Cn~ι[a, δ], y{n~l) is absolutely continuous on [α, δ];
(ii) Ly eH[a, δ]; and
(iii) y satisfies (1.10).

Then the self-adjoint eigenvalue problem

(1.11) Ly = μy , ye D[a, b]

is known to have a countable set of real eigenvalues with no finite
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cluster point and a corresponding set of (real) eigenf unctions complete
in H[a, b]. Our problem is to obtain estimates for each eigenvalue
μ = f^ab of (1.11) for α, b near ω_, ω+ under hypotheses that will ensure
that the limits of μab as α, b —> ω_, α>+ will exist. Accordingly, eigen-
values λ of suitable singular eigenvalue problems for L on (ω_, α>+) will
be assumed to exist. If the eigenspace of λ is fc-dίmensional the
first theorem shows in particular that at least k eigenvalues of (1.11)
converge to λ as α, b —>ω_, ω+. The other results are refinements of
this which lead to asymptotic estimates for eigenfunctions. The method
of estimation used is due to H. F. Bohnenblust [1], Results like these
have been previously obtained for second order cases by C. A. Swanson
[8], [9]. See also [10] where he considers the biharmonic operator.

Let l0 be any fixed complex number, Im l0 Φ 0, and let ψif i —
1,2, •••,%, denote linearly independent solutions (hereafter to be referred
to as basic solutions) of Lox = 0 where Lo = L — l0. If basic solutions
ψi9 i — 1, 2, , n exist such that the lim | ψi/ψ3 | is either 0 or oo as
s —* co+ for each pair ψit ψjf i, j = 1, 2, , n, i Φ j , then ω+ will be
referred to as a class 1 singularity. On the other hand, ω+ will be
called a class 2 singularity when the behaviour of the basic solutions
is essentially arbitrary as s —> ω+. In particular this includes cases
where the basic solutions may oscillate as s —* ω+. Similar definitions
also apply to the singularity ω_. The singularity o)+ (or co__) is further
characterized by the number of basic solutions in H[c, ω+) (or in H(ω_, c\)
where c is any number satisfying ω_ < c < ω+. For n — 2 this reduces
to WeyPs well-known limit circle, limit point classification of singular
points [3, p. 225].

For the present perturbation problems will be considered for which
both ω_ and ω+ are both class 2 singularities and all basic solutions
are in H(ω_, c] and in H[c, ω+). In another paper class 1 singularities
(and mixed cases) as well as examples will be considered.

2 Basic and perturbed problems* Rather than general spectral
theory, one is interested in cases that the limits of μab as α, b —* ω_, ω+

exist in an elementary sense. Thus, eigenvalues of suitable singular
eigenvalue problems for L on (ω_, ω+) are supposed to exist. Such
eigenvalue problems may be established by following basically the
methods suggested by Kodaira [5] and Coddington [2]. Note that for
the particular case n — 2, a theorem of Weyl [7] leads to singular
"limit circle" problems which possess eigenvalues.

Let D be the set of all xeH such that xe Cn-ι(ω__, ω+) and x{n-1}

is absolutely continuous on every closed bounded sub-interval of (α>_, ω+).
Let χi9 i = 1, 2, , n be functions (to remain fixed) such that

( i ) LχieH, i = 1, 2, ••-, n;
(ii) the end conditions [%]( — ) = 0, i = 1, 2, , m are linearly
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independent; and
(iii) the end conditions [&%]( + ) = 0, i = m + 1, m + 2, ,n, are

linearly independent.
Then the basic problem is the singular eigenvalue problem

(2.1) Lx = Xx , x 6 A

where Do is the set of all x e D such that

% ] ( - ) = 0,i = 1,2, . . . , m
(2.2)

1 = o , ΐ = m + 1, . . . , w .

Again (2.1) is to be a reasonable eigenvalue problem, i.e., at least one
eigenvalue λ is supposed to exist which is assumed to be real. Note
that the methods used by Coddington [2] and Kodaira [5] ensure that all
eigenvalues are real. The eigenvalue problem (1.11) is to be regarded
as a perturbation of (2.1) and hence will be referred to as the perturbed
problem.

For the class of perturbation problems to be considered, the basic
solutions are not necessarily ordered according to their asymptotic
behaviour at ω+ or at ω__. Consequently strong conditions have to be
imposed on the limiting behaviour of the boundary operators Ui, Ui
as α, δ —»ω_, ω+. In particular every n — 1 times differentiate func-
tion y shall satisfy

(2 3) f UίV = [yχ']{a)[1 + 0 ( 1 ) 1 a S α ^ ω" ' i = 1, 2, - • •, m

[Uiy = [yχm+i]Φ)[l + o(l)] a s 6 - α ) , i = 1, 2, . . . , n - m .

