
RECURRENCE TIMES FOR THE EHRENFEST MODEL

RICHARD BELLMAN AND T H E O D O R E HARRIS

1. Introduction and summary. In 1907, P. and T. Ehrenfest [ l ] used a simple

urn scheme as a pedagogic device to elucidate some apparent paradoxes in thermo-

dynamic theory. Their model undergoes fluctuations intuitively related to fluctu-

ations about equilibrium of certain thermodynamic systems. In view of an apparent

discord among physicists [6, pp. 139-145] we shall not try to force an analogy

with entropy.

The original Ehrenfest scheme was defined as follows. Initially, 2/V balls are

divided in an arbitrary manner between two urns, 1 and 2, the balls being numbered

from 1 to 2N An integer between 1 and 27V is selected at random, each such

integer having probability (2/V)~1, and the ball with the number selected is trans-

ferred from one urn to the other. The process is repeated any number of times. If

πγ and n2 are the numbers of balls in urns 1 and 2 respectively before a transfer,

it is clear that the probability is nχ/(2N) that the transfer is from urn 1 to urn 2

and n2/(2N) that it is in the contrary direction.

Let x' (n) be the number of balls in urn 1 after n transfers, and let L 'j9k be

be the smallest integer m such that x' (m) = k9 given that x' (0) == /. If k = /, we

call L'k9k the recurrence time for the state k. If k ψ j , we call L 'j^ the first*

passage time from j to k The distribution of %'(n), known classically, was

derived by Kac [5] as an example of the use of matrix methods. Kac then found

the mean and variance of £/,&> attributing some of his methods to Uhlenbeck

Friedman [4] found the moment-generating function for x1 (n) (for the Ehrenfest

and more general models) by solving a difference-differential equation.

Instead of the original Ehrenfest model, we shall discuss a modified scheme

with a continuous time parameter, which was apparently first suggested by

A. J.F.Siegert [ 9 ] . In this scheme there are two urns and 2N balls initially

divided between them arbitrarily. Each ball acts, independently of all the others,

as follows: there is a probability of (1/2) it + o(dt) that the ball changes urns be-

tween t and t + it, and a probability of 1 — [(1/2)it + o(it)] that the ball remains
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in place between t and t + dt. Standard reasoning then shows that the total proba-

bility of a change by some ball between t and t + dt is Ndt + o(dt), and that

consequently the probability density for the length of time between transfers is

Ne l dt. When a transfer occurs, it is readily seen that the probabilities that it

is from urn 1 to urn 2 or from urn 2 to urn 1, respectively, depend on the relative

number of balls in the two urns exactly as for the original Ehrenfest model. Thus

we see that the present scheme is essentially the original Ehrenfest scheme where

the drawings are made at random times. As we shall see, the time-continuous

scheme is easier to handle analytically.

Let x{t) be the number of balls in urn 1 at time t we shall sometimes speak of

this number as the state of the system. Then x(t) is a random function which can

take integer values from 0 to 2/V; x(t) executes a random walk—with a "restoring

force7-—about the equilibrium value N. It is clear that the random walk is a Markov

process.

Let Lj9k, j f1 k, be the first-passage time from state / to state k that is, Lj9k

is the' infimum of t such that x{t) — k, given that x(0) = /• Let L^^ be the re-

currence time for the state k; that is, L^^ is the infimum of t such that x(t) = k

and x(r) φ h for 0 < r < ί, given that x(0) = k. We shall discuss the probability

distributions of L; jς and L^^

The probability distribution of Lj^ depends, of course, on the size of the

model (that is, on the number N). When it is necessary to emphasize this de-

pendence we shall sometimes employ the notation L- £ in place of £/,&•

We shall use the notation P{A) for the probability of the event A P(A \ B) for

the conditional probability of A, given B E(X) for the mean, or expected value, of

the random variable X. By the distribution of a random variable X we mean the

function (of say u) given by P(X < u). The statement that a sequence of dis-

tributions converges to a distribution F(u) will mean convergence at all continuity

points of F(u).

There are two limiting situations in which the distribution of £/,£ is of interest.

