ON A CERTAIN NONLINEAR INTEGRAL EQUATION
OF THE VOLTERRA TYPE

J. H. RoBERTS AnD W. R. MANN

1. Introduction. In an earlier paper by ilann and Wolf [1], the following
problem of heat transfer between a gas at constant unit temperature and the semi-

infinite solid was considered:

GAS SOLID
Temperature 1° Temperature U/ (x,t)

U(x,0)=0forx >0

| 5 x

(1.1 Up(x,t) =Ux 5 (%, ),

(1.2) U(x,0) =0,

(1.3) [U(x,t)] <M, x>0, t>0,
—[1=0(0, t)]

(1.4) U (0, ¢t) = fl1—=u(o,t)] =—=G[U(o,t)].

K
It will be noted that, in boundary condition (1.4), Newton’s Law of Cooling
has been replaced by the weaker, more realistic hypothesis that the net rate of
heat exchange from the gas to the solid, =K Uy (0,t), is some function, KG [U(0,t)],
of the surface temperature. In every heat transfer problem of physical significance,

the following conditions nust be satisfied by ¢ [U]:

(1.5) & [U] is continuous,
(1.6) ¢l =o,
.7 G [U] is strictly decreasing.
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By Duhamel’s Principle, the solution Ulx, ¢) of the above boundary value prob-
lem is easily constructed once we know the surface temperature, U(0,¢), which it

can be shown must satisfy the nonlinear integral equation,

G[o(0,7)]

771/2(1‘ — 7.)1/2

(1.8) (o, 1) = [

Equation (1.8) was shown in [1] to have at least one solution for all & satisfying
(1.5), (1.6), and (1.7). Under the additional ad hoc assumption that G satisfy a
Lipschitz condition on the unit interval, the solution of (1.8) was proved to be
unique and nondecreasing.

It is the purpose of the present paper to show that conditions (1.5), (1.6), and
(1.7) alone are sufficient to imply that 7/(0,¢) is not only unique but also strictly
increasing. Besides being a stronger result than that previously obtained, it has
the advantage of requiring only those conditions imposed upon G by the most ele-

mentary physical consideration.

2. The theorems. More general results are obtained without increasing the
complexity of the proofs if instead of the function [77(¢—7)=" we write K(¢ — 7),

or K(z) where ¢t — 7= z, subject to specified conditions, namely:

(2.1) K(z) is positive, continuous, and strictly decreasing for z > 0;
; t ., . ..
(2.2) j;) K(z)dz is finite for each ¢t > 0}
(2.3) K(z + &)/K(z) is strictly increasing in z for each fixed o greater than zero;

(2.4) j(;tK(z)dz —> ® ast¢t — C,

It is easily verified, for example, that [77(¢ — 7)] P satisfies the above con-
ditions for 0 < p < 1.

TueorEM 1. The equation

(2.5) y(t) = [1 6Ly (MIK(t = 7)dr

can have at most one bounded solution, given that G [y] satisfies (1.5), (1.6), and

(1.7), and that K(z) satisfies (2.1) and (2.2).



A NONLINEAR INTEGRAL EQCUATION OF VOLTHRRA TYPE 433

THeoRrREM 2. In addition to the hypotheses of Theorem 1, assume that X
satisfies (2.3). If y (t)is a bounded solution of (2.5), then y (1) is strictly increasing
in t. If, in addition, K satisfies (2.4), then y(t) — last¢ — <,

3. On Theorem 1. In this section we arrive at a proof of Theorem 1.

Livua 3.1, Suppose that f(7) is continuous for a < T < b, and that [Lf(T)dT
is positive for some t on la,b]. Let t; be the smallest value of t on [a,b] for
which JEf(T)dT is a maximum. Then either f(t,) =0 or t; = b. Supr)ose that K (T)

is posztwe and strictly increasing on a < 7 < ty, and that fa K(7)dT exists.

Then [2'f(7) K (7)dT > 0.