Let A denote the matrix (A{j) where

Λ { [ Ψ i X s K - ) > i = l , 2 , - - - , n ; j = 1 , 2 , -- m

and let Ω = det A. Then since Ω = det A\ where A* is the transpose
of A, and since lQ is nonreal it follows immediately that Ω Φ 0 (other-
wise l0 would be an eigenvalue of (2.1)). Also for each j , j = 1, 2, ,n,
ψά, Lψd, χd, Lχ3 are in H; hence (1.8) implies that each limit [ψiXd](±)
exists (finite) for i, j — 1, 2, , n. This implies that Ω is equal to
some nonzero constant.

Let A(a, b) denote the matrix {Aiά{a, b)) where

A (a b) - \

ane let β(α, 6) = det A(α, 6). Since [ψiXj](a) and [^Zi](6) are finite as
a—>ω_ and 6 —>α>+ for i, j = 1, 2, , n, it follows from (2.3) that num-
bers α0, δ0, can be selected (which may be pre-supposed to be the original
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choices) and a constant C such that

(2.4) I Uiψi I ̂  C, I Uίψj I ̂  C, i = 1, 2, . , m , i = 1, 2, , n ,

ά = 1, 2, , n — m

whenever ω_ < a <̂  α0, 60 <* 6 < α>+. Also by (2.3) the element in the
ί-th row and i-th column in A(a, b) approaches the element in the ΐ-th
row and j-th column in A1 as a, b—>ω_, ω+. This implies that

(2.5) Ω(a, b)~>ΩΦθ

as a,b-+ω_,ω+ and hence by (2.4) and (2.5) the numbers α0, bQ pre-
viously chosen can be assumed to be such that Ω(a, b) is bounded above
and away from zero whenever ω_ < a ^ α0, &0 ^ b < α>+.

3* Comparison of the basic and perturbed problems* The two
problems (1.11) and (2.1) will be compared, with (1.11) regarded as a
perturbation of (2.1). An estimate will be obtained for the variation of
the eigenvalues and eigenf unctions under the perturbation Do—+D[a, b].
In particular it will be shown that this variation has the limit 0 as
α, δ—>ω_, ω+. Let λ be an eigenvalue of (2.1) and let Aλ denote the
eigenspace of dimension k corresponding to λ. Let xj9 j = 1,2, , k
be an orthonormal basis for Aλ and define r*(α?), τ\(%), Γa(x) and Γb(x) by

(3.1) τi(x) = Σ I Uixs I; τ\{x) - Σ I Ufa \

(3.2) ra(x) = Σ ή(χ); rb(x) = * Σ n(χ).

Then (2.2) and (2.3) clearly imply that τ*(a?) = o(l), i = , 1, 2, •. , m and
= o(l), i = 1, 2, , n — m and hence

(3.3) Γa(x) = 0(1), Γb(x) -

as α-^ω_, b—*o)+. The following theorem proves the convergence of
the eigenvalues of (1.11) to those of (2.1).

THEOREM 1. Let ω_ and ω+ be singularities for L as described
in § 1. Let X be an eigenvalue of (2.1) possessing k orthonormal
eigenf unctions. Then under assumption (2.3) there exists a rectangle
i?0, and a constant C on Ro, such that at least k perturbed eigenvalues
μJ

ab of (1.11) satisfy

(3.4) \μL-X\£C[Γa(x) + Γb(x)]

whenever [α, b] e RQ.

Proof. Let Gah(s, t) be the Green's function for the operator k-L0
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associated with (1.10) and let Gab be the linear transformation on
H[a, b] defined by

Gaby = \Gab(s, t)y(t)k(t)dt , y e H[a, b] .
Ja

It is well-known [3, Chapter 7], that for any function y e H[a, 6], the
function w = Gaby is the unique solution in D[a, b] of the differential
equation Low — y. For λ an eigenvalue and x any corresponding nor-
malized eigenfunction of (2.1), we define a function / on [α, 6] by

(3.5) f = x- lGabx , 7 = λ - l0.

It is easily verified because of the linearity of all the operators involved
that / is a solution of the boundary problem

LJ = 0, Uif =mx,i = l,2,--;m,

Uif = Uix, i = 1, 2, . , n - m .

