
AN APPROACH TO SINGULAR HOMOLOGY THEORY

TlBOR R A D O

I N T R O D U C T I O N

0.1. Given a topological space X, we associate with X a complex R — R(X) as

follows. Let £00 denote Hubert space (that is, the space of all sequences r l 5 ,

rn, of real numbers such that the series r\ + + τ\ + converges,

with the usual definition of distance). For p > 0, let t>0, , vp be a sequence

of p + 1 points in £00 , which need not be linearly independent or distinct, and

let |ι>0, , Vp I denote the convex hull of these points. Finally, let T be a

continuous mapping from |t>0> * * > vp I in^° ^ Then the sequence vo, , Vp

jointly with T is a p-cell of the complex R, and will be denoted by(t>0>
# * #>

Vp, T) . The group Cp of (integral) p-chains in R is defined as the free Abelian

group with these p-cells as free generators. For p < 0, Cp is defined by Cp = 0

(that is, Cp consists then of a zero-element alone). The boundary operator 3p :

Cp —> Cp~-ι is defined by the conventional formula

i=0

for p > 1. For p < 0, Bp is defined as the trivial zero-homomorphism. Clearly

B3 = 0, and thus R = R (X) is a complex which is obviously closure-finite in the

sense of [ 4 ] . Accordingly, one can define cycles zp, boundaries bp, and so

forth, for R in the usual manner. The homology groups of R are defined by Hp =

, where Zp , Bp denote the group of p-cycles and p-boundaries respectivelyP/ ^P ' WUCJL"C ^p » up
inR.

0.2. The complex /?, which was introduced and studied recently by the writer

[6] , differs from the various singular complexes used in previous literature first

in the use of Hubert space. The general practice is to consider continuous map-

pings T from rectilinear simplexes located in any Euclidean space. Instead, we
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use Hubert space in its capacity of infinite-dimensional Euclidean space, a pro-

cedure which may of course be adopted in all the various versions of singular

homology theory. The main departure from previous practice lies however in the

fact that no identifications are made in the chain groups Cp of R : two p-cells

(t>o ># " # >vp > T1 ) R f (t>2 * * * # >vp * T ")R a r e e q u a l i f a n d o n l y i f t h e y are identi-

cal, that is, if VQ = VQ, , Vp — υ'p, T' = T" * Thus the complex/? is of

enormous size as compared with previously used complexes. Let us note that

beyond the lack of identifications, R is further increased by the fact that the

points t>0, , Vp occurring in a p-cell (vo, , vp, T) are not required to be

linearly independent or distinct.

0.3. There arises the question of how the homology groups of R compare with

those arising in previous approaches to singular homology theory. In [6] , the

writer proved that the homology groups of R are isomorphic to those of the so-

called total singular complex 5 = S(X) introduced by Eilenberg [3] . Since this

result will be used in the sequel, we shall now give the precise statement of the

main theorem established in [6] . For each dimension p > 0, let us select a funda-

mental p-simplex, with (linearly independent) vertices d0, ?^p For our own

purposes, it is convenient to choose d0, dί9 d2,* as the points (1,0,0,0, •)>

(0,1,0,0, •)> (0,0,1,0, •), * in £Όo. Given then a sequence v0, , vp

of p -f 1 points in £00 > which need not be linearly independent or distinct, there

exists a unique linear map CC: | dQ, , dp \ —* | v0, , vp \ such that <x(dι)

— V(, i = 0, , p. This linear map is denoted by [v0, , vp] . The total singu-

lar complex S = S(X) of Eilenberg [3] may now be described as follows. For

p > 0, a p-cell of S is an aggregate (do, , dp, T) , where T is a continuous

mapping from \do, , dp | into X. The group Cp of (integral) p-chains of S is

then the free Abelian group with these p-cells as free generators. For p < 0, one

sets Cp = 0. The boundary operator Bp : Cp —* Cp-.χ is defined by

for p > 1. For p < 0, 'dp is the trivial zero-homomorphism. The homology groups of

S will be denoted by Hp We have then obvious homomorphisms

p *-* p f{^p 1 'p <-* p f ^ p

defined as follows for p > 0:
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τp{dor~,dp,T)s= (do,'~,dp,T)R ,

<rp(vo,'-,Vp,T)R= (do,' ',dp,T[vo,- ,vp])s .

For p < 0, τp and σp are defined as the trivial zero-homomorphisms. Unfortunately,

Tp is not a chain-mapping. On the other hand, σp is easily seen to be a chain-

mapping, and hence it induces homomorphisms σ*p : Hp —> Hp. The main result

of [6] is contained in the following statement.

THEOREM. The homomorphism σ*p : Hp —> Hp is an isomorphism onto, for

every dimension p.

Since singular homology theory is sometimes thought of only in relation to

triangulable spaces, it may be appropriate to note that the preceding theorem is

valid for general topological spaces. In particular, the space need not be arc-wise

connected.

0.4 In view of the preceding theorem, the complex R appears as an appropriate

tool in constructing singular homology theory. It is of interest to note that the

various complexes used in previous approaches to singular homology theory may

be derived from the complex R by a combination of the following two types of

reduction.

(i) The chain groups Cp of R are replaced by certain subgroups Γp. For

example, one may select Γp as the group generated by those p-cells (vo, ,

vp, T) for which the points vo, , vp are linearly independent. Another sig-

nificant choice may be based upon the concept of a minimal complex studied by

Eilenberg and Zilber [3]

(ii) One selects in Cp9 for each p, a certain subgroup Gp, and one replaces

Cp by the factor group Cp/Gp. From the computational point of view, this amounts

to an identification of elements of Cp which are contained in the same coset

relative to Gp. For brevity, we shall refer to this type of process as an identi-

fication scheme.

