A NOTE ON UNRESTRICTED REGULAR TRANSFORMATIONS

W.R. Utz

1. Introduction. Let iV be the class of real continuous functions defined on the

nonnegative reals and such that for each g(¢) € W the following conditions hold:
(a) g(0)=0and g(t) > 0 whent >0,

(b) for each triple ¢y, t,, t3,>0, the inequality ¢; + ¢, > t; implies g(¢y) +
g(ty) > glt3).

Let M be a metric space wherein [p,q] denotes the distance between p,q € Jl.
A transformation T(}) = N is called unrestricted regular by W.A.Wilson (2] if
there exists a g(¢) € IV such that for each pair p,q € M we have [T(p), T(q)]
= glp,q] = g(lp,q]). The function g (not always unique) is called a scale
function for T.

It is easily seen that every member of the class ¥ is monotone increasing and
that each unrestricted regular transformation is continuous and one-to-one. Thus
an unrestricted regular transformation on a compact metric space is a homeomor-
phism. Wilson shows [2,p.65] that if ¥ is dense and metric and T is unrestricted
regular, then T is a homeomorphism.

In §2 of this note we examine the graphs of scale functions and show how the
graph of the scale function of an unrestricted regular transformation determines
the behavior of points under the transformation. Section 3 is devoted to a question

involving a class of transformations investigated by E. J. Mickle [1].
2. The graphs of scale functions. We shall establish the following result.

THEOREM 1. If M is a metric space and T (M) = M is unrestricted regular with
scale function g(t), then for each n = 1,2,3, « + «, the transformation T" (M) = }

is unrestricted regular with scale function g"(t) (that is, g iterated n times).

Proof. Obviously g™(t) is real and continuous, g"(0) = 0, and g"(¢) > 0 when
t > 0. Suppose T"7' (M) = M is unrestricted regular with scale function g™t ().
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Let tl + 52 2 53, Where 20 t2, t3 Z 0. Then

g (t) + " (t2) > " (),

and hence

g"(tr) + &"(t2) = gle" ™ (e1)] +elg™ (t2)] = 8lg" " (ts)] = g"(t3) .
Thus g"(¢) € W. Also we have
[7"(p), T"(q)] = [T{T" " (p)}, T{T" ' (q)}]

=gl (p), T""(q)] =" Lp,q]) =&"[p,q],

for each pair p,q € M. Thus, since T is unrestricted regular with scale function
g(t), we have proved by induction that T™(}) = ) is an unrestricted regular trans-

formation with scale function g”(¢).

If i/ is a metric space of at least two points, p € #, and T(M) = M is unre-
stricted regular, then we shall call the set 27,=, T"(p) C M the orbit of p under T.

Let g(¢) be a scale function for 7. We distinguish three cases.

Case L. If g(t) <t for all t > 0, then each pair of points of M will determine
asymptotic orbits. That is, given p,g € M and € > 0, there exists an integer N
such that [T"(p), T"(q)] <€ forall n > N.

Proof. Let p and q be points of M. Since g (t) < ¢, we see that [T" (p), T"(q)]
= g"[p,q] decreases monotonically as n increases. Suppose that the monotone
decreasing sequence of real numbers [p,q], glp,ql, g*lp,ql, ***, hasu #0as
limit point. Choose & such that 0 < § < y, and let s be the greatest lower bound
of ¢t — g(t) on the interval u — & < ¢t <u+ &. Since u is the limit point of the
sequence, there exists an integer n for which g"[p,q] — u < min (s, §). Since
g"[p,q] is in the interval u — 8§ <t < u + §, it follows that g" [p,q] — g"™* [p, q]
> s and u — g"*'[p,q] > 0. Thus for all ; > n, the elements gi[p,q] of the
sequence are smaller than u; this contradicts the assumption that u # 0 is the
limit point of the sequence.

In Case I, T has equicontinuous powers.

Case Il. If g(t) > t for all t > O, then T is unstable. That is, there exists
a & > 0 (in this case any positive number will serve) such that if p,q € M, then
there is an integer N for which n > N implies [T"(p), T™(¢g)] > 5.
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Casg III. (1) If g(¢) =¢t, then all orbits are parallel. That is, T is an isometry.
If g(¢) # ¢, there are these possibilities:

(2a) When g [p, q] = [p, q], the orbits of p and ¢ are parallel (as in Case III).

(2b)  glp,q] > [p,q], and if there is a zero of g(¢) — ¢ greater than [p,q],
then the orbits of p and ¢ approach a distance apart equal to the first zero of
g(t) — ¢ that is greater than [p,q]. If no zero of g(t) — ¢ is greater than [p,q],
the orbits of p and ¢ separate as in Case II.

