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COMPACT INTEGRAL DOMAINS

JOE E. CUDE

It is well known that if A is a compact integral domain
and R is its Jacobson radical, then A = R or A/R is a division
ring and A has an identity. The object of this paper is to
investigate some of the algebraic properties of A.

If A has an identity and finite characteristic, then there
exists a maximal snbfield F of A which is isomorphic to A/R.
Furthermore A is topologically isomorphic to F + R. The
existence of a subfield is a necessary and sufficient condition
for A to have finite characteristic. If A does not have an
identity but does have finite characteristic, then it can be
openly embedded in a compact integral domain with an identity.
Finally, the main result shows that if the center of A is open,
then A is commutative.

1. Preliminaries* An integral domain is defined to be a ring

with more than one element such that the nonzero elements form a
multiplicative semigroup (which is not necessarily commutative). It
is always assumed that a topological ring is Hausdorίϊ.

Throughout this paper A will denote a compact integral domain
and R will denote its Jacobson radical.

It has been shown [4, Lemma 2, p. 279] that A has a fundamental
system of neighborhoods at zero consisting of open (two-sided) ideals.
Kaplansky has shown that R is open [3, Th. 7, p. 161]. Also, that
A — R or A/R is a division ring and A has an identity [3, Th. 19,
p. 168].

Because A is an integral domain, it can have no elements or
ideals that are nilpotent in an algebraic sense, but nilpotency can be
defined in a topological sense. We say that an element x is nilpotent
if lim xn — 0, and that an ideal V is nilpotent if for every open set
containing zero, there is an integer N such that for every n ^ N,
Vn a W where Vn is the set of all finite sums of the product of n
elements of V.

It has been shown that R is nilpotent [3, Th. 14, p. 163].
The following theorem, which may be thought of as an exten-

sion of Wedderburn's theorem, immediately follows from the above
results.

THEOREM 1. Any compact semi-simple integral domain is a finite
field.

615



616 JOE E. CUDE

2* General properties* In this section it is assumed unless
otherwise stated that A is a compact integral domain with an iden-
tity. The units and nilpotent elements of A are characterized by
the following lemma.

LEMMA 1. If A is a compact integral domain with an identity
and xeA, then x has an inverse if and only if x$R, and x is
nilpotent if and only if xeR.

Proof. If x ί R, then there exists an x' e A such that xxf — 1 e R.
Let y be the right quasi-inverse of xxf — 1, then

xxf — 1 + y + (xxr — l)y = 0 ,

which implies that #[sc'(l + y)] = 1.
If x has an inverse, then it can not be nilpotent. Since R is

itself nilpotent, and by the above all elements not in R have inverses,
R consists of all the nilpotent elements of A.

THEOREM 2. If A is a compact integral domain with an identity
and has characteristic p, then A contains a maximal subfield which
is isomorphic to A/R.

Proof. Let aΛ-R be a generator of AjR and let the number of
elements of A/R be pq. Now for every positive integer k, apkq belongs
to a + R. Since A is compact and R is closed, a + R is closed and
compact. Hence there exists a subnet {apk{i)q} of the sequence {apkq}
which converges to some α* belonging to a + R. Hence α* + R
generates A/R. Ifn = pq-1, then an - 1 e R and 0 = lim (an - iyk{i)q =
(a*)n — 1. The ring F generated by {jl|0 ^j ^ p — 1} and {α*} is a
finite field containing pq elements.

Let D be any subfield of A. For every d e D, let θ(d) = d + R.
Clearly θ is a homomorphism mapping D into AjR. If θid^ — θ(d2),
dx — d2eR, and if dι — d2Φ 0, then 1 e R . Since this is impossible, θ
is a monomorphism and D contains at most pq elements.

The field F constructed above is hence a maximal subfield of A
and is isomorphic to A/R.

Note that in the above Theorem, D could have been a subdivision
ring of A, and hence any subdivision ring of A is a finite field.