In the present paper, we shall study the effect of the various identification

schemes, occurring in previous theories, upon the homology structure of the com-

plex R, It is easy to see that these identification schemes may be reduced to

three basic types. Our result is that one may apply these basic identification

schemes in any desired combination without changing the homology structure of R

(see Theorem 1 in §4.7). As a matter of fact, we obtain an identification scheme

which appears stronger than those previously used (see Theorem 2 in 4.7 and see



268 TIBOR RADO

§5). This leads to some interesting questions, formulated in §6, which seem to

deserve further study.

0.5. It should be noted that the complex R is semisimplicial in the sense

of L3J > and therefore can be used to construct a complete homology and coho-

mology theory.

0.6. Previous relevant literature, as well as further problems arising in this

line of thought, will be discussed in §6 when convenient terminology will be

available. The writer wishes to express his appreciation of the courtesy extended

by S. Eilenberg and N. Steenrod who made available to him the manuscript of their

yet unpublished book [2] . Both technically and conceptually, the study of that

book proved most valuable in preparing the present paper.

1. I D E N T I F I C A T I O N S IN MAYER C O M P L E X E S

1.1. A Mayer complex M is a collection of Abelian groups Cp, where the

integer p ranges from — °° to + °°, together with homomorphisms

dp Cp > Cp-i ,

such that 3 p - ! Bp — 0. Cycles and boundaries are defined in the usual manner.

The homology groups Hp of M are defined by Hp = Zp/Bp , where Zp , Bp are the

groups of p-cycles and p-boundaries respectively. If M, W are Mayer complexes,

then a set of homomorphisms

fp : Cp >C'p

is termed a chain mapping if ^ή/p = fp-ι ^p > where primes refer to the complex

M1

For clarity, we shall write Cp, 3 p , Hp, and so on, to identify the complex

under consideration. In particular, a p-chain of M (that is, an element of C p) will

be denoted by symbols like cp , dp, and so forth.

1.2. We shall now describe the general process of identification in a Mayer

complex M. Let [Gp] be a collection of Abelian groups such that Gp C Cp and

(1) 3p Gp C Gp-X .

Explicitly: if c* € Gp , then d$c$ C Gp-X. Set Cj? = C$/Gp. Thus, the

elements of C™ are cosets relative to Gp . The general element of C ^ is of the
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form {cp}, where this symbol denotes the coset containing the element cp of

Cp. In view of (1), we can then define homomorphisms

by the formula 3™ [cp] = [dpCp]. Clearly ~d™-x <3™ = 0. Accordingly, the system

of factor groups {C!?}9 jointly with the homomorphisms 3 p , constitutes a Mayer

complex m. We shall say that m is obtained by identification, with respect to the

system {Gp}9 from U. The system \Gp\9 satisfying (l),will be termed an identifier

for M We have then natural homomorphisms

TTp i C p * C p

defined by πp Cp = {cp]. Clearly

Thus Up is a chain mapping, and hence induces homomorphisms

defined as follows. If zp is a cycle in M9 then we let [2^ ]j/ denote the homology

class containing Zp . The symbol [z i$ j m is defined similarly. Then Tί^p is given

by

If rr^p is an isomorphism onto for every p , then we shall say that the identifier

{Gp} is unessential. Thus the process of identification with respect to an unes-

sential identifier does not change the homology structure of the complex.

1.3. We shall state presently a convenient condition for the unessential char-

acter of an identifier {Gp}. Let us observe that the condition (1) in 1.2 means

that the homomorphisms Bp, cut down to the subgroups Gp , may be used to turn

the system \Gp} into a Mayer complex which we call G. The complex m9 defined

in 1.2, appears then as merely the complex M mod G in the sense of the general

relative homology theory of Mayer complexes. From this general theory, the condi-

tion for 77*p to be an isomorphism onto, for all p, is well known: it is necessary

and sufficient that all the homology groups of G be trivial. For convenient appli-

cation, we shall now state this condition explicitly.

The condition (ί/). We shall say that the identifier {Gp} satisfies the condition
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([/) if the following holds: if zίf is a cycle in M such that zp G Gp then there

exists a (p + l)-chain Cp + X G Gp+t such that 3p+! Cp+1 = zp .

We have then the following criterion.

CRITERION FOR UNESSENTIAL IDENTIFIERS. An identifier \Gp] is unes-

sential if and only if it satisfies condition (ί/).

Since the elements of Gp represent those elements of Cp which are, in a sense,

discarded as we pass from the complex M to the complex m, the criterion may be

also worded as follows: discarded cycles should bound discarded chains. In a

special case, this criterion was used by Tucker [ β ] . As mentioned above, the

general criterion is merely a re-wording of a well-known theorem in the relative

homology theory of Mayer complexes (for a comprehensive presentation, see

Eilenberg and Steenrod [2]). For the convenience of the reader, we shall now

outline a direct proof of the criterion.

1.4. Assume first that the identifier {Gp\ is unessential. Take a cycle

(1) z^CGp.

Then 7Tpzp = \zp] = 0, and hence 77 * p [zp']nf = [τrpzp]m = 0. Since π * is an

isomorphism onto, it follows that zp bounds in M:

(2) 4 = 3? + 1 c*+ 1 .

Application of ττp yields, in view of (l), the equation

0 = 77p Zp = TTp'dp+i C p + ι = ^ + l 7 T + C

Thus Ttp+γ cp + t is a cycle of the complex m. Since 77* is an isomorphism onto, we

have therefore a cycle Zp+X such that 77p+12:p+1 differs from the cycle 77p+1Cp+1

only by a boundary. Thus we can write

Ήp+l Zp+l = πp+l c

Now c^+2 is of the form {cp+ 2 i = 77p+2c^+2 Making this substitution, we obtain

z p + l = πp+i c p + l +<^p + 277p + 2 c p + 2 = ^p+lfcp + l + ^ + 2 C

Hence

(3) ^p+lC^p+l ~~ zp + l + ^p + 2 c p+2) = 0
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Now let us consider the (p -f l)-chain

°ί+l = c + i "" z

By (3) we have dp+ι G G p + 1 , while from (2) we have Zp = B "+i </"+! Thus (1)

is seen to imply that zp bounds a chain contained in Gp+ι. In other words, con-

dition (U) holds.