Proof. Set f;lf('T)d’T = 1/ > 0. Divide f into its positive and negative parts
by writing f,(7) = max [f(T),O] and f,(7) = — min [f(T),O] , so that f(7) = fl(T)
= f,(7). let ¢ = @, and define ¢; to be the smallest number ¢ (¢ > ¢, ) such that
f(ffl(T)dT = 1/, Then ¢; < ¢,. In general, choose c,+; as the smallest number

greater than ¢, for which

(3.2) fc:"” fi(r)dT = ]f_l f2 (1) ar

- t t . .
Since fcifl (r)ydr = jcol f2(T)d7, it follows that for each n we have ¢, <¢,. Let
¢ be the number to which the sequence c,, ¢, ¢;, * =+ converges. Then ¢ < ¢,

and

[oo@dr= [ @dr+ T[T A ar = [ ) dr] =,

since each summand of the infinite series is zero. Thus ¢ = ¢;.

We have
(3.3) Lotlf(T)K(T) dt

= [O1AG) - @K ar

[e9]

= £:1fl (T)K(T) d7 + Z [fc"ﬂf (r)K(T) ar — L'C"lf'z(T)K(T) dT],

_ n—
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Now for n > 1 we have

LK) dT 2 K(en) [T f1(7) ar,

Cn n

since K (7) is strictly increasing; and

L7 K@) dr <K(ea) [ f2(7)ar.

Thus, by (3.2), each summand in the expansion (3.3) is positive or zero, and the
first one is positive. Ilence fatlf(’r) K(r)dT > 0.

The first assertion of the lemma, namely that either f(¢;) = 0 or ¢, = b, is
obvious.

LEMMA 3.4. Assume that f(T)is continuous on 0 < 7 < T and that K(z)
satisfies (2.1) and (2.2). Suppose furthermore that F(t) f(:) < 0 for 0 <t < T,
where F(¢) = [¢f(T)K(t — 7)dT. Then f(1) =0 for 0 <7 < T.}

Proof. Assume the lemma to be false. Then for some ¢t we have fotf(’r)a’T # 0.
There is no loss of generality in assuming [{f(7)d7T > 0, since replacing f by
—f results in replacing F by —F, so that the inequality F (¢) f(¢) < O persists.
Clearly f(7) must change signs, so there exists a number 5, 0 < b < T, such that
f(6) = 0 and, for some ¢t < b, J{f(7)dT > 0. Let ¢, be the smallest value of ¢
(0 <t < b) for which [ f(7)dT is a maximum and apply Lemma3.1l using K (¢, — 7)
in place of K (7). We have

F(t,) = _gtlf(T)K(tl —7)dT > 0.

Then we have £'(t) > 0 over the segment (¢, — &, ¢;) for some & > 0; and since
fttll-g f(7)dT > 0 there is some t between t; — & and ¢; for which f(¢) > 0. But for
this ¢ we have F (¢) f(t) > 0, violating our hypothesis. Thus f(¢) is identically zero
on [0,T]. This completes the proof of Lemma 3.4 and we are now ready to prove

the uniqueness theorem.

Proof of Theoremn 1. Suppose y,(t) and y, (¢) are bounded solutions of (2.5).
Obviously both are continuous. Letting F (¢) = y(t) — y,(¢), and f(7) = G [y,(7)]
- Gly,(1)], we have 7 () = [{f(7) K(¢ = 7)d7. If f(7) < O then, since G is

1In place of assuming continuity we may assume that f(7) has a Lebesgue integral
over [0, T] and that the condition F (t) f(£) € 0 holds except for a set of measure zero.
Then we may conclude that f(7) = 0 over [0,T] except at points of a set of measure zero.
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strictly decreasing, we have y,(7) < y,(7), whence F(7) > 0 and F (1) f(7) < 0.
Similarly, if {(7) > 0 it follows that F(7)f(7) < 0. Thus the hypotheses of Lemma
3.4 are satisfied and we can infer that f(¢), and hence F(¢), is identically zero
for ¢t > 0. This means that y, (t) = v,().