(a) Consider a simple thermodynamic system such as an ideal gas in a con-

tainer. Let us think of the container as consisting of two halves which, however,

are not separated by a partition. Suppose that initially the molecules are spread

in a rather uniform manner through the two halves of the container. According to

classical kinetic theory, if we wait long enough, a time will come, in general,

when all the molecules are in one half of the container. Such events, where the

fraction of molecules in one half of the container is appreciably different from
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(1/2), are evidently enormously rare if the number of molecules is large. Corre-

spondingly, we should like to show that the random variable £#,& > where | k ~~ N \

is of the order of magnitude of N, is very large with high probability when N is

large. Now the mean of L#tk
 1S extremely large when N is large. However, as Kac

has observed, the standard deviation is of the same order of magnitude as the

mean. Thus we cannot conclude from the values of the first two moments that L # ^

is large with high probability. We shall show, however, that the distribution of

Ltf 9yE{L^fj£) converges to 1 ~~ e u as N—> °° provided k/N remains less than

some fixed number λ t < 1 (Theorem 1).

The situation with respect to L/ς £, where again k/N < λj < 1, is somewhat

different. If k/N is appreciably different from 0, a very short recurrence time is

not improbable. The distribution of L^^/EiL^^) has for large N a "lump"of

probability of magnitude k/N concentrated near 0, the remainder of the distribution

being exponential (Theorem 2).

(b) In the theory of the Brownian motion and elsewhere in physics and sta-

tistics an important role is played by the stationary Gaussian Markov process z(t)

which we scale so that

E[z(t)] = 0, E[z{t)Y = 1/2.

This process is defined bythe requirement that the joint distribution of z(tι), ,

z(tm) for any distinct numbers t\, , £m is Gaussian and dependent only on the

differences t( ~~tj and that the autocorrelation function is given by

If N is large, the z{t) process, under the conditional hypothesis that z(0) has an

appropriate value, is approximated by the process

x(t) -N

in a sense described in Section 6. (It should be remembered that x(t) depends on

N.) By considering the distribution of Lpt^ where (k — N)/NΪ/2 —» — ξQ < 0,

/Y —> oô  We obtain in Theorem 3 the Laplace transform of the distribution of L,

the first time at which z(t) = — ξOy given z(0) = 0. This result is not new, having

been obtained by Siegert [lOj and by Darling (unpublished). However, the present

method of derivation seems instructive.

Results similar to those given under (a) and (b) are obtained for the random
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variable L%9k , the first time | x(t) — TV | = N ~~ k9 given #(0) = N,

2 The mathematical model* Suppose that there are initially j balls in urn land

2/V — / in urn 2. Associate with the ith ball a random function x((t) defined as

follows: Xi(t) is 1 if the ith ball is in urn 1 at time ί, and 0 otherwise. From the

elementary theory of Markov processes (see, for example, Kolmogorov [7] ) , we

have

2

We may define the generating function of *, (i) by

P[*i(t)=0] +-sP[xi(t)=l]

Then the generating function of xjit) is, from (1),

or

according as *j(0) is 0 or 1. Since the quantities Λ, (ί), i = 1, * , 2/V, are inde-

pendent, the generating function for x(t) — Σ Xi(t) is
2N

(2) Σ Pί*(t) = k\x(0) = j]sk

k=o

= 2"2Λf[l ~ e-f + (1 + e-*)sV[l + e'* + (l - β" ' )* ] 2 *^

= ΣQj,kU)sk,
k = 0

where we have introduced the notation Qjfk(t) for P [x(t) = A; | #(0) = y] . Formula

(2) was given by Siegert [9 111

Because of the simple nature of the process under consideration it is easy to

show that Lj9k and L^^ are (measurable) random variables with absolutely con-

tinuous distributions. We omit the proof. We let Py^(α) be the probability density
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Lj,k>

S0

UPj,k(y)dy=P[Ljfk<u].

Define

(5) mk = l/[(N-k)Qk], k<N.

It is convenient to notice that, as N—> °°,

where we have put λ •= k/N, and OiX/N) is independent of λ .

The quantities Ljfk> (?ifc> a n <^ s o o n> depend on the size of the model; when it

is necessary to emphasize this dependence we shall write L-^fQ^ , and so on.

3 Distribution of £/,&, / ψ k. In this section we consider the distribution of

the first-passage time from state / to state k for large N, where | / — k \ is of the

order of magnitude of /V. As far as the limiting distributions are concerned, we can

restrict ourselves without loss of generality to consideration of LΛ',^> k < N. For

example, if j > N > k then we can write

Lj,k ~Lj,N +£tf,fe

The first-passage time from j to N, representing movement toward equilibrium, is

negligible relative to Lsfk
 a n <^ d ° e s n o t affect the asymptotic result. On the other

hand if N > / > A, we have

and it is not difficult to show that Ljqj is negligible compared with Ln9fg .