1.5. Assume now, conversely, that condition (ί/) holds. We have to show

that τr*p is an isomorphism onto for every p.

(i) Suppose we have

(1) 77.p[zp]* = 0

for a certain cycle Zp. The assumption means that TTpZp bounds some chain

c™+t. Since c^+ t is of the form {.Op*^ = 77p+i Cp+i > we have

πpZp = 3g + i77jp+1Cp + 1 =

and hence

πp{z$ -3p+iCp+i) = 0 .

Thus the cycle

(2) Zl= z^-B* + 1 c^ + 1

is contained in Gp. Since condition (ί/) is now assumed, it follows that Zp is of

the form

(3) Z £ = 3 j + 1 d p + i

From (2) and (3) it follows that

z = 3 + i ( c + + ίi +

Thus (1) implies that Zp bounds in M, and hence π*p is an isomorphism into,

(ii) Assign now an element [-z£*]m of H™. Now z™ is of the form

(1) z»=\4\=ττp4.

Since Zp is a cycle, we have

0 = BjJzjS = 3j}7Γpc£ = πp.jBJί cM

p .
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Hence

Thus Bp Cp is a cycle contained in Gp-i Since condition (£/) is now assumed, we

(4€GP).

p p

have a chain dp such that

Thus Cp — dp is a cycle:

Now we calculate

rM _ ύί _ #
p p — p

= \jτpc
Mp - πpdp]τpcp - πpdp]Λ .

By (1), Ήpc$ = z™, and by (2), π p ^ = 0. Thus finally

π pίzp]* = Op]. .

Thus 77+p is onto, and the proof of the criterion is complete.

1.6. In marked contrast to the general character of the preceding discussion,

the unessential identifiers actually employed in the sequel are of a very special

and restricted type. There arises the question whether there are general con-

structions yielding unessential identifiers in Mayer complexes. The following

comments may be of interest from this point of view. Let M, L be Mayer complexes

and let

(1) fp: CMp-*Clp

be a chain-mapping such that the induced homomorphisms /*p : Hp —» Hp are

isomorphisms onto. In symbols:

(2) f,p : U"p « HL

p .

Let Np denote the nucleus of the homomorphism (1). Since fp is a chain-mapping,

it is immediate that the system [Np] is an identifier.

In view of the strong assumption (2) one may be tempted to conjecture that

{Np} is unessential. The following simple example shows that this is not the

case, even under extremely special and favorable circumstances. Let M be a finite

simplicial complex described abstractly as follows. The group C^ of (integral)
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2-chains of M is the free Abelian group with a single generator ί. The 1-chain

group C t is the free Abelian group with four generators si9 s2 9 s3, s 4 . The

0-chain group Co is generated by α, b, c, d, e. For p ^ 0, 1, 2, the p-chain group

Cp reduces to a zero-element. The boundary relations are as follows:

Bt = s 1 - f s 2 ~ l ~ $ 3 , Bsj = c — 6, Bs2 = α ~ - c , B s 3 = 6 -~ α, B s 4 = e — cί,

Bα = B6 = Be = Bcf = Be = 0 .

We define first homomorphisms /p : Cp —* C 5 as follows:

/2* = 0, fχS1 = / l S 2 = / l S 3 = 0, fιS4 = S! + 5 2 + S 3 ,

/o α = /o 6 = /o c = α, fod = foe = d .

For p ^ 0, 1, 2, of course /p is the trivial zero-homomorphism. Next we define

homomorphisms Dp : Cp —• ^ p + i a s follows:

ΰ o α = 0, D o f c = ~ " 5 3 , Do^ = s 2 , D o ^ = 0, Z)o e = — s 4 ,

For p ψ 0, 1, of course Dp is the trivial zero-homomorphism. One verifies readily

the following facts.

(i) fp is a chain-mapping.

(ii) BDp7p + Dp-iByp = / p γ£ - γ £ , for every p-chain y$ of Λf. Thus

(iii) Let /Vp be the nucleus of Λ,, and let m be the complex obtained from M

by using the identifier {/Vp},in the sense of 1.2. Then the l-dimensional homology

group Hψ of m is infinite cyclic.

(iv) The l-dimensional homology group //f of M is trivial (consists of zero

alone).

Thus M and m have different homology structures, and hence {Np} is certainly

not unessential. And yet, in view of (i), (ii), the induced homomorphisms f*p :

Hp —» tip are isomorphisms onto. In other words, a very plausible method to

obtain unessential identifiers fails even under very special and favorable con-

ditions.

1.7. In dealing with additively written Abelian groups, we shall use certain

familiar conventions. Thus we shall writ© G — 0 to state that the Abelian group G
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is trivial (consists of a zero-element alone). If A ι, , An are subgroups of G,

then A i + + An will denote the smallest subgroup containing A t , , A2

2. T H E AUXILIARY C O M P L E X K

2.1. The auxiliary complex K, which played an important role in [6] already,

is merely the "formal complex," in the sense of [2] , of £oo taken as a point set.

The complex K is defined as follows. For p > 0, a p-cell of K is a sequence

( υ o , , Vp) of points of E<χ3 which are not required to be linearly independent

or distinct. Two p-cells (v0 , , vp), (wo, * , wp) are considered as equal if

and only if v^ — w^ i = 0, , p. These p-cells are taken as a base for a free

Abelian group, to be denoted by Cp, the group of (finite) p-chains of K. For p < 0,

one defines Cp = 0. For p > 1, the boundary operator

3p : Cp —>Cp-1

is defined by the formula

Clearly 9 3 = 0 . For p < 0, <3p is of course defined as the trivial zero homo-

morphism.