Zelinsky has shown [7, Th. E, p. 321] that if A has finite char-
acteristic, then A = S + R (group direct sum) where S is a compact
subring of A. If in addition A has an identity, then since R is open
and F is finite, the following theorem immediately follows.
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THEOREM 3 If A is a compact integral domain with an identity
having finite characteristic, and if F is a maximal subfield of A,
then A is topologically isomorphic to F + R.

Not all compact integral domains have finite characteristic as is
seen in the following example. Let Q be the field of rational numbers
and P be any prime divisor of Q which is nonarchimedean. Let A*
be the valuation ring at P with the usual topology. Now A* is a
topological integral domain. Let A be the completion of A*. A is
an integral domain [5] which is compact [6, Lemma 1, p. 434], but
it does not have finite characteristic.

It should also be noted that A does not have a subfield. As is
seen in the following theorem, the existence of a subfield of A is
equivalent to A having finite characteristic.

THEOREM 4. If A is a compact integral domain with an identity,
then A has finite characteristic if and only if A has a subfield.

Proof. Let F be a subfield of A. As in Theorem 2, F is finite,
and hence it has finite characteristic. Since A can have only one
nonzero idempotent, the identity of F must be the identity of A, and
hence A has finite characteristic.

The other implication is obvious.
In the rest of this section let us assume that A is a compact

integral domain with characteristic p which does not have an identity.
We say that a topological ring B can be openly embedded in a to-
pological ring C if there exists a continuous open monomorphism which
maps B into C.

THEOREM 5. If A is a compact integral domain with finite
characteristic and does not have an identity, then A can be openly
embedded in a compact integral domain with an identity.

Proof. Let K = {jl10 <; j ^ p — 1} be the discrete field of integers
mod p and let A* = A x K. For every (x, i) e A* and (y, j) e A* define

(x, i) + (y, j) = (x + y, i + j) , and

(α, ΐ) (2Λ 3) = (xy + jx + iy, ίj) .

With the usual product topology A* is a compact ring.
Let P — {(x, i)e A*\xa + ia = 0 for every aeA}. Now P is a

closed two sided ideal in A*. Furthermore it is easily seen that A*jP
is an integral domain with an identity (0,1). For every aeA, let
θ(a) — (a, 0) + P. Clearly θ is a continuous open monomorphism, and
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hence A can be openly embedded in A*/P, a compact integral domain
with an identity.

3* Commutativity of compact integral domain. If A has an
identity, then A/R is of course a commutative ring, and it would be
tempting to assert that A itself is commutative. However in general,
this is not true as seen in the following example.

Let D be any finite discrete topological field containing pq elements
where q > 1. Let σ be any automorphism on D. For every integer
i ^ 0, let D(i) = D. Also let A = UT^D(i). With the usual product
topology A is a compact Hausdorff space. For every feA and geA,
define (/ + g)(i) = f(i) + g(i) and (fg)(i) = Σ / , + ^ f(k)σk[g{m)\. With
the above operations A is a compact integral domain with an identity
and has characteristic p. A is not commutative if σ is not the identity
automorphism. The above construction is called a Hubert construction
[1, pp. 43-44].

It is interesting to note that although commutativity is an alge-
braic property, it may depend upon a topological property as is seen
in the main result.

THEOREM 6. If A is a compact integral domain, then A is com-
mutative if and only if its center is open.

Proof. Assume that Z is the center of A and that it is open.
The center of R, Z(R), contains Z f) R. Because Z is open and OeZ,
for every x e R, there exists an n(x) ^ 1 such that xn{x) e Z, and hence

χn(X) G z{R). Since R itself is an integral domain, R is commutative
[2, Corollary, p. 219]. Futhermore, RaZ since for every xeR and
α e i , axx = xax which implies ax = xa.

If A has no identity, then A = R, and A is commutative.
If A has an identity, then A/R is a finite field containing pq ele-

ments for some prime p, and for every x e A, xpQ — x e R. Thus for
every x e A, xpq - x e Z which implies that A is commutative by a
result of Herstein [2, Th. 2, p. 221].

The other implication is trivial.
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