4. The function K(z). In preparation for the proof of Theorem 2, we give the

following lemma concerning & (z).
LemMA 4.1, If K(2) satisfies (2.1) and (2.3), then:
(4.1) For « > 0 and z > 0, we have
[K(z + ) = K(z + 26)]/[K(z) —K(z + «)] <K(z + «)/K(z) ;
(4.2) K(z) — K(z + «) is strictly decreasing in z for all fixed 0. > 0;
(4.3) K(z) is a convex function;
(4.4) For each interval [0,b], there exists a number R > 0 such that
K(z)—K(z+ &) >Rd for0<z<z+ a <b,

Proof. By (2.3) we know that K(z + &)/K(z) < K(z + 2u)/K(z + «). Sub-
tracting 1 from both sides of this inequality and performing a simple rearrangement
of terms, we easily arrive at conclusion (4.1) above.

To prove (4.2) we observe that, by (2.3), [K(z + «)/K(z)] — 1 is strictly
increasing, so that [K(z) — K(z + «)] /K (2) is strictly decreasing. But by (2.1),
both the numerator and the denominator are positive and the denominator is de-
creasing. Hence, the numerator must also be decreasing.

That K (z) is convex follows readily from (4.2), in view of the hypotheses that
K(z) is positive, decreasing, and continuous.

From (4.2) and (4.3) it follows that K(z) has a right-hand derivative at each
z > 0, and this derivative is negative and strictly increasing. The R of (4.4) can

be taken as the negative of this derivative at z = b,

5. The function y (¢). Sections 5 through 10 are devoted to the proof of Theorem
2. Throughout, y(¢) will denote the bounded solution of (2.5), where K (z) satisfies
(2.1), (2.2), and (2.3). In $10 we assume in addition that K (z) satisfies (2.4).

LEMMA 5.1. If y(t) <1 for 0 < ¢t < T, then y(¢) is nondecreasing on [0,T].

Proof. Assume the lemma is false. Then for some subinterval, [0,56], y(¢)
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attains its maximum # at an interior point, a, and we set y(a) — y(b) = 3¢ > 0.
We shall assume that a is the smallest number (0 < a < b) such that y(a) = il
Choose 8, > 0 so small that

(5.2) 81fbK(b—-T)a‘T< €.

a

Set G [y(a)] = ¢ and choose p, (0 <p, <a) so near to a that (see Fig.1)

(5.3) Gly(t)] <c + 8, for p; <t <a.
1
cly(t)
cté
G[y(a)_l=c
I ' |
| | |
yla)f————"~————"~—~—— == :
3¢ ; : X
3] | N—— el S I .
: | .
i | i
y( t) | : |
! | |
| | !
! l |
0 —ed ] 1
P1 P2 P a b t
Figul

Next, choose p, (p, < p, <a) so close to a that
(5.4) (c +51)_/p;a1{(a-—'r)d7'<€,
2

and
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(5.5) (c +8;) 4ﬁQb~ﬂaT<e.

Define ¢ so that 0 < § < §, and ¢ + & <G ly(¢)] for 0 < ¢ < p,. Letp be the
largest value of ¢ such that G [y ()] > ¢ + § for ¢t <p. Then p, < p < a. Define

G if ¢t <
(5.6) G* [t] — [y(t)] 1 t _P k)
c +35 if t>p,

Now since y attains its maximum on [0,b] at¢ = a, and G is strictly decreasing,

we have
G—=G">=8 fora <t <o,

We shall show (Lemma 7.1) that [{G*[7] K (¢t — 7)dT is strictly increasing as ¢
increases from a to b, and therefore Y (5) > Y (a), where we use the following
definition:
(5.7) Y(t) = ‘/O‘t G*[7]K(t —7)dT.
By (5.4) we have
68 Iy =Y@|=| L6 = 6" e =) dr

<8 [*K(a —7)dT < €.

S 01 ‘4 (@ =7)dT

Similarly, we obtain

(5.9)  y(b) —Y(b)

Il

LGy =G [T Kb — ) d7

+ LPH6Ly()] =6 [T3K(b —7) d7
=a+p, say .

By (5.5), we have |a| < €. As for 3, the integrand for any 7 is either positive
or numerically less than §K(b6 — 7). Hence, by (5.2), it follows that 5> —¢.
From (5.8) and (5.9) we therefore have y(a) < Y (a) + € and y(b) > ¥ (b) — 2e¢.
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Subtracting, we get y(b) — y(a) > Y (b) — Y(a) — 3€>—3 ¢, since Y (b) — Y(a)
> 0 by Lemma 7.1. This contradicts the definition of €, and thus the proof will be

complete when Lemma 7.1 has been established.
6. The function Y (¢) for t < a. We shall establish the following result.