Let {v0 , , Vp) be a p-cell of Kl Treating the points of £Όo a s vectors in the

usual manner, we describe the barycenter b — b(v0,* * *9Vp) of the points v0,

• , Vp by the formula

v0 + ••• + vp

b =
p + l

2.2. The following homomorphisms will be used,

(i) The homomorphism 'dp : Cp —> ^n-i > already defined,

(ii) In terms of any assigned point v of £oo, one defines the cone homo-

morphism

hυ

p: Cp->Cp+1 (p > 0 )

by the formula

, • " , vp,v).
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For p < 0, hp is the trivial zero homomorphism.

(iii) The barycentric homomorphism

βp Cp^Cp

is defined as follows. For p < 0, βp is the trivial zero homomorphism. For p = 0,

/30 = 1, the identity. For p > 1, βp is defined recursively by the formula

where b is the barycenter of the points v0 , , v γ.

(iv) The barycentric homotopy operator

Pp Cp > Cp+ι

is defined as follows. For p < 0, Pp(v0 , , vp) = 0. For p > 1, pp is defined

recursively by the formula

PP(v0 , •••, vp) = hhp(βp - 1 - p p - ! 3p)(v 0 , # , vp) ,

where b is the barycenter of the points (v0 , , vp).

(v) For p > 1, 0 < j < p — 1, we define the homomorphism.

by the formula tPfj(v0 , , VJ , ι;; + 1 , , vp) - (v0 , , Vj+ι, VJ , , vp).

The operation ίp>y will be referred to as a transposition. Thus "transposition"

means here a transposition of adjacent elements. According to the definition of

equality for p-cells (see 2.1), we have tpfj(v0, , vp) = (v0 , , vp) if and

only if VJ = Vj+χ.

2.3. The following identities hold among these various homomorphisms

(i) V i hP + Λ £ - i 3 p = l (p > 1 ) .

(ii) -dpβp = ySp-j 3p ,

(iii) ^p + i^p + pp-i ^p = /3p ~ 1 ,

(iv) βptPtj=~βp ( p > l , 0 < j < p - l ) .

2.4. If (f0 , , Vp) is a p-cell of K, then j v 0 , , vp \ denotes the convex

hull of the points v0 , , vp (that is, the smallest convex set containing these
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points). If cp is a p-chain of K, and A is a convex set in Eoo » then the inclusion

Cp C /I is defined to mean that cp can be written in the form

CP = Σ fej(vo.j , ••*, Vp. j ) ,

where the coefficients kj are of course integers, so that |t>o,/> * * *> vp,j I

/ = 1, , n. One has then the following inclusions:

(i) ^P(vo , ' , t>p) C | v 0 , # # # , vpl ,

(") βp(v0 , , v p ) C l^o , ••*, v p | ,

(iii) Pp(vo .*••• v p ) C | v o > , V p L

As a consequence, an inclusion cp (Z A implies that ΉpCp C A, βpcp C A,

PpCp C A, tpjCp C /I. It is understood that the zero chain cp — 0 is agreed

to satisfy the inclusion cp C A for every convex set A.

2.5. For p > 1, an elementary t-chain in K is defined as a p-chain cp which

can be written in the form (see 2.2 (v))

cp = (vo > ###» vp) + tP,j(
vo » # Ί *>p)

LEMMA. Given an elementary t-chain

Cp = (t>0, ", Vp) + t p , ; ( t > 0 , * , Vp) ( P > 1 ) t

ίAe following statements hold:

(i) //p = 1, £λeτι 3pCp ~ 0. //p > 1, ίAe^ 3pCp is α linear combination {with

integral coefficients) of elementary t chains d \ v0 , , Vp |

(ii) / 3 p C p = 0;

(iii) PpCp is a linear combination {with integral coefficients) of elementary

t-chains C | v0 , , vp \ .

Proof. The assertion (ii) is an immediate consequence of 2.4 (iv). The as-

sertions (i) and (iii) are readily verified for p = 1. Hence we can assume that

P > 1 .

Proof of (i) for p > 1. Le*t us note that tpfj{vQ, , vp) is of the form {w0 ,

• , Wp), where V( = «;; for j ^ /, / + 1, and ι?y = wy+i » t>y+i = w y. Now we have
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P
p cp ~ 2* v — J- J l Λ v o > ι v i > » v p y ' V^o > i w i i* * iwp) 1

t=O

For i φ j9 j + 1, the quantity in square brackets is clearly an elementary ί-chain

^ I vo 9 * * * 9 vp I 0 n t n e other hand, the terms corresponding to i = / and

i = / + 1 cancel. Thus (i) follows.

Proof of (iii) for p > 1. Since (iii) is verified directly for p = 1, we proceed

by induction. Assume (iii) to hold for p — 1, where p > 2. Let us write again

ίp,/ = (^o ># * * 9 wp) Clearly, the points v0, , vp and the points w0, , Wp

have the same barycenter ό. Hence we have (see 2.2 (iv))

Pp {v0 , , vp)= hp [βp (v0 , , Vp) - (t;0 , , Vp)

= A

In view of (ii), addition yields

(1) Ppcp = hp( ~cp - Pp-i'dpCp) .

Now, by (i), 3pCp is a linear combination (with integral coefficients) of elementary

ί-chains C (v0 , , vp \. Hence, by the inductive assumption, the same holds

for yOp-i ^pCp9 and hence also for the quantity in parentheses in (1), and finally

for pp cp itself, since b C | v0 , , vp | .

2.6. For p > 1, an elementary d-chain in K is defined as a p-cell (ι;0 , , vp)

such that VJ = vy+i for some /.

LEMMA. // Cp = (vo, , Vp) is an elementary d-chain, then the following

statements hold.

(i) If p — 1, ίAew ^pCp = 0. //p > 1, ίAew 3pCp is a linear combination (with

integral coefficients) of elementary d-chains C | v0 , , Vp \.

(ii) βpcp = Q.