(2¢) 1f glp,q) < [p,q], and if no positive zero of g(¢) — ¢ is smaller than
[p,q] , then p and g have asymptotic orbits as in Case I. If g(¢) — ¢ has a positive
zero smaller than [p,q¢], then the orbits of p and ¢ approach a distance apart

equal to the first zero of g(z) — ¢ less than [p, q].
The proofs of these cases are similar to the proof of Case I.

THEOREM 2. If M is « bounded metric space, then Case 1 and Case Il are

not possible.

Proof. That Case Il cannot occur is obvious.

Suppose g(t) <t (Casel). Let 5 be the least upper bound of [p,q] for all
p,q € 1. Let o > 0 be the greatest lower bound for ¢ — g(¢) on the interval
8/2 <t < 5. Select p,g € M such that [p,q] > max (6 — o, 8/2). Since

T ~Yp), T 7'(q) are elements of M, and since
r=t(p), T7%(g)] > et (p), T7'(q)] = [p,q],
it follows that
(1/2)8 <[17'(p), T (g)] < 5.
Thus,
(p,gl=er'(p), T ()] <" (p), T q)] —0 <8 —0;
this contradicts [p,q] > 8 — o and completes the proof of the theorem.

Lemma 1. If g(¢) € W, then there exists a real number s such that, on 0<t
< s, either (i) g(t) =t, or (i1) g(t) > ¢, or (iii) g(¢) <t

Proof. Suppose that g (¢) # ¢ on every interval 0 <t < s, If £ = 0 is not a limit
point of the positive zeros of g(t) — ¢, then obviously on some interval 0 <t <s

we have g(¢) < ¢ or g(t) > t. Suppose that ¢t = 0 is a limit point of the zeros of
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g(t) — t and suppose that in every interval 0 < ¢ <s there are values of ¢ for
which g (¢) <t and g(¢) > t. Select u; and u, such that g(u;) = u, and g(u,) = u,,
and such that g(z) > ¢ on the interval u; < ¢ < u,. Select u3 > 0 such that g(u;)
< uz and uz < u, — uy. Define uy, = u; + us. Since u; <uy < u,, we have g(u,)
> u,. Since u; + uz > u,, we must have g(u;) + g(uz) > g(u,). This is not the
case since glu,) + gluz) = uy + gus) < uy + uz = uy < g(uy). Thus on some
interval 0 <¢ < s, either g(¢) < t or g(t) > ¢.

We must now eliminate the possibility of the equalities. Suppose g(t) < ¢ on
0 < t < s but there is no subinterval 0 < ¢ < s, on which g(¢) <t org(t) =t
Let u < s be such that g(u) = u. Select v < u such that g(v) <v. Now, v +

(x —v) = u; but
g(v) +glu—v) <gv) + (u—v) <v+u—v=u=g),

and property (b) of g(¢) is violated. Thus g (¢) <.

If g(t) > t on 0 < ¢ < s, but there is no subinterval 0 <t < s; on which g(¢)
>t or g(¢) =t¢, then choose 0 < u; < s and 0 < u, < s such that g(u;) = u and
g (uy) = u,, and such that on the z-interval 0 < u; <t <u, < s we have g(¢) > ¢
Select 60 < uz < u, — u, such that g(u;) = u; and define u ,= uz + u,. Then

gus) + g(uy) =us +uy =ug <glus),

since uy <uy <u,. Thus g(¢) fails to have property (5). We conclude that g(¢) > ¢.

This proves the lemma.

LEmMA 2. If (i) of Lemma 1 occurs, then either g(t) = ¢ for all t > 0 or there
exists an r>0 such that g(¢)=t for 0 < t < rand g(t) <t for all ¢ > r. If (iii) of
Lemma 1 occurs, then g(t) <t forall ¢t > 0.

Proof. Suppose that (i) of Lemma 1 occurs. Let r be the largest value of s for
which g(¢) = ¢ on 0 < ¢ < s (if r does not exist, then g(¢) = ¢ for all ¢ > 0). Let ¢
be any real number greater than r. Suppose g(¢) > ¢t. Then ¢t = mr + g, where mis
a positive integer and 0 < g < r. Since g(r) = r, we have g(mr) < mg(r) = mr;

and since 0 < g <r, we have g(q) = q. Hence

glnr) +glg) <mr +q =1t <g(t),

in violation of property (b) of g(¢). Thus g(¢) < ¢ for all ¢ > 0. Suppose ¢ > r and
g () = ¢t. Then there exists a nonnegative integer m, and real numbers u and ¢

such that mr + ¢ + u =¢, and such that g(u) < u. However,
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gnr) +g(q) +g(u) <mr+q +g(u) <mrt+q+u=t=g(t),

and condition (b) of g(¢) is violated. Thus g(¢) <¢ for ¢t > r, and the first part of
the lemma is proved.

