CONVOLUTION TRANSFORMS WITH COMPLEX KERNELS

I. I. HIRscHMAN, JR. axD D. V. WiDDER

1. Introduction. In the present paper we shall consider the inversion of a class
of convolution transforms with kernel G(¢) of the form

D G(t) =— [ [B(s)] e P ds (~o<t<w),
2wy Yo

(1.2) E(s) = ﬁ (1 —;;) s/be

1

ap = by + icy (k = 1,2,+ ) being a sequence of complex numbers such that

(1.3) > (1/bg)? <, Z (ck/br)?
k=1 k=1

This class of kernels is more extensive than that treated previously by the authors,
see [4], [5], [6], and [7]; however the results obtained here are slightly less
precise than those which it was possible to obtain there.We shall show essentially
that if

(1.4) flx)= [5 Gx—t)da(t),

and if x; and x, are points of continuity of &(t), then

m=

(1.5) lim f H (1 ——;) e"/"k]f(x)dx = o(xz) = atlxy) .

Here D is the operation of differentiation, and /3 that of translation through the
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distance l/a, so that, for example,

(1 _2) eD/bl (l _2) eD/b2 f(x) =f (x +_l_+_:_l_.)
a a, by by

If we replace equation (1.2) and inequalities (1.3) by the more special relations

k

(1.6) E(s) = IO'OI (1 —a—z)

@©
1.7 lim by /k =(0> 0, > (ep/br)? <,
k= k=1
we have in addition the complex inversion formula,

x 1
(1.8) l_};rl ‘/;12 dx 5-7; ‘/;)\ f(hw + x)K(w) dw = a(xy) = a(xy) ,

where
(1.9) Kw) = [7E(s)e™™ ds

and Cy is a closed rectifiable curve encircling the segment [ —;(), ;Q)] and lying
in the strip |dw| < /A . The inner integral in formula (1.8) is to be taken in
the counterclockwise direction.

As one example we may take

r(1/2 +v/2)?
(/2 +v/2 —s/2) I'(1/2 +v/2 +5/2)
(et +e—t)-—v—1

r(y2 +v/2)* "’

E(s) =

G(t) =
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where Rv > —1.1If
fa) = [O [ + e G012 + v/2)d (),
then

R L1 B D : _ _ .
lim [ LIJI [1 (—1/2+u/2+k)]f(x)ldx w(rz) = (e

and if Rv > 0, then

2'I"(1/2 + v/2)?
e 7l (v)

/;n dx fﬂ;: f(x + i hw) [cos w]” dw
1 -

=0(x) —alx).
See [7] and [8], and [9]. A second example is

-1
E(S)=7T2s Coszz.[" .]_'_Z_i r }.+Z_i ,
2 2 2 2 2 2 2
2
G(t) = — cos i K, (et)
™ 2

for =1 < Rv < 1. If

ORI ACD (f; izf)dam ,

then

im *2 i - D - D x
ulu~oo ‘/;1 {kl(l -"1/2--11/2+k)(1 —1/2+V/2+k) it )Idx

= (x2) — a(xy).
See [2].

2. Inversion of a class of convolution transforms. We assume as given through-

out this section a sequence, {ajl;, of complex numbers ay = bj + ic) subject
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to the restrictions

(2.1) 2 (1/bp)? <, > (ep/bp)? <.
k=1 k=1

We define the entire functions
n
(2-2) Em,n(s) = H (]. _S/ak)es/bk ,

k=m+1

©

En(s) = II (1= s/a)e?%,

k=m+1
©
Fa(s) = I low/ar| (L = s/bu)e/®
k=m+1
The definition of E,(s) is significant because

En(s) = { ﬁ (1 - i),,es/ak]
ag

mt1

[e9] .
iCks
exp X T
nt1 by (by + ick)

and because the series 3% 4, |a;| ™2 , 204, cx/bilby + ick) converge as a

consequence of (2.1) and Schwarz’s inequality. Similarly, F,(s) is well defined.
We define

m
(2.3) P.(0) =TI (1 —D/ay) e+ (m=0,1,++-).
‘ k=1
We also set
(2'4) ﬁl (m) = max (bk) —-(D) ’ ﬁ2(m) = min (bk1 (D) ’
by <0 b >0
k>m k>nm

THEOREM 2a. Let

1 .
Gu(t) =277—i j;z: [E,,(s)]_l eStds (o< t<o;m=0,1,2, ) ;
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then we have

Ao [T Ga(t) et dt = 1/En(s), Bi(m) <Rs < By(m) ;

w

S 1Gale) et dt < 1/Fn(0) , Bi(n) <o < Balm) ;

C.  Pu(D)Go(t) = Gu(t);

=

(d/dt) G n(t) =0(e”1?), t—+,
= 0(e7Y), (ome (k=0,1,:2),
fOT 7 > ,Bx(m) and Y2 < ﬁz(m).