(iii) PpCp is a linear combination (with integral coefficients) of elementary

d-chains C | vQ , , vp | .

The proof is entirely analogous to that in 2.5, except that (ii) requires an

additional remark. We have VJ = Vj+t for some j by assumption. For this same j,
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we have then the relation

Hence we have also

βp tp9j(vOt 'fVp) = βp

On the other hand, 2.3 (iv) yields

Hence 2βp{v0, , v p) = 0. Since βp(v0, , v p) is an element of the free

Abelian group Cp , it follows that βp (v0 , , vp) ~ 0.

3. T H E C O M P L E X R = R(X)

3.1. In working with the complex R (see 0.1), the following device (introduced

by Eilenberg and Steenrod in [2] in connection with the complex S; see 0.3) is

useful. Let A be a convex subset of £Όo , and let Cp denote the subgroup of Cp

(see 2.1) generated by those p-cells (v0 , , vp) of the complex K which satisfy

the inclusion (v0 , , vp) C A (see 2.4). For p < 0, we define Cp = 0 (see

1.7). Let T : A —> I be a continuous mapping. We can define then homomor-

phisms

Γ # pk v pR
p . L*p ' Li p

by the formula

7p(vo, ,vP) = (vo,~',Vp,T)R ( p > 0, (t/0, ,fp) C C^) .

For p < 0, Tp is the trivial zero-homomorphism. For Cp ζL Cp, it will be con-

venient to use the symbol (cp, T) to denote TpCp. Among the simple and obvious

rules of computation for the symbol (cp ,T) , we mention the formula

In terms of the preceding notations, we define now homomorphisms

Hp ' ^ p * v p 9

^.R . r* R v n R
Hp ^ p f ^ p + 1
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by the formulas

βp(vo,'~,vp,T)R= (βP(vQ,~ ,vp),T)R, ( p > 0 ) ,

Since βp(v0, , vp) C | v0 , , vp | , pp(t>0 , , vp) C \vo, , vp\ hy

2.4, the homomorphisms βp, pp are well defined. For p < 0, /3p and pp are

defined as the trivial zero homomorphisms. In terms of the homomorphisms tp ,

defined in 2.2, we define

by means of the formula

tpj(vo,'",vp,T)R= (tPfj{v0, ~,vp),T)R .

We have then the following identities (see [6]) :

(1) 3«/3« = $-,3";

(2) 3 « + 1 / 0 « + p*^** = βR

p-l,

where 1 denotes the identity transformation in Cp; furthermore (see 0.3)

(3) # t * , , =-/3* ( 0 < J < P ) ;

(4) σ p τ p = l ;

(5) B^σp-^Jrp;

(6) Cp-i^pTpVp = CΓp-î p

(7) σp β« rp σp= σp β«

(8) σ-p+1p*τpσp=σp+1pp

ι;

(9) Tp_ 1 σ p _ 1 3p ί

/ S ρ

ί = B « r p o - p / S « .

3.2. For p > 1, we define an elementary t-chain in R as a chain of the form

(ι»o, " . vp, Tf + (tPfj(v0 ,'• >, vp), T)R (see 2.2). The subgroup of C* gener-

ated by the elementary ί-chains will be denoted by Tp . For p < 0, we define

T* = 0 .
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LEMMA. If C$ € Γp

Λ, then

(i) ^Pc
R

pCT^l

(ϋ) / 3 * c * = 0 >

(in) P p C j ? C ^

Proof. Clearly, it is sufficient to consider the case where cp is an elementary

ί-chain:

4= (vo,'",vp,T)R + (tPlj(v0,'",vp),T)R

= ((«o, •• ,vp) + tPtj(v0, ",vp),T)R .

Then we have

tf 4= (Bp[(iΌ. ,Wp) + tp,j(vo, ",vp)],T)κ.

By 2.5 (i), 'dp [(v0, , vp) -f tptj{v0 , , ι θ ] is either zero or else a linear

combination, with integral coefficients, of (p — l)-chains of the form (wo, ,

Wp-ι) + ^-1,^(^0 > * * *> Wp-i)» a^l c l^o ># * #» v p I > a n ( l thus (i) is obvious.

In a similar manner, (ii) and (iii) follow from 2.5 (ii) and 2.5 (iii).

3.3. For p > 1, we define an elementary d-chain in R as a p-cell (v0, * ,

vp, T) such that t>y = Vj+χ for some y, 0 < j < p — 1. The subgroup of Cp gener-

ated by the elementary d-chains is denoted by Dp . For p < 0, we define Dp = 0.

L E M M A , //cp G Dp, then

(ϋ) ^ c/J = 0 f

These statements are immediate consequences of 2.6 (i), 2.6 (ii), 2.6 (iii).

3.4 Given a p-cell (v0, , vp, T)R, take a sequence tυ0, , wp of p + 1

linearly independent points in E& . Then we have a linear mapping Cί: |w;0 , ,

Wp I —» I VQ , , Vp I such that &(wi) — v, , i = 0, , p. Then the p-chain

(1) 4= (vo,~',vp,T)R- {wQ," ,w
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will be termed an elementary a-chain. The subgroup of Cp generated by the ele-

mentary a-chains will be denoted by Ap. For p < 0, we define Ap = 0.

LEMMA, C* G Ap if and only ifσpcp = 0 (see 0.3).

Proof. Assume Cp C Ap, Then c ί is a linear combination of chains of the

form (1), and hence it is sufficient to show that crpCp = 0 for the chain (1). Now

we have (see 0.3)

o-C = (do "dTlvo9mΛV])S ~ (rfo rf

Clearly [v0, , vp] = a [w0, , wp], and thus σpCp = 0.