If the first passage to the state k occurs at time r , the probability that the

state at time t is again k is Qk,k^ "" T ) . We have therefore

(7) Qjlk(t) = S*Pj,k (r)Qk,k (t-r) dτ, j φk.

Formula (7) is the continuous counterpart of a formula long used for discrete
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processes and recently exploited by Feller [2] . Taking Laplace transforms of

both sides of (7) we have

S0Qj.k()
( 0 e'σt dt = , R(σ) > 0

Γ

Since the quantities Qjfk^ a r e polynomials in e **, as we observe from (2), both

the numerator and the denominator in (8) have a simple pole at σ — 0, and their

quotient is therefore analytic in the circle \σ\ < 1.

For simplicity denote LJ^ ^ by LJj. We have the following result.

THEOREM 1. The distribution function of L^ /m^ ' converges to 1 — e ",

\L > 0, as N—> °°, provided k/N < λ t < 1, the convergence being uniform in k

and u,

The proof will bring out the fact that likewise

(9) E[L[N)]/m^ —» 1 , N—>&, k/N < A x .

Theorem 1 will follow from this lemma:

LEMMA 1. For the complex variable σ, let

Further, let \k(N)] be a sequence of nonnegative integers such that k(N)/N —» λ0

< Xι < 1 as N—> °°. Then (the convergence being bounded and uniform provided

|cr| <σ0 < 1),

(10) lmΦiyi(σ)=- , H < 1 .

Proof of Theorem 1. The function φ^. '( — σ) is the moment-generating

function" of the quantity L^, ymj. . Lemma 1 then implies, as is well known, that
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uniformly for u > 0 provided k(N)/N —» λ 0 . Lemma 1 also implies, since we have

convergence in a complex neighborhood of σ = 0, that

so that (11) is still true if we replace m j ^ by E J ^ )

Now if Theorem 1 were not true then an € > 0 and a sequence \h(N)\ ,h(N)/N

< λ t , would exist such that for infinitely many integers N we would have

Extracting a convergent subsequence from \h{N)/N], we are led to a contradiction

of (11).

Proof of Lemma 1. The proof of Lemma 1, which is somewhat indirect, pro-

ceeds as follows. We can obtain an expression for φ\ {&) by substituting cr/m\

for σ in (8), obtaining

(12) φίM) (σ) =
T

-j

We can obtain an asymptotic estimate of J γ as we shall see later. However, a di-

rect estimate of J2 appears difficult to obtain. We shall therefore resort to another

expression for φ^ (σ) which is easier to estimate. Having estimates for φ^ '(σ)

and for / ι , we can get an estimate of / 2 , which will be necessary for Theorem 2.

Since a direct proof of Lemma 1 is easy if all terms in the sequence {k(N)\ are

0 we can suppose k > 0. If 0 < k < N we have, from elementary reasoning, the

important relation

On account of the Markovian nature of the process, Ltf^ and L^> 0

 a Γ e independent

random variables and the Laplace transform of the distribution of their sum is the

product of the Laplace transforms of their individual distributions. Therefore,

using (8) and (13), we have

(14) E(e~sLN>° ) =E(e~slN>k ) £ ( e ~ s L M ) ,
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OΓ

(15) φ[NHσ)= Jβ

βflr,* ( 0 .-**/•**

/o°° PΛ.O (t) Γ*" * dt j Γ ft,, (t) e-'/-* *

Γ Pfe,o (t) e-σt/ * (ft Γ ft,, (t) e-'/ * dt

The advantage of (15) over (12) is that Qk,o(t) is a simpler function than

The numerator of the last fraction in (15) is (l/2)β [N + 1, (l/2)σ/m^ 3 . The

denominator, with the substitution e t = y , becomes

^XOj X "" I ( 1 """" Y ) ( 1 "f" V ) y>CV»'*R' *• fj y ^

We now have to estimate I as N —> °° under the hypothesis k/N—> λ 0 < 1.

[We shall write simply k for k(N).] We shall restrict σ to the circumference of a

circle, say \σ\ = (1/2), since it is clearly sufficient to prove Lemma JL for such

a circle. Write

1 = f6 + f1 =I i + I 2 , 0 < € < l - λ o < l .