Conclusion A is an immediate consequence of Hamburger’s theorem; see
[4, pp.141-144]. We define g(u) = e*™! for —© <y < 1, and glu) = O for
1 < u< @, and we set

gk (t) =ak sgn bpfexp[ick(t — bi')]}g(brt) .

It is immediately verifiable that

SO estg(t)dt = [(1 —i) es/bk] b :

ak
for —0 < Rs < by if by > 0,and forby < Rs < @ if by < 0. Let

g1 *g2(t) = [

L et —u)g(u)du,

and so on; then by the convolution theorem for the bilateral Laplace transform

we have

© -
./:m 8n+1 X Guig ¥ oo K gn(t)e"”dt = [Eu,n(s)] !

for Bi(m) < Rs < PB,y(m). From the complex inversion formula for the bilateral

Laplace transform we obtain

1 o -
gnt1 ¥ gtz ¥ o0 K gn(t) =_E7T_i '[-im [Em,n(s)] lest gs,
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Since

lim -
n~o 2771

o ) )
Lo AEa(s)]™ = [Eayn(s)] e ds = 0
for —0 < ¢ < © , it follows that

lim gpey ¥ *o* % go(t) = Gu(t) (Fo<t<m),
n—o
See [4; pp.139-145]. It is easily seen that

Lo lgk(t.)le—” dt = [(1 = s/bk)e by /ar |17,

for —o < Rs < by if by > 0, orfor by, < Rs < © if by < 0. By Fatou’s
lemma we have

L2 |Ga(e) et dt

IA

lim inf [ |guer * =+ ¥ ga(t) |7t dt,
n—w

INA

Lim inf [ |gaes] % o+ % [ga(t) |7 dt
n—wo

IA

[Fu() ],

so that conclusion B is established.

Conclusion C follows from the identity

mn
Ppa(D)e*t = et I (1 — sai! )e/ak
k=1

Conclusion D may be established by shifting the line of integration in the integral
defining G,(¢) to Rs = 7, and Rs = v,.See [4; pp.152-154].
In what follows we shall write G(z) for Gy(t).

THEOREM 2b. [If
(a)  G(t) is defined as in Theorem 2a,
) Bi0) < e < B(0), ¢ty > Bil0), ¢+ yy < By(0),
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(¢) () is of bounded variation on every finite interval, o(t) = O0(e”1?) as
t— — o, o) = 0€e”?)ast — + @,

(d)  B,(D) is defined as in equation (2.3),
(@ f = [, Gl —0e'dals),

(f)  x, and x, are points of continuity of &(t),

then

lin [ 7% Pa(0)f(x)]dx = &(x2) —ax1)

m—*®

From assumption (c) and from conclusion D of Theorem 2a we may show, using
integration by parts, that each of the integrals

f_: Gal(x —t)etda (t)

converges uniformly for x in any finite interval. Since B,(D)G(¢) = G,(¢) by con-
clusion C of Theorem 2a, it follows (see [4; pp.167-170]) that

(2.5) PaD)f(x) = [ Galx = t)etd ac(t) (o< gz <®),

cx

Multiplying by e °* and integrating by parts, we have

B, 0)f () == [ {% {c,I(x—t)e-m-"]] (¢) dt

= j:: [% [G,,(x - t)e—c(x-t)]] O((t) dt .

Since this integral converges uniformly for x in any finite interval, we obtain

1:2 e ™" Py (D)f(x) dx

R

j:: a(t) dt j;:z [% [Ga(x = t)e’cu_t)]l dx
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i

L2 (Gl = £)ec327D =G (x; = ¢)e™5170} () di

= [ Galxa = t)e™=270 a(t) dt — SO Galey —t)e™e= 170 o(t) dt .