Assume next that CpCp = (

can be written as a (finite) sum

Assume next that CpCp = 0. Then we also have TpσpCp — 0. The chain Cp

(2) 4= Σ njivo.j.—.Vp.j.Tj)*,
j

where the coefficients nj are integers. We have then

(3) 0=T p <r p c*= ]Γ nj(dormm,dp,Tj[vo.j,"
m,Vp,j'])*

j

Subtracting (3) from (2), we see that Cp appears as a linear combination of ele-

mentary a-chains, and thus cp £ Ap. If p < 0, then the lemma is of course

obvious.

3.5. LEMMA. If C* C A*, then

(i) δ£c£ CΛp-i

(ϋ) fiξc* CA«,

(ϋi) p$c* CA$+X.

These statements are immediate consequences of the identities (6), (7), (8) in

3.1, in connection with the lemma in 3.4. For example, to prove (iii), we note that

by (8) in 3.1, we have

(1) OΓp+i/̂ pcj} = σp+tpβrpσpc^ 0 ,

since Cp G Ap, and hence CpCp = 0 by 3.4. Also by 3.4, the relation (1) implies
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that pRc$

3.6. Let us observe that the chain groups Cp, Cp are free Abelian groups by

their very definition (see 0.3) and hence they do not contain elements of finite

order.

4. UNESSENTIAL IDENTIFICATIONS IN R=R(X)

4.1. LEMMA. Let {Gp} be an identifier for R (see 1.2, 0.1) such that the

following conditions hold:

(i) c*£ Gp implies that β* c$ = 0

(ii) cjj £ Gp implies that p$Cp£Gp + x .

Then {Gp} is unessential (see 1.2).

Proof. We shall verify that {Gp} satisfies condition (V) of 1.3. Take a cycle

Zp G Gp. In view of (i) and (ii), the homotopy identity

itf4 = βU - 4a) H+XPUI +

yields the relation

Thus z p is the boundary of the (p + l)-chain Pp Zp £ Gp+χ , and condition (U)

is established. By the criterion in 1.3, it follows that {Gp} is unessential.

4.2. LEMMA. Let {Gp} be an identifier for R, such that the following con-

ditions hold:

(i) Gp D A £ (see 3.4);

(ii) Cp CGp implies that crpβpCp = 0 (see 0.3);

(iii) Cp£Gp implies that ppCp CGp+i

Then {Gp} is unessential.

Proof. Again, we verify that {Gp} satisfies condition (ί/). Let us take a cycle

Zp £ Gp; we have to show that it is the boundary of some chain in Gp+i. We

note that
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is a cycle, and that by (ii) we have

CΓpil =σpβ«zR

p = 0 ,

since Zp G Gp. Since σ*p : Hp —> Hp is an isomorphism onto (see 0.3), it

follows that ζp bounds:

(2) ζ j = 3 ? + i 7 p + i .

Applying σp on the left, we get (see 0.3)

0 = σ > ζ * = σ p 3 * + 1 y * + 1 = ^ ^

Thus σp+ιγp+ί is a cycle:

(3) σ+iΎ+i = ^

Since cr+ is an isomorphism onto (see 0.3), there exists a cycle Zp+i such that
zρ+ι a f ld CΓp+i Zp+i differ only in a boundary:

| 1 p + 1 £ 1 - f

- Zp + l ~ ^p + 2 ^ + 2 C + 2 ) = 0 .

Since 3p+2 = crp+1 3p+2 Tp+2 , the relations (3) and (4) yield

(5) <7>+l(7p

On setting

< 6> 4 + 1 = 7 p + l - ^p+l -

we see that the relations (5), (1), (2), (6) yield

(7) cr p + 1 d j + 1 = 0 ,

(8) βR

pz$ = 3 j ϊ + i ^ + i .

From the homotopy identity 4.1 (1) and from ,(8) we infer now that

(9) z =

By (7), (i), and 3.4, we have d*+ι G G p + 1 . Since p^z^ G Gp+i by (iii), it

follows from (9) that zp is the boundary of a chain in Gp+ι, and the proof of the
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lemma is complete,

4.3. LEMMA. Let \GΛ be an identifier for R which satisfies the assumptions

of the lemma in 4.1. For each p, let Gp denote the division-hull of Gp. Then \Gp\

is again an identifier (see 1.2) which satisfies the assumptions of Lemma 4.1.

Proof. Take a chain Cp C Gp. Then there exists an integer n φ 0, such that

ncp £ Gp and hence (since {Gp} satisfies the assumptions of Lemma 4.1)

(1) nβ» 4=0,

(2) np«4CGp+1.

C £ G+ Since βcBy the definition of Gp+i, (2) implies that Pp Cp £ Gp+i Since βpcp is an

element of the free Abelian group Cp (see 3.6), (1) implies that βpCp = 0.

4.4. LEMMA. Let \Gp\ be an identifier for R which satisfies the assumptions

of Lemma 4.2. Then {Gp} is again an identifier which satisfies the assumptions

of the same lemma.

The proof is the same as in 4.3, except that one uses now the fact that σpβp cp

is an element of the free Abelian group Cp ^see 3.6).

4.5. LEMMA. Let {G^}, ,{Gίn)} be identifiers for R, satisfying

the assumptions of Lemma 4.1. Then {Gp + + Gp } is again an identifier

which satisfies the assumptions of Lemma 4.1.

The proof is obvious.

4.6. LEMMA. Let Ω' be a collection (perhaps empty) of identifiers for /?,

each of which satisfies the assumptions of Lemma 4.1. Let Ω" be a nonempty

collection of identifiers for /?, each of which satisfies the assumptions of Lemma

4.2. For each p, let Gp denote the smallest subgroup of Cp containing the groups,

with the same subscript p, of the identifiers contained in Ω' and Ω". Then {Gp}

is an identifier satisfying the assumptions of Lemma 4.2.

The proof is obvious.

4.7. The preceding lemmas, combined with the results of §3, yield a number

of unessential identifiers for R. In the following two theorems, the symbols Ap ,

Dp, Tp have the meanings explained in §3.
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T H E O R E M 1. Each one of the systems [A*], {D* } , {T*}9 {A* + D ^ j ,

\Ap + T*}, {D* + Tp], {A* + D* + T*} is an unessential identifier for R

(see 1.2).