Suppose that (iii) of Lemma 1 occurs. To show that g(¢) < ¢ for all real values
of ¢, we shall show that for no ¢t > 0 is g(¢) = ¢t. If g(¢) = ¢ for some ¢ > 0, then
there exists a smallest value u of ¢ such that g(u) = u. Now, g(u/2) < u/2 since
u is the smallest value of ¢ for which g(¢) = ¢, Hence g(u/2) + g(u/2) < u, con-
trary to property (6) of g(¢). This completes the proof of the lemma.

THEOREM 3. If M is a bounded metric space and T (M) = M is unrestricted

regular and has equicontinuous powers, then T is an isometry.

Proof. Since T has equicontinuous powers, given € > 0 there exists § > 0
such that when [p,q] < & we have [T"(p), T"(¢q)] < € for n=1,2,3,° .
From this it follows that (ii) of LLemma 1 cannot occur. For if € is taken as s/2
in Lemma 1, then regardless of the size of [p, q], we have [T"(p),T™¢q)] > s/2
for n sufficiently large (cf. 2b of Case I11).

Further, (iii) of Lemma 1 cannot occur since by L.emma 2 this implies Case I,
which is impossible since i/ is bounded.

Since (i) of Lemma 1 must occur, either g(¢) = ¢ for ¢t > 0, or there exists
an r>0 such that g(¢)= ¢ for all 0 < ¢t < rand g(t) <tforall ¢t >r. If g (t) ?é L
then we can show by the argument of Theorem 2 that distances in } are bounded
by r. Hence we always have [T (p), T(¢)] = glp,q] for each pair p,q € M, and

T is an isometry.

REMARK. Suppose that (ii) of Lemma 1 occurs and suppose that g(t) — ¢ has
a positive zero. We can show easily that either there exist arbitrarily large zeros
of g(t) — t or there exists a real number w > 0 such that ¢t > w implies g(¢) <.
If r is the smallest positive zero of g(t) — ¢, and N is the length of any interval
of the t-axis on which g(t) > ¢, then N < r.

The following theorem relates periodicity to unrestricted regularity. Other

theorems of this nature are possible.

THEOREM 4. Let M be a metric space. If T (M) = M is pointwise periodic and

unrestricted regular then T is an isometry.

Proof. Let p and g be arbitrary points of }. Since p and g are individually
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periodic (possibly having different periods), there exists an integer n (in particu-
lar, the products of the periods of p and ¢ will serve) such that T"(p) =p and
T"™(q) = q. Thus p and ¢ are fixed under T". If g(¢) is the scale function of T,

then g"(¢) is the scale function of 7". Since p and g are fixed under 7", we have
g"[1"(p), T"(q)] = [1"(p), T"(a)] =[p,q].

Thus we have g"[p,q] = [p,q] . This implies that g [p,q] = [p,q] ; and since g
is the scale function for T, we have [T (p), T(q)] = glp,q] = [p,q], and the
theorem is proved.

3. A class of transformations. Given a metric space }, Mickle [1] defines
the associated class P (M) of real continuous functions on the nonnegative reals

as those functions g(¢) satisfying these conditions:
(a) g(0)=10and g(t) > 0 whent >0,
(b) for any m + 1 points py, pys Pas * * *» P in M the real quadratic form

m

> {elpo.pil® + glpo,p,1? — glpi.p; 13 65
=1

is positive definite.

For example, let Y be any set with metric [p,q] = 1 for p # 9 [p,gl =0
for p = q. Let g(t) be any real continuous function that satisfies condition (a). If
Pos P1s * * *» Pm are any set of m + 1 distinct points of }, then g [pi,pj] =gQ)
= a > 0 for i # j. The elements of the matrix “ai,j“ of the quadratic form of
condition (b) are 242 if i = j and a? if i # j. From this, and from well-known
theorems concerning quadratic forms, it follows that condition (b) is always

satisfied. lience, in this case, P (M) consists of all real continuous functions

for which (a) holds.

Let T(M) = N be a continuous transformation. Then T is said by Mickle to
satisfy the condition C(g), g(t) € P (M), if for each pair p,q € M we have
(TP, T] < glp,ql.

A transformation may satisfy the condition C(g) for some g(z) € P (M), yet
not be unrestricted regular. Let i/ be the interval 0 < x <1 with the metric

described in the second paragraph of this section. Let N be the same interval
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with the Euclidean metric. Let T (M) = N be the identity on the point set. That is,
if p € M has coordinate x, then T (p) € N has coordinate x. If g(z) € P (M) and
g(1) > 1, then for each distinct pair p,q € M, we have [T(p), T(q)] < 1 <
glp,q], and T satisfies C(g). However, T is not unrestricted regular.

QUESTION. Suppose that T(¥) = N is an unrestricted regular transformation.
When does there exist an element g(¢) € P (M) such that T satisfies the condition
Cg?
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