We thus need only show that if x is a point of continuity of a(¢) we have

(2.6) lim fﬁ: Gu(x — t)e ™D o (t)dt = a(x) .
m—

We shall first show that for any € > 0 we have

2.7 lim Ga(t)e ™t a(x —t)dt =0.

) ItI>e

Using assumptions (a) and (b) we see that it is enough to prove that for any

& with B,(0) < & < 3,(0), we have

(2.8) Lim ftl Gu(t)|e 3t dt =0.

o Vltl2e

Choose 1 > 0 so small that 5,(00 < & — 217 < § + 21 < 5,(0).For
|t] > € we have

-5t ™% (sinh 7t )?
~ (sinh em)?

so that it is enough to prove that
lim L: |Ga(t) le-St [sinh nt]?dt =0.
"o ,
Using conclusions A and B of Theorem 2a we see that
L 1Ga(t) e [sinh mt]? dt

1 | S S
T4|F( +2m) Fu(8—27m) Ea(®)

=o(1) (m——-)+°°),

and equation (2.8) follows from this. We assert that

. © -ct —
(2.9) Lin L. Ga(t)e™tdt =1
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. m -
(2.10) Lim sup L. lGa(t) et dt =1.
m— .

These results are immediate consequences of conclusions A and B of Theorem 2a.
Now x being fixed and 7 > 0 being given, let us choose € > 0 so small that
o) — alx) | < nfor |t —x| < e.We have

L: Gplx — t)e~* Vg (t)dt —a(x) =1, +I, + I,
where

no=a() [ S2Gale = )0 e =1

Iz=j;

ti>e

Gu(t)e ™ o(x = t) —a(x)] dt

I3 = 'I;tlse Ga(t)e™o(x —t) —of(x)]dt.

We have limp-wl; = 0 by equation (2.9), limywwl, = 0 by equation (2.7), and

lim supp~w|l3| < 7 by equation (2.10). Since 7)is arbitrary our demonstration is
complete.

3. Complex inversion formulas, In this section we restrict our attention to a

much more special class of kernels. We suppose that

«© C2
o we w2 E(af e

We define

(3.2) E(s) = ﬁ (1 —-f;)z,

(3.3) H(\s) = T] [Az +(1-N) ;';—k—lbfz-] (0<A<1).
k
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The product (3.3) is defined for s 74 by (k = 1,2, + ) since it can be rewritten
as

i [1 R e Jf_k.i.:_'ye_]
b2

- b
k=1 k k
H(As) = ,
® 2
H 1 — s
2
k=1 ( bk)
and assumption (a) implies that 3¢ [|as| — bxl bt is convergent. We define
(3.4) B = min by .

THEOREM 3a. [f

1 P eswE ()\S)

G(\,w) =§7': '/:iw E(s) ds (0<A<1),

then

A. G(hw) is analytic for |Sw| <QQ —A);
B. L: G\, t)e™stdt = E(As)/E(s), — B<Rs <pg;
Coo (@aw)f6(hw) =0(") (@— +%)

=0(e”) (w—-9) (e =0,1,:-+),

where v, > =B, v, < B, uniformly for |v] < QQ —\) —€, € > 0. (Here

w=u + iv.)

D. L2 l6(rt) e tdt < HNO) ~B<o<}B.
We shall write G(t) for G(0,¢).

We assert that
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(3.5)

uniformly for o in any finite interval. We define

log |E(c +i7)| ~Q|7]

Ex (s) = J] (1—s%32).

k=1

We have
E(S) © ai ®
s k=1 %k k=1

from which it follows that

(3.6)

221

(1 —> ™)

uniformly for 0 < € < |args| <7 — €. From[1, pp.267-279] we have that
log|EX*(o+i7) ~Q|7| as 7 — 4+, uniformly for o in any finite interval.

Relation (3.5) now follows.