THEOREM 2. If ΓJJ denotes the division-hull of the group Γ* = A* + θ£ +7]?,

then {Γp 5 is an unessential identifier for R,

Proof* By 3.5 and 3.4, the system \Ap } is an identifier satisfying the as-

sumptions of Lemma 4.2. Similarly, the systems {Dp }, {Tp} are identifiers

satisfying the assumptions of Lemma 4.1, by 3.2 and 3.3 respectively. By 4.5 it

follows then that {Dp + Tp } is an identifier satisfying the assumptions of Lemma

4.1. Similarly, by 4.6 it follows that U p + Op + T{ }, {A* + θ j } , {A{ + Γj}

are identifiers satisfying the assumption of Lemma 4.2. Finally, [Γjf } is an

identifier satisfying the assumptions of Lemma 4.2, as a consequence of 4.4. The

unessential character of all these identifiers is then a direct consequence of 4.1

and 4.2 respectively.

REMARK. The writer was unable to determine whether or not Γp coincides

5. T H E COMPLEX Γ = r(X)

5.1. Theorem 1 in 4.7 shows that any combination of the basic identification

schemes, used in previous approaches to singular homology theory, may be applied

to the singular complex R without affecting its homology structure. From the point

of view of achieving maximum reduction, the identifier {Γp } is of special interest.

We shall therefore go into some detail concerning this particular identifier. By the

general remarks made in §1, this identifier leads from the singular complex R to

a new and much smaller Mayer complex which we shall denote by r = r(X) Since

{Pp ] is unessential, r has the same homology structure as R. We want to examine

in some detail the computational facilities and conveniences available in the

complex r.

5.2. By the general remarks in §1, the elements of the p-chain group CTp of r

are of the form {cp}9 where this symbol denotes the coβet (relative to Γp) con-

taining the p-chain Cp of R. Let us adopt, in dealing with the complex r, the usual

practice of writing Cp instead of {cp}, with the understanding that Cp is now

considered as a representative of the element {cp} of CTp. For clarity, we shall

use the congruence symbol = in writing equations, to remind ourselves of the
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fact that we are dealing actually with congruences mod Γp . We shall presently

note some of the computational rules for the complex r.

5.3. Let (v£, , v'p\ T')R, (v'όr ••, v£, T")B be two p-cells of R related

as follows. There exists a system of linearly independent points w0 , , Wp in

£ 0 0 a n d t w o l i n e a r m a p s α ' : \wo, ,wp\ — > \ V Q 9 9 Vp \9 O ί " : \w0,

• , Wp I —» I VQ , , Vp I, such that the following relations hold:

(i) α'(»i) = v'i , α"(»i) = «"i (i = 0 , , P ) ,

(ii) r α' = Γ"α" .

Then {vi , - , Vp , T')" = ( < , , Vp , T" ) R . Indeed, by the definition of A*

and Γp (see 3.4, 4.7), we have

(v'o,' ',Vp,τ')R ~ (y>o," ,vp,T'a') f

and hence

Similarly

Since Γ' α' = Γ ' ' ^ , the assertion follows.

5.4. Given a sequence v0 , , Vp of p + 1 points in £00 (which need not be

linearly independent or distinct), by a transposition we shall mean (as in §2) the

operation of exchanging two adjacent elements of the sequence v0 , , vp. Let

then (VQ, , Vp, T' ) R , (I/Q , * #» fp\ 71")* be two p-cells related as follows:

(i) \vΌ,'~,v'p\ = K •••,!/; I ,and T' = Γ "

(ii) there exists a sequence of n > 0 transpositions leading from {v'Q , ,Vp)

to (t/s , . . . , * ; ) .

T h e n K , , t ; ^ , Γ ' ) Λ Ξ ( ^ , . - - , V £ , T " ) R if n i s e v e n , and ( ^ , ,

Vp, T')R = -(V'Q, ,v'p, T")R iί n is odd. Indeed, the assertion is obvious

if 7i = 0. If n — 1, the assertion follows immediately from the fact that Tp C Γp

(see 3.2, 4.7). Repeated application of this remark yields the desired result for a

general n.
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5.5. Let (vo, , Vp, T) be a p-cell such that the points vQ, , Vp are

not all distinct. Then (ι;0 , , Vp, T) = 0. Indeed, by a certain number n of

transpositions we can obtain a p-cell (u/0, >Wp» T) in which two adjacent

points WJ , Wj+X coincide. Then (see 3.3, 4.7)

(wo,--,wp, T)R C D* C f* ,

and hence

(^0, , ^ , Γ ) Λ Ξ 0 .

On the other hand, by 5.4,

(«'o, ,«'p,Γ)/1 s ±{vo, ",vp,T)Λ,

and the assertion follows.

5*6. Let (vQ , , Vp , T) be a p-cell of /?. Let w0 , , u;^, where q > p,

be a system of linearly independent points in E& > and let α : | M ; 0 , ,w;^|

—> I v0 , , Vp I be a linear map such that the points 0((M;0), , (Xdi;̂ )

coincide with the points t>0 , , vp in any order and with any number of repe-

titions. Then

(»ormm,Vq,TOL)B Ξ 0 .

Indeed, by 5.3 we have the relation

(•o. ' . ϊ .Γα) ' 5 (a(wQ), ~,u.(wq),T)R.

On the other hand, since q > p, the points <x(wo)9 , &(wq) are not all distinct.

Hence, by 5.5, we have

and the assertion follows.