Let Kj(a, b) denote the determinant of the matrix obtained from A(a, b)
by replacing the i-th column by

Ufa, Ulx, , Uϊx, Ulx, , UΓmx .

Then Cramer's rule yields the following representation of / in terms
of the basic solutions:

(3.7) f(s) = l

Ω(a, b) 3=i

The solution / of (3.6) is unique for if g is any solution of (3.6) then
the function h = g — / satisfies Loh = 0, Uih = 0, i = 1, 2, , m,
j7*/t = 0, ΐ = 1, 2, , n — m. This implies that h is the zero function
or g = /.

It follows from (2.4), (3.1) and (3.2) that there exists a constant
C such that

I K>(a, b) I £ C[Γa(x) + Λ(s)]

for each j, j = 1, 2, * , ^ whenever [α, δ]Gi?0. This in addition to
(2.5), (3.5), (3.7) and the fact that all the basic solutions are in Hr

enables one to deduce that there exists a constant C such that

(3.8) I! x - ΎGabx \\l £ C(Γa(x) + Γb(x)) \\x\\l

whenever [a, b] e Ro The following fundamental lemma was obtained
by H. P. Bohnenblust the proof of which is outlined in [8, p. 1554].

LEMMA 1. Let P(δ) be the projection mapping from the Hilbert
space H[a, b] onto its subspace Hδ[a, b] (δ > 0) spanned by all the
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eigenfunctions yά of (1.11) such that the corresponding eigenvalues
μj satisfy \ μj — X | ^ δ. Then for any w e H[a, b],

II w - P(δ)w ||i ^ 1 + - ψ - II w - ΊGabw \\\ .
\ 0 '

It follows from (3.8) and Lemma 1 that there exists a constant
C on Ro such that

(3.9) || x - P(δ)x Wl ^ —(Γa(x) + Γ6(a?)) || a; ||ί .

With the choice δ = C[Γa(x) + Γh(x)], we obtain

(3.10) || x-

and conclude that P(δ)x = 0 implies x — 0 on [α, 6]. But dim Aλ — k;
hence there exists at least k perturbed eigenvalues μ3

ab (counting
multiplicities) of (1.11) such that

I μU ~ λ I ^ C[Γa(x) + Γb(x)]

for [a, b] e Ro. This completes the proof of the theorem.

Theorem 1 and (3.3) show in particular that if λ is a basic eigen-
value of multiplicity k there exist at least k perturbed eigenvalues μ3

ab

(counting multiplicities) such that μJ

ab—>X when α, 6—> α>_, ω+. To
obtain the stronger result that exactly k perturbed eigenvalues μj

ab

satisfy (3.4) in Theorem 1, we require the monotonicity property that
the absolute value of the n-th eigenvalue of (2.1), | Xι \ <̂  | λ21 ^ ,
is not larger than the absolute value of the w-th eigenvalue of (1.11),
I j"i I ̂  I Λ21 ^ * Then an inductive proof similar to that used in
[8, p. 1554] yields the following result:

THEOREM 2. If in addition to the hypotheses of Theorem 1 the
above monotonicity property holds, then for every basic eigenvalue X
of (2.1), of multiplicity k, there exists a rectangle Ro and a constant
C on Ro, such that exactly k eigenvalues μ{b (counting multiplicities)
of (1.11) satisfy (3.4) whenever [α, b]eR0.

THEOREM 3. Let the hypotheses of Theorem 2 be satisfied. Then
corresponding to the eigenvalues X and μJ

ab of Theorem 2, there are
orthogonal eig en functions xj on [a, b] associated with X and yj asso-
ciated with the μJ

ab such that

II ηjj — γ J \\b < CAP ( r ) 4 - Γ ( r \ λ II r j \\b — II i i * \\h — 1
| | Uab ** \\a ^ W Z α W ι L b\^)\i \\ & \\a ~ \\ U \\a — *• 9

j = 1, 2, >",k „
whenever [a, b] e Ro.
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Proof. Let {y3} be a set of orthonormal eigenfunctions on [α, b]
corresponding to the set of eigenvalues {μib} in Theorem 2. Then
Hδ[a, b] is Λ-dimensional by Theorem 2 and P(δ) x = 0 implies a? = 0 by
(3.10). Hence there exist k unique linearly independent eigenfunctions
zj corresponding to λ which P(δ) maps into the orthonormal eigenfunc-
tions yj and by (3.9)

(3.11) \\z3 - ψ ||» = O[Γa(x) + Γb(x)] , [α, 6] G Ro .