Making use of (6) and the fact that (1 — y)k (1 + y)2 N "k increases to a maximum

at y = 1 — k/N and then decreases, 1 — k/N being larger than € for sufficiently

large N9 we have

/T7\ T Z l/iV2 , /•€

L-y)fe(i+:



RECURRENCE TIMES FOR THE EHRENFEST MODEL 1 8 7

= ~ [l + o(l)] +O[(l-e) f e (l +e)2J™ logJV]
σ

= — [l+o(l)j +o(mk),
σ

where o( ) is independent of σ for \σ\ = 1/2.

To estimate I2 we distinguish the cases \ 0 > 0 and λ 0 = 0. If λ 0 > 0, then

12 can be estimated using the method of Laplace; see [8, p. 77] . We obtain then,

setting k/N = λ, (see (6)),

(18)
ττλ(2 ~ λ) 1/2

ΛT(l-λ)

Going back to (15), we obtain (10) from (17) and (18), since

(1/2)B[N + 1, (l/2)σ/mk] = (**/er)[l + <

This completes the proof of Lemma 1 for the case λ 0 > 0. If λ 0 = 0, the integral

12 can be estimated by making a change of the variable of integration which shows

the integral to be asymptotically equivalent to a Beta function. We need not enter

into details.

4. Distribution of Lk9k We shall establish the following result.

THEOREM 2. Assume λ = k/N < λt < 1, and put

Fλ(u) = λ + (1 - λ) [1 - e~( h λ ) u ] , u > 0 .

Then for every b > 0 we have

lim ^ K4^O^- f λ( u ) l = 0

uniformly in k.

Proof. As in the case of Theorem 1, it is sufficient to prove that the Laplace

transform of the distribution of NQ£ L5 ? approaches

λ0 +(l"-λo)V( o)

provided k/N = λ —> λ 0 < 1. (We know from the general theory of Markov proc-

esses that
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see Feller, [3, p. 325].)

The relation which replaces (7) when / = k is

(19) Qk,k (t)=e'Nt + JΓ* Pk>k (r)Qkιk [t -r) dr ,

the term e t in (19) being the probability that the system remains in state k the

entire time from 0 to t. From (19), we have

(20) / ^We

If we equate the right side of (8), with j — N and with σ replaced by crNQk, to

the rignt side of (15) with σ/τn^ replaced by σNQk, we obtain

or

(21) JΓ Qk.k(t)

To estimate /3 , which is the numerator of (12) with σ replaced by σ*/(l — λ), we

need two lemmas.

LEMMA 2. Given e > 0, let

t: max
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Then

(22) tff(e)=O(logJV), N—>™.

Proof. By (2), QNtΓ(t) is the coefficient of sΓ in

where z — z(t) = 2(1 + e~2t)/(l — e~2t). Since for large N the root of the

equation

(1 - e~2t)N = 1 - δ , 0 < δ < 1 f δ fixed ,

is approximately t ~ (1/2) log Nf it suffices to prove Lemma 2 for the quantities

\cr ( t) — cr \ I
tjy(e) = sup ' t : max jj^\ > er ,

- r J

where we have set

(23) ( 1 + 2 S + s 2 ) " :

C C ( ) 2 Q

Suppose e > 0 is given.Choose an arbitrary OC > 1. Let 6ι < e be a positive

number and define

(24) e f f + 1 = e w ( l + W α ) , N = l,2, " .

Note that { βff \ is a bounded increasing sequence. We select €x small enough so

that eN < € , for all N. Now define a sequence ί\ < T2 < as follows:

Fx = tι(βι) ί^+1 for yV > 1 is the maximum of TN and the positive root of

(25) (l/3)[Z(t) -2](l+eH)/eκ = 1/N«.

[Note that zit) is monotone decreasing.] It is then clear from (25) that

(26) tN - (l/2)α log N, N—>oo.

We now wish to show inductively that

icΓ

wω-cW|
(27) ^ j <eN f o r t>tN, N = l , 2 , ' .
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Clearly (27) holds for N = 1, since βι < e and7 t = t\ Suppose that (27) is true

for a general N From (23), we have

(28) c<»+1> (0 = e<*> (t) + zc\i\{t) + c ί 5 ( 0 ,

c^=cW+2c\l\+c[ί\.

Using (27), (28), and the fact that < % / < > / * + l ) < 1/3, we have for t > ΊH ,

From the definition of €# it is then clear that (27) holds with N replaced by N + 1.

Then t > 7/v implies that the left side of (27) is less than € . Use of (26) now com-

pletes the proof of Lemma 2.

