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FACTORIZATION OF A SPECIAL POLYNOMIAL
OVER A FINITE FIELD

L. CARLITZ

Let q = p*, where p is a prime and z = 1, and put r = ¢~,
n = 1. Consider the polynomial

Fla)=a¥+t+a14+1.
Mills and Zierler proved that, for ¢ =2, the degree of every
irreducible factor of F'(x) over GF'(2) divides either 2n or 3n.
We shall show that, for arbitrary g, the degree of every irre-
ducible factor of F'(x) over GF'(q) divides either 2n or 3n.
We shall follow the notation of Mills and Zierler [1]. Put
1.1) K =GF(r), L =GF#r%, M = GF(@) .
The identity

(x(2r+1)r + gr-br 1) _ m72—~r(x2r+1 + ™t 1)
— (xﬂ-l _ 1)(xr2+r+1 - 1)

is easily verified. Since

(x2r+1 + x'r—-l + 1)r = x(2r+1)r + x(r—-l)fr _+_ 1 y
it is clear that
1.2) Fr@) — o™ "F@) = (@™ — 1)@+ —1).

Let F(a) = 0, where « lies in some finite extension of GF'(g). Then
by (1.2)

(ar2~1 _ 1)(a72+1'+1 . 1) ,

so that either

1.8) att—1=0
or
1.4) a’ttt —1=0.

Clearly (1.4) implies
a’t—1=0.

Hence « lies in either L or M.
Assume ac K. Then a” = a, so that F(a) = 0 reduces to
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(1.5) @ +2=0.

There are now several possibilities. First the case p =2 can be
ruled out since « #= 0. Next if p = 3, (1.5) reduces to @® = 1, so that
a=1. If p >3 and r = 2 (mod 3) then again « is uniquely determined
by (1.5) and is in GF(p). If p > 8,p =2 (mod3) but r =1 (mod 3),
then a e K if and only if

(1.6) (—2)55 =1 (mod p) .

Since p* — 1]» — 1, it is clear that this condition is satisfied; hence
there are three distinct values of a e K that satisfy (1.5). Finally if
p= 1 (mod 3), (1.5) will be satisfied with « € K if and only if (1.6) holds
and again there are three distinct values of a.

There is also a possibility that F(x) has multiple roots when p > 2.
Since

F'(x) = Q2r + D2 + (r — D™ = o¥ — g2,
it follows that a multiple root must satisfy
(1.7) ar=1.
Then
0 =a'Fla) = a** + a** + o,

so that &@®* + 2 = 0. On the other hand, combining (1.7) with either
(1.3) or (1.4) gives a® = 1. Hence p =3, = 1. Since F"'(1) = 2 the
multiplicity is 2.

To sum up we state the following two theorems.

THEOREM 1. The degree of every irreducible factor of
F(x) — er-{—l _[__ m*r—-l + 1

over GF(q) divides either 2n or 3n.

THEOREM 2. The only possible irreducible factors of F(x) of
degree dividing n are determined as follows:

(i) p=38,z—-1,

(ii) p > 3,7 =2 (mod 3), linear factor,

(i) p>3,p=2 (mod3),r =1 (mod 3), 2* + 2,

(iv) p =1 (mod3), (—2)"12 =1 (mod p), 4* + 2,

(v) p=1 (mod3), (—2)" 2% £1 (mod p), 1.

F(x) has multiple roots if and only if p = 3; when p =3, a =1
is a root of multiplicity 2.
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Let F(x) denote the product of the irreducible divisors of F(x)
over GF(q) of degree dividing » and put f, = deg Fi(x). Then Theorem
2 implies

THEOREM 3. We have

(i) f0:2y
(i) fo=1,
>iii) f, =38,
(iv) fo=3,
(v) fo=0,

where the cases (i), +-+, (V) have the same meaning as in Theorem 2.
When p =2, f, = 0.

2. If a denotes a root of F'(x), put
(2.1) B =a",
Thus
B+a't+1=0,
so that
(2.2) B+ 1) 4 51 =0.
Expanding the left member of (2.2) we get
B B+ 268 428"+ T+ B+ 1=0;
this is the same as
(2.3) B +B+DETT+HB+1)=0.
Now define
Gx)=(@ + 2+ 1)@ +2+1).