Conclusion A follows immediately from (3.5) and the definition of G( A\, w).
Conclusion B is a consequence of (3.5) and Hamburger’s Theorem. The two con-

clusions C are obtained by shifting the line of integration in the integral defining
G(\,t) to Rs = 7, and to Rs = 7,, respectively. See [6, pp.688-691]. To

establish conclusion D we introduce the functions

It is immediate that

lim G,(\,t) = G(A,t)
n—@

(o<t <a),
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We define

a

hk()\,t):)\zj(t) + (1 _)\2) _;_j:; e_ak“”du,

where j(t) = 0 for —@ < ¢t < 0; j0)=1/2; jl¢) =1 for 0 <¢ < @,
It is easily verified that for —b; < o < b, we have
1 — Ns?/a}
fm e St dhp(A,t) = ——T—z£
et l—s /ak
Just as in §2 we may show that

d
Gn(h,t) = lim - [hi(h,t) % ook hp(N,t) % hosy (0,8) * <o % hp(0,¢)].

Here Ay ¥ h,(t) = _f:_‘fn h,(t —u)dh,(u). Note that this differs from the convention
employed in §2. By Fatou’s lemma,

[od]

Lo e otGn(N,t) | dt

< lim inf [ €% |dhy(h,2) % -+ %hn(h,t) ¥hni1 (0, ) % ==+ % a(0, 1) |

m—®©

n m
<liminf [ S° et ane(Me)] TT S € tldhi(0,2)]
k=1 k

— 00
m “nt1

ST Lot atnn)] TT L2 et dm,0)] -

k=1 k=n+1

By Fatou’s lemma, again,

SO et G(h,t)] dt < lim inf Lz ¢ 7t Ga(A,t) | dt

-0 n—®

IN
s

L2 et dh (a,t) ]
k

0
—

N |ak |be
IT |+ =0
k= k9

IN
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This completes the proof of the theorem.

We define
(3.7) Kw) = [ E(s)e™" ds.

It follows from relations (3.1) that given € > 0, for all sufficiently large r we
have log | E * (re*?) | < (e + |sin 8] )Qr. See [1, pp.267-279] . Fromequation
(3.6) it follows that

log |E(ret®)| < (e + |sin 6])Qr

for r sufficiently large. Using this inequality and rotating the line of integration
in the integral defining K(w) we can show that K(w) is analytic and single valued
in the w-plane except on the segment [—i), iQ]. It may also be shown, see
[1, pp.295-311], that if C is a closed rectifiable curve encircling [—iQ, iQ]
then

(3.8) E(s) = L K(w)e®® dw ,
2mi €

the integration proceeding in the counterclockwise direction.

LeMMA 3b. If Cy, is a closed rectifiable curve encircling [—iQ, iQ]and
contained in the strip |v| < Q/\, then

1

2m1

j;)\ GA\w + x —t)K(w)dw = G(\,x — t),
the integration proceeding in the counterclockwise direction.
We have

1

2771

f(:)\ GAv +x—t)K(w)dw

f K(w) dw L:: [E(s)]_leso"”x—n ds

2#1 271

- = ftw [ ( )]-1 s(z=t) g jc:)\K(w)e)‘"dw

2T
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f: E(/\s‘))} s@-t) g

2771

=G(A\x —t).

THEOREM 3c. If

(a)  G(t) is defined as in Theorem 3a

b) —B<c<B, B<ctn, ¢cty <}p

(¢)  olt) is of bounded variation on every finite interval and

a(t) = (7)) (t—+®),  alt) = (") (t— -

d  fw) = [2 Gw —t)e® dxr)

(e) K(w) is defined as in equation (3.7)

(f) Co is defined as in Lemma 3b

(g) %, and x, are points of continuity of &(t), then

lim j;x2 e % dx 5
1

o S FOw + 2K @) dv = a(xz) =a(a) .

It follgws from assumption (c) and from conclusion C of Theorem 3a that the

integral defining f(w) converges uniformly for w in any compact set contained in
the strip |dw| < Q. Hence

1
5—7: j;}\ fO\w + x)K (w) dw

1

211

_ j_‘: et da(t) jc‘)\ GAw +x —t)K(w)dw

j:_: G(\,x — t)et da(t)

by Lemma 3b. The proof may now be completed exactly in the manner of Theo-
rem 2b.

4. Remark, If it is assumed that the roots of E(s) occur in conjugate pairs,
then equation (1.5) can be established under conditions less restrictive than (1.3).
A discussion of this case is given in the Master’s thesis of Mr. A. O. Garder [3],

written under the direction of one of us.
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