LEMMA 3. Assume k/N < λι. Then

Q J 5 (0 < exp[ ~3(1 - λi)2iV/5] .
β

Proof. Lemma 3 is an immediate consequence of a result of S. Bernstein on

sums of independent random variables; see Uspensky [12, p. 205] . To apply

Bernstein's result, we consider the 2N balls as consisting of N pairs, each pair

having initially one ball in urn 1 and one in urn 2, letting Uspensky's random vari-

variable x t be the number of balls from the iih pair in urn 1, minus 1, at time L

Now

N

-p Σ * * = * - * <p\Σ*i<k-N\,

and the applicability of Bernstein's result is obvious.

We now return to the proof of Theorem 2. To estimate the integral /3 defined

in (21), write

( 3 0 ) h= S0

C°(QN,k(t)-Qk)e-σNQktdt +

Write the integral on the right side of (30) as
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for an arbitrary € > 0, where ίjy(e) is defined in Lemma 2. Using Lemmas 2 and

3, we have

(31)

\Γ3 I =0{ίog N exp[-3(l - λtfN/5]} .

Thus /3 ~ l/uVcr) Putting this estimate in (21) and recalling from Theorem 1 that

i+°/(i-λ0) '

we get the desired result from (20).

5 Intuitive interpretation. Theorem 1 means intuitively that if we take m^

as our time unit, the attainment of the state k is an occurrence of the "chance"

type; that is, the probability of attaining k during a given time interval is almost

independent of the past history of the process. This interpretation suggests that

Theorem 1 should be true for more general types of processes with a central

tendency.

Theorem 2 seems to mean that if the initial state is k there is a probability λ

of returning J o k before leaving its immediate neighborhood; there is a probability

1 — λ of getting completely away from the neighborhood before the first return; in

this case the first return has the distribution of first passage times given in Theo-

rem 1.

6* Application to stationary Gaussian Markov processes* In Theorems 1 and

2 we considered rare or microscopic fluctuations of x(t). But if N is large x(t) will

for the most part deviate little from its mean value /V, and to consider the ordinary

fluctuations of x(t) we consider

Let ί ι , , t m b e a fixed set of nonnegative numbers. The joint distribution of

Ztf(tι)* * * * 9 Ztfίtm)* given 2^(0) = 0, approaches, as N—* °°, the joint distrib-

ution of z(tι)f , z(tm), given z(0) = 0, where z(t) is the stationary Gaussian

Markov process with

£ [ Z ( t ) ] = 0 , E[z(s) z(s + t)] = (1/2) e " " 1 .
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Define the random variable L to be the smallest value of t for which z(t) =

~~£o ^ 0> given z(0) = 0. It is intuitively clear that the distribution of L is given

by the limiting distribution of L^9k
 a s N—* °° provided we let

(32) (fc-jvj^i/a—* _ £ , .

A rigorous proof of this statement is not difficult but we omit it.

To find the limiting Laplace transform for the distribution of Ljv,& u nder the

hypothesis (32), we consider (15) with σ > 0 in place of σ/m^ , and let k =

N — ξN^2 . The substitution e t — y/N^2 puts the denominator in the form

\

7
Nl/2j

where Ct is an arbitrary number between 0 and 1/6 . If 0 < y < /Vα, then

Hence,

N1/2I

mξuιn

+ θ(ΛΓ 1 / 2 + 3 α ) ] .

yσ l dy.

The second integral inside the bracket in (33) goes to 0 as /V —> °° .
The numerator of (15), with σ in place of σ/m&, is

We thus have the following result.

THEOREM 3. The Laplace transform of the distribution of L is given by

(l/2)Γ(σ/2)
(34)

Formula (34) was obtained by Siegert and by Darling through direct consider-

ation of the z(t) process. It is interesting to notice that the present procedure

utilizes (13) which has no counterpart for the z(t) process.
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7. Two-sided limits. Let L%\k9 N > k, be the first time | x (ί) - N | = N ~ k9

given x(0) = N. Let L* be the first time \z(t)\ = ξQ > 0, given z(0) = 0. Argu-

ments similar to those used for Theorems 1 and 3 give the following two results,

THEOREM la. Under the conditions of Theorem 1 the limiting distribution of

L%9k/mk is 1 ~~ e ~ 2 u , a > 0.

THEOREM 3a. The distribution of L has the Laplace transform

(l/2)Γ(σ/2)

f e y γσ ι cosh (2ξ0y)dy

8. Added in proof An argument has been found which rigorizes the remarks of

Section 5 and gives a proof of Theorems 1 and 2 for more general processes.
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