It follows that if « is a root of F(x), then a**' is a root of G(x).
As in [1], put

Gx)=2"+2 "+ 1, Gx)y=a"+o+1,
so that
G) = G(x)Gy(x) .
Also it is convenient to put
H@x) =2 +a+1.

The roots of H(x) are the inverse of the roots of G(x).
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If H(B) = 0 then
Br=-8-1, B'=-p-1=48,

so that Be L. If we assume Bc K, so that 8" = B, it follows that
28 +1=0. Thus for » > 2, H(x) has a unique root in K (indeed in
GF(p)). Since H'(8) =1 it is clear that H(x) has no multiple root.
Thus, except for the root —2, all the roots of Gy(x) lie in L and not
in K.

Next if G,(8) = 0 we have

prii= -1,
so that
Bt = —BB+1)=—-BH—-B=1.
Hence B87°-' =1, so that Be M. If we assume Sc K we get
(2.4) B+B+1=0.

This equation is solvable in K if and only if » =8 or » = 1 (mod 3).
Thus, except for these cases, the roots of G,(x) lie in M and not in
K. Since

Gxy=o2"+1=(@+ 1),

it follows that G,(xr) has no multiple roots.
This proves

LEMMA 1. Except for the root —2 when p > 2, all the roots of
G.(x) lie in L and not in K. FExcept for the root 1 when p = 3, all
the roots of Gy(x) lie in M and not in K.

We shall now prove

LEMMA 2. Let a be a root of F(x) and put 8 = a**', so that B
%8s a root of G(x). If B is a root of G,(x), then ace L; if B is a root
of Gy(x), then a™ ™ =1 so that ae M.

Proof. By hypothesis
0=Fla)y=B+a"+1,
so that
(2.5) B=—a"t—-1.
Assume first that G,(8) = 0. Then
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1= —B"YB + 1) = a¥+hr-b.qr! = g2
so that

a2(r2—1) — 1

and a®’c L. But since either ¢ c¢ L or ¢ M it follows that a < L.
Next let Gy,(8) = 0. Then by (2.5)

art = —,3 — 1= Br+1 — B(r+1)(27+1) R
which gives
(2.6) QR = 1

This implies a*e M. If ac L, (2.6) reduces to a*** = 1; this in turn
gives

[82 — a4r+2 p— 1 y
so that B = +1. Since G,(8) = 0 we must have p = 3,8 = 1.

3. By Theorem 1 we have
(3.1) F(x) = Fy(x)Fy(x)/F(x)

where every root of F(x) is in L, every root of F,(x) is in M, every
root of Fiy(x) is in K.
We shall now prove

LEMMA 3. A number ae L is a root of F.(x) if and only if
B = a¥* is a root of G.(x).

Proof. By Lemma 2, if « is a root of F(x), then B is a root of
G,(x). Let aeL, B =a"*,G,(B) =0. Then since ™' =1 it follows
that

(aﬁ)r—l — (a2r+2)r-»1 — a,z(r?_n — 1 .
Consequently

B'F(a) = BB + a + 1)
=B+ B+ (aB)!
=8 +87+1
= Gl(lg) =0 ’

so that F(a) = 0.
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LEMMA 4. Let « be an element of M such that a*t"' =1, Then
a 1s a root of Fy(x) if and only if B = a¥ ™ is a root of Gy(x).

Proof. By Lemma 2, if a is a root of Fy(x), then £ is a root of
Gy(®). Let aeM,a™ ' =1, 8 = a”*, G(B) = 0. Since

Bt = qUreran — gt gt
we get

0=GB) =" +B+1l=a""+a*+1=Fa),
so that F(x) = 0.

LEMMA 5. Let B be a nonzero element of L and let R(B) denote
the number of elements a in L such that a** = B. Then

(1 (r =0, 2 (mod 3)
(3.2) RBB) =43 (r=1 (mod3), 8 =" vel)
IO (otherwise) .

Proof. Any common divisor of 2r 4+ 1 and #* — 1 must divide
@r—1@r+1) —4(*—-1)=3.