5.7. Let (v0 , , Vp, 71) be a p-cell of /?, such that the points v0 , , vp

are linearly independent. Suppose this p-cell possesses the following type of

symmetry. There exists a linear map (X : | v0 , , vp \ —> | v0 , , vp \, such

that (i) the points Ot(t;0), , (X(vp) form an odd permutation of the points v0,

• •> Vp (taken in the indicated order) and (ii) Γ(X = Γ. Then (v0, , vp, T)

= 0. Indeed by 5.4 and 5.3 we have
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(vo,' '',vP,T)R =-(α(υ o ),

Since T = TOL, it follows that 2(v0, , vp, T)R = 0, or equivalently

2(^o, %^,Γ)/iG ΓR.

Now since Γjf is the division-hull of Γp (see 4.7), the last relation implies the

existence of an integer k ψ 0 such that 2k (v0, , vp, Γ) G Γp , and hence

(by the definition of the division-hull) (v0 , , vp, Γ)Λ G Γp . Thus (v0 , ,

Vp, T)R = 0.

5.8. The argument just used yields obviously the general result: if ncp = 0,

where n is an integer ^ 0, then cp = 0. In other words, the p-chain group Cp of

the complex r has no elements of finite order. Of course, this is a priori obvious

from the remark that a division-hull is closed under division. It may be of interest

to determine whether or not Cp is in fact a free Abelian group. The writer was

unable to answer this question.

5.9. The homomorphisms Bp, βp9 pp , τpσp apply to congruences. In detail:

OΌ Cp = O« Cp, Pp Cp — Op Cp f pp Cp = pp Cp , ^Ό&Ό Cp = 'p&p Cp .

The first one of these asserted congruences is of course merely a restatement of

the fact that \Γp } is an identifier. The last one may be verified as follows. In

view of the identity 3.1 (4) we have

4 - 4 ) = σP 4 ~ σP CP =

and hence, by 3.4,

τpσp cp-cR

p CA*.

Since Ap C Γp , it follows that

(1) = Cp

Similarly, rpσpc
R = cR. Since cR = cR, it follows that rpσpc

R = τpσpcp. Now

let us recall that μ^} satisfies the assumptions of Lemma 4.2, as we observed

in the course of the proof in 4.7. Accordingly, the assumption cp = cp , which is

equivalent to Cp — δ R £ Γjf , implies that
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(2) crpβ«(c«-c«)=0,

(3) ty
The relation (3) is equivalent to PpCp = ppCp. On the other hand, (2) implies,

by 3.4, that βR

p(c$ - δ*) £A* C f/, and hence that β*c* = β*c$.

5.10. In terms of familiar terminology, the preceding results may be summarized

as follows. In the complex r, affine-equivalent p-cells of R become equal to each

other (see 5.3). The permutation rule (or the orientation convention) holds in r

(see 5.4). Degenerate p-cells of R may be discarded in r (see 5.5, 5.6), as well as

affine-symmetric p-cells (see 5.7). The operators 'dp, βp, pp continue to apply

in r (see 5.9). Furthermore, the operation τpσp is also applicable in r (see 5.9).

The effect of this operation is to replace a general p-cell (v0, , vp, T) by a

p-cell of the form (do,0 *9dp, T*) (see 0.3). Accordingly, one can avoid en-

tirely the use of p-cells (v0 , , Vp , T) where the points v0 , , vp are not

linearly independent (it is not obvious, however, that this practice, if followed

consistently, contributes to clarity and simplicity of calculations). Finally, let

us note that the complex r offers the advantage that its chain-groups do not have

elements of finite order (see 5.8). In the light of comments made in previous liter-

ature, this may represent a desirable feature.

5.11. In the course of a correspondence on these subjects, Professor S.

MacLane communicated to the writer a simple and ingenious proof of the fact

that the chain-groups of the complex r are indeed free Abelian groups (cf. 5.8).

6. CONCLUSION

6.1. One may raise the question whether the singular complex R admits of

further reductions, in terms of identifications, without affecting its homology

structure. In particular, one may ask whether there exists a maximal identification

scheme, in some natural and appropriate sense. A plausible approach may be

obtained by setting up the principle that only those identifications are admitted for

which the computational rules set forth in 5.3—5.9 hold. The problem consists then

of determining whether among all unessential identifiers {Gp}9 conforming to this

principle, there exists one, say {Gp}9 such that Gp C Gp for all identifiers {Gp}

satisfying the requirements just stated. The writer was unable to settle various

interesting questions upon which the answer to this problem seems to depend.

6.2. From a heuristic point of view, one may conjecture that, in view of the

intensive study and manifold applications of singular homology theory, it is un-

likely that any relevant identification scheme escaped the attention of the many
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workers in this field. For example, one may assume, as a heuristic working hy-

pothesis, that by applying simultaneously all the identification schemes used in

the papers listed in the References of the present paper one obtains a maximal

identification scheme in the sense of 6.1. The writer was unable to find a proof

for the theorem suggested by these remarks.

6.3. As regards previous literature concerned with the unessential character

of identification schemes, precise comparisons would lead to excessive detail,

particularly because our complex R has not been considered explicitly in the

literature, as far as the writer is aware. The following comments are meant to

indicate the origin of certain questions rather than the exact formulation of defi-

nitions occurring in other theories. The initial motivation for the present study,

as well as for the previous paper [6] of the writer, came from the important paper

of Eilenberg [ l] In that paper, Eilenberg shows, in effect, that (in our termi-

nology) the identifier {Tp } is unessential (see 3.2). In his previous paper [6] ,

the writer showed then that the identifier \Ap } is also unessential. However, the

unessential character of certain identifications has been recognized by various

authors. Thus Seifert-Threlfall [7] and Lefschetz [5] contain remarks suggesting

that the "affine symmetric " p-cells may be discarded without affecting the homol-

ogy structure. Tucker [δ] showed, in effect, that the system {Dp} is unessential,

at least in relation to the identifier {Tp ]. In a sense, our complex R appears thus

as the singular complex in unreduced form, alternative theories being derivable by

various types of reduction. The problems we stated in 6.1 and 6.2 amount merely

to the question whether there is some end to this process of reduction without

changing the homology structure.
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