Since

I ( V z 3 Λ h — fry* w ^ V I < II - M * I I 6 II 9* — v i \\h - 4 - I I ^ ^ Ί I 6 II v 1 m* \\b

by the Schwarz inequality

(z\ zψa = δ<y + O[Γβ(») + Γb(x)]

for ί,i = 1, 2, , k where δid denotes the Kronecker delta. Since the
zj are linearly independent, an orthonormal sequence xj can be con-
structed by the Schmidt process as linear combinations of the zj and
it is easily verified that

This combined with (3.11) gives the desired result.

4* Uniform estimate for eigenfunctions* For the class of sin-
gular problems under consideration, additional restrictions are needed
on the basic solutions ψjf j = 1, 2, , n, to obtain uniform estimates
for y3

ab(s) — xj(s), a <^ s <^b, in Theorem 3. In particular the require-
ment will be that all basic solutions are bounded on (ω_, ω+).

LEMMA 2. Let Gab(s, t) be the Green's function for k L0 associated
with (1.10). Then the positive function gab(s) defined by

(4.1) [9aMY= [\Gab(s,t)\2k(t)dt

is uniformly bounded on a ^ s ^ b provided a ^ α0, b0 g 6.

Proof. The Green's function Gab(s, t) will be constructed first.
From (1.6) it is clear that [xy](s) may be written in the form

[xy](s) =

with

i(-iypo(s),
( 4 . 2 ) " ' %
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Let B denote the n-hy-n matrix which has Bi3 = Bi:j(s) in the i + 1-th
row and j + 1-th column, i, j = 0, 1, 2, , n — 1. Then (4.2) implies
that B is nonsingular on (α>_, &>+).

Considering now the basic solutions one obtains from Green's formula
(1.8) that lψaψβ](s) is a constant [ψaψβ] independent of s, a, β =
1,2, •••,%. With £ representing the matrix with element [ψaψβ] in
the α-th row and /9-th column, it is easily verified that

(4.3) S = Y*BY

where Ydenotes the Wronskian matrix (ψf~υ(s)), i, j = 1, 2, - -, n and
Y* the transpose of the matrix Y. Since Bf Y (and hence F f ) are

nonsingular it follows that S is a nonsingular constant matrix. Let
jg-1 = (7αi5) denote the matrix inverse to S and consider the function
K(s, t) defined by

<4.4) K(s, ί) = Σ yat
a,β = l

Since y S " 1 ^ * = J5"1 by (4.3) one obtains by inspection that

[0 , i = 1, 2, •••, w - 2

Let

K(s, t) , α ^ ί ^ s ^ 6
<4.5) Kab(s,t) =

(0, a <, s <L t ^,

where [α, 6] is any closed sub-interval of (α>_, o>+). Then from the
above remarks it follows that

(4.6) Gab(s, t) - Kab(s, ί) + Σ Λ(ί)Ψ*(s)
Λ = l

where AΛ(ί), A; = 1, 2, , n, is chosen in such a way that Gαδ(s, ί), as a
function of β, satisfies (1.10). Compare (4.6) with [4, Th. 8, p. 1319].
In particular, one obtains by Cramer's rule that

Ω(a, b)

where Ωk

ab(t) denotes the determinant of the matrix obtained from A{a, b)
by replacing the λ -th column by the column whose r-th component vr

is given by

(0, r = 1, 2, . . . , m

*φβ , r = m + 1, , tt .
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Since ψk e H, k = 1, 2, , n it follows immediately from (2.4) and (2.5)
that there exists a constant C such that

(4.7) \ \ A k ( t ) \ \ l ^ C , fc = l , 2 , . . . , %

whenever a ^ α0, 60 ^ δ.

It follows from (4.1) that for a <̂  s ^ b

(4.8) ^αδ(8) ^ { j J Gα6(s, ί) |2 fcίίjdί}1/8 + {J J Gah{s, t) |2

By (4.4), (4.6) and the triangle inequality we obtain that

| Gab(s, t) |2 k{t)dtY s Σ
) i

But τ/ry is bounded on (ω_, ω+) and ψ y e ϋ , j — 1, 2, , n; hence by
(4.7) the first quantity on the right in (4.8) is uniformly bounded on
a <̂  s <.b provided a <̂  α0, b0 <Ξ,b. A similar proof shows that the
second integral on the right in (4.8) is also uniformly bounded on
a <̂  s ^ b provided a ^ α0, b0 ^ b. This gives the desired result. The
next result gives uniform estimates for the eigenfunctions of Theorem 3.