If » =0, 2 (mod 3) then 2r +1 =1, 2 (mod 3), so that (2r + 1,7*—1) = 1.
It follows that the equation a**' = £ has a unique solution ¢ L. If
r =1 (mod 3) we have 2r + 1, 7* — 1) = 3; thus the equation a**' = g
is insolvable in L if and only if 8 =, ve L. If 8=, ve L, there
are exactly three solutions; otherwise there are none.

If »=0,2 (mod 3) it follows at once from Lemmas 3 and 5 that
there is a one-to-one correspondence between the roots of F(x) and
of G,(x). We may therefore state the following.

THEOREM 4. Let r = 0,2 (mod 3). Then the degree of F.(x) 1is
equal to r.

If we put f, = deg F'(x), f, = deg Fy(x), f, = deg F\(x), then by (3.1)
we have

(3.3) fo+t2r+1=fi+1f.
Thus for » = 0,2 (mod 3), f, can be computed by means of (3.3) and

Theorem 3.

4. We shall now determine f;, when » = 1 (mod 38). By Lemmas
3 and 5, f, is three times the number of roots of G,(x) that are cubes
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in L. Then, if as above
Hx)y=a2"+2+1,

f. is three times the number of roots of H(x) that are cubes in L.

Put A = B+, where H(B) = 0. Since B”° = B, it follows that
A = B =)\, so that Ae K. In the next place ) is a cube in K if
and only if B is a cube in L. To see this let v denote a primitive
root of L. Then 8 = !, where t is some integer. If B is a cube in
L then t = 3u, where u is an integer. Thus

)\. — ‘81'+1 — ,73u(r+l) .

Since v"*' e K, it follows that )\ is a cube in K. To prove the con-
verse, it is clear first that » = v*+?, where a is an integer. If ) is
a cube in K it follows that a = 3b, where b is an integer. Thus
A = B becomes

) = ytiren)
so that
3b(r + 1) = t(r + 1) (mod r* — 1) .
This implies
b=t (modr —1).

Since 7 = 1 (mod 3) we conclude that 3/¢.
The relation A = 8"+, where H(B) = 0, is equivalent to

4.1) B+B+r=0.

We have seen above that, except for S = —1/2, all the roots of
H(B) =0, are in L and not in K (of course this case occurs only when
»>2). Moreover 8 = —1/2, A = 1/4 do indeed satisfy (4.1). Also 2is
a cube in L if and only if it is a cube in K, that is, if and only if

4.2) 20-98 =1 (mod p) .

Thus aside from the exceptional case just described we must
determine the number of cubes of K that are not of the form z(z + 1)
with 7 in K (for convenience we replace A in (4.1) by its negative).
We denote this number by N. If N, denotes the number of nonzero
cubes of K that are of the form z(r 4+ 1) with 7 in K, it is clear that

(4.3) N+ N, = —;—('r —1).

As for f,, we have
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(4.4) f.=6N + 3E,

where £ =1 when (4.2) is satisfied and E = 0 otherwise. The coef-
ficient 6 occurs because for given \=1/4 there are two distinct values
of B; however when ) = 1/4 there is a single value of B and hence
the coefficient 3.

It remains therefore to evaluate N,. Clearly 6N, is equal to the
number of pairs «, ¥y € K such that

- (4.5) r+r=9y=*0.
Assume first that p > 2. Then (4.5) is equivalent to
(4.6) =4y +1, y+0.
Let +(a) denote the quadratic character for K, that is

§+1 (@ =0==0,becK)
Y@ =40 (@ =0)
’\—1 (otherwise) .

Then the number of solutions of (4.6) is equal to

S {1+ vy + 1)},

yeK
Y70

so that
4.7) 6N, =7 — 2+ ZK«Jr(4y3 +1),

where now the summation is over all y € K.

Put
J(a) = ;K#f(xs +a) (aeK).

Then clearly
J(@ac®) = y(e)J(@) (¢ +0),

so that
(4.8) JHac®) = J¥e) (¢ #0).
2 J%a) = D (@ + )y’ + a))
= g,yg(r —1) - xgﬁl
=7 ;31 -3
= rZ3;~y— 2) ” r

= 2r(r — 1),
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so that
4.9) S JHa) = 21(r — 1) .