THEOREM 4. If in addition to the hypotheses of Theorem 3, ψd,
is bounded on (ω_, ω+), j = 1, 2, , n, then the eigenf unctions xj

corresponding to λ and yίb corresponding to μ3

ab of Theorem 3 are
such that

(4.9) yUs) = x*(8) - f*{8) + O[Γa{x)] + O[Γb(x)] , j = 1, 2, . . . , k ,

where fj(s) is the unique solution of the boundary problem

/ / < i m Lf=lQf U*f= Uix>', i = l , 2 , . . . , m ,
(4.10)

Uif = Uixj , i = 1, 2, . , n - m .

Proof. The Schwarz inequality for H[a, b] yields

iM - (λ - QG

= I Gat[(μL - k)yύ(s) - (λ - ιo)χ

^ i7.»(β){| /<ί» - k III ̂ 6 - *3' lit +

Hence Lemma 2 and Theorems 2 and 3 show that there exists a con-
stant C such that

(4.11) I yUs) - (λ - lo)Gabx'(s) | ^ C[Γβ(a;) + Λ(a?)]
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on a <̂  s ^ δ, whenever a <̂  α0, &0 ^ &•
The solution /J'(s) of the boundary problem (4.10) is given by (3.5)

or (3.7) with x replaced by xj. The function Fj defined by

F*(8) = (λ - k)Gahx*(8) - xj(s) + f*(8)

satisfies

LFj = l,F\ U:Fj = 0 , i = 1, 2, , m ,

UiF* = 0 , i = 1, 2, , n - m

and hence Fj is the zero solution on a ^ s ^ b for j" = 1,2, •••,&.
This with (4.11) immediately gives the uniform estimates (4.9).

5* Asymptotic variational formulae for eigenvalues* The pur-
pose here is to derive formulae for the change μ5

ah — λ of eigenvalues
under the perturbation Do—>D[a, 6], valid for α, b in neighbourhoods
of α>_, β)+ respectively. Let x\ yj denote the normalized eigenfunctions
associated with λ and μj = μ3

ab as described in Theorem 3 and let fj

be the unique solution of (4.10). One obtains the following theorem:

THEOREM 5. Under the assumptions of Theorem 4 the following
asymptotic variational formulae for the eigenvalues λ, μ{h are valid:

λ - μU = W'xj](b) - [/V](α)
{ +(h- λ)(/ J , />)£ + [Γa(x) + Γb(x)](p\ l)»O(l)

as a, b —»ce>_, ω + .

Proof. Let Z7?/ = 0 denote the self-adjoint set of boundary con-
ditions given by (1.10). Then by [3, Chapter 11] there exist boundary
forms Uc, Ut of rank n such that

[uv]φ) - [uv](a) = Uu-Utv + Uiu-Uv

for any pair u, v e Cn~ι[a, b], where represents the scalar product.
Now Uy* = 0 by (1.10) and (1.11) and Ux* = Up by (4.10); hence

(dropping the superscripts j)

[xy](b) - [xy](a) = Ux-Uty

= lfv]Φ) - lfy](a) .

Then, application of Green's formula (1.8) to the differential equations

Lx = λα?, Lf = lof and Ly = ^ o n la> &]> leads to

(5.2) (λ - /i)(s, 2/)i = (l0 - μ)(f y)l

(5.3) [fx]φ) - lfx](a) = (lQ -
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Hence one obtains as a consequence of Theorems 1, 2 and 3 that μ —
λ + o(l) and

\{χ,y)l-{χ,χ)l\^\\χ\\h

a\\y-x\\l = o{l)

as α, 6 —> α>_, ω+. Hence

(x, y)\ = 1 + o(l) , a, b -> ω_, α>+

and (5.2) yield

(5.4) λ - μ = (l0 - λ)(/, y)*[l + o(l)] .

We now appeal to the uniform estimate (4.9) to obtain

(5.5) (/, y)l = (/, χ)l - (/, f)l + [Γa(x) + Γh(x)](f, l)ίθ(l) .

Then applying (5.3) and (5.5) to (5.4) the result (5.1) follows easily.

The author is indebted to Dr. C. A. Swanson for his helpful
suggestions and comments in connection with this work.
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