Let v denote a fixed primitive root of K. Then by (4.8) and (4.9),
since J(0) = 0,

(4.10) JHL) + JHY) 4+ T = 6.
On the other hand, since

;J(cz) = ;;o,’f(aﬁ +&=r—1 —%1 =0,
it follows that
(4.11) J1) + J() + J(v) = 0.
Combining (4.11) with (4.10), we get
(4.12) JAHL) + J)J (V) + JHY) = 3.

It is easily seen that J(1) is an even integer while J(v?), J(v*) are odd.
Thus (4.12) implies

(4.13) r=A’+ 3B,

where A, B are integers defined by
(4.14) A= %J(l) ., B= %[J(l) +2J()] .

It follows from the definition that

(4.15) J1) =1 (mod3) .
Hence, by (4.11) and (4.12),
(4.16) JO)=J@ =J7) =1 (mod3) .

If p=2 (mod3) it is clear from (4.13) that A = ++'* B=0.
Thus, by (4.11), (4.14) and (4.16),

4.17) J(1) = =2+ =1 (mod 3)
and
(4.18) I = J(7) = —%J(l) :

For p = 1 (mod 3), on the other hand, we have the congruence

J = —(5m)" (mod ),
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where p = 6m + 1. Thus J(1) = 0 (mod p). Hence A% B* in (4.13)
are uniquely determined. Then making use of (4.16), J(1), J(v%), J(¥*) are
uniquely determined.

Returning to (4.7), we have

(4.19) 6N, = r — 2 + (2)J(2) .
Thus, by (4.3) and (4.4), we get
(4.20) fi=7r—9(2)J@) — 3E.

We may state

THEOREM 5. Let p > 2,7 =1 (mod8). Then the degree of F(x)
18 determined by (4.20), where J(2) is uniquely determined by (4.13),
(4.16), (4.17) and (4.18); E = 1 when

2= =1 (mod p)

and E = 0 otherwise.
5. When p = 2 we have, as above, f; = 6N and
N+No=_§(¢-1);
6N, is equal to the number of pairs z, y € K such that
(5.1) r+r=y°"+*0.

Now for a € K put

t(a)=a+a2+a22+ e +azns—1

and
e0) = (1.
Define
(5.2) L(a) = g}Ke(ax“) .
It follows from (5.2) that
(5.3) L(ac®) = L(a) (c#0).

Since e(a) = e(a¢®) we have also
(5.4) L(a) = L(a* = L(a™) (@ =0).
It is easy to show that
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r (@ = 0)

200 =1 @0

Then
3 L0 = SN ea(@ + v)

=r 3231
= r{xliif- 3(r — 1)]
=r@Br — 2).
Since L(a) = », it follows that
(5.5) > LXa) = 2r(r — 1) .

a0

Let v denote a fixed primitive root of K. Then, by (5.3) and (5.5),
L(1) + L¥(v) + LA(v®) = 6r.
In view of (5.4) this reduces to
(5.6) L¥1) + 2L (v) = 6r.
In the next place
za‘, L(a) = Zz, Za] e(ax’)y = r,
so that

S L(a) =0 .

a0

By (5.3) and (5.4) this reduces to
5.7 L1) + 2L(v)=0.
Combining (5.7) with (5.6) we get
L) = r, L(v) = &r.

But it is clear from the definition that

L(a) =1 (mod 3)
for all a € K. Therefore
(5.8) Lm) = L(v") = (=2)»"
and, by (5.7),
5.9 L(1) = (—2)m=+2i2
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We now return to (5.1). For fixed y, the number of solutions of
(5.1) is equal to

1+ e .
It follows that
6N, = ;‘s {1 + e(¥’)}
=r—2+ L) .
Then

ﬁ:ﬁN:{%@—n—M]

=2(r — 1) — [r — 2 + L()]
=r— L) .

In view of (5.9) this becomes
fi=1r — (—=2)mtniz

This completes the proof of

THEOREM 6. Let p = 2,q = 2°,r = q*. Then the degree of F.(x)
1s equal to

ons _ (—g)meinre
The degree of Fy(x) is determined by
fi+t2r+1=f+1,
where f; = deg Fi(x) and f, is given by Theorem 3.

We note that when z = 1, Theorem 6 reduces to Theorem 3 of [1].
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