LEmmA 6.1. With the notation of §5, there exist numbers r and s (p <r<
s < a) such that Y (s) > Y (r).

Proof. Define f(7) to be G *(7) — G [y(7)].

Case 1: for some g(p < q < a), we have _]:,?f('r)d'r > 0. In this case, set
r = p and let s be the smallest value of ¢ on [p, a] such that quf(T)dT isa maxi-
mum. Using K(s — 7) in place of K(7), and p and s, respectively, in place of a
and ¢, we see from Lemma 3.1 that f; f(r) K(s = 7)dT > 0. This implies that

6.2) fps G*[T)K(s = 7)dT > fps G[y(T)]K(s —7)dT.

Now if s < a then f(s) = 0, by Lemma 3.1. That is, G[y(s)] =c¢ + §, so that
y(s) = y(p). If s = a, then obviously y(s) > y(p). Since G*[7] = G [y(7)] for
7 < p, we get immediately from (6.2) the result that

L0671k (s =7)dm > [7G[y(7)]K(s = 7)dT
=y(s) 2y(p)
= [PG*[7]K(p —7)dT;
that is,
Y(s) > ¥(p).

Case 2: for every ¢ (p < q < a), we have fl;]f(T)d’rS 0. Now f(7) is not
identically zero on [p,a] since f(a) = &. Let r be the smallest number q on
[p,a] such that fg f(T)dT is a minimum.

Then fprf(T) dr =M <0 and [ff(7)dT >0 (r <t < a) by the minimum property
for r. Let s be the smallest value of ¢ (r < ¢ < a) such that [/f(7)dT is a maxi-
mum. We now apply Lemma 3.1 to the interval [p,r], using K(r — 7) — K(s — 7)

as the function A (7) [note that this function is increasing in 7 by (4.2)]. We
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also use —f(7) in place of f(7). This gives
(6.3) fpr [=F)IK(r—7) —K(s = 7)]dT >0.

Similarly, applying Lemma 3.1 to the interval [r,s] and using K(s — 7) as the

function K (7), we get
(6.4) frs F(T)K(s =7)dT >0.
We are now in a position to show that ¥ (s) — ¥ (r) > 0. For we have
Y(s) =¥(r) = [PG*[T][K(s = 7) —=K(r = 7)]dT
+ fp'(;* [7][K(s =7) —K(r —7)]dT
+ [TGT[T1K(s —T) a7 .

Similarly, we have

y(s) =y(r) = [PGLy(M)IK(s =7) =K(r =7)]dT
+ f;,rG[y(T)][K(s —7) —K(r —7)]dT

+ [PGLy(T)]K(s = 7)dT.

r

We therefore get
[Y(s) = Y(r)] = [y(s) —y(r)]
= ,[)rf(T)[K(S =7) =K(r =7)1d7 + [ f(T)K(s = T)dT
= [ EIOIK G =7) =K(s =7)]d7 + [Tf(1)K(s =7)d7 >0,

by (6.3) and (6.4). But f(r) = 0, so that y(r) = y(p). Also either f(s) =0 or s = a.
In either case we have y(s) > y(p). Thus y(s) — y(r) >0 and Y (s) > Y (r).
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7. The function Y (¢) for ¢t > a. For ¢t > a we have the following stronger result.
LeMma 7.1. The function Y (¢) is strictly increasing for t > a.

Proof. Suppose that e > p, &. > 0, and Y (e + &) > Y (e). We prove first that
Y(e+2w)>Y(e+ ). Replacing ¢ + 3 by k, we may write

Y(e + ) = Y(e) ‘/O‘emG*(T)K(e +o—=T7)dT = j(;emG*(’r)K(e —7)dT

= {foeka(e +o=7)dT = fkK(e “‘T)dT}

= {167 (@) = KIK(e = 7) = K(e + =) ]ar]

Al —Bl y say.

(We have used the fact that G *(7) =% =0 for 7 > e.) Similarly, we have

et20,

)/(e+2a)—Y(e +og): {j(; kK(e +20<-T)d7 _ j(;ﬁal{(e +O(—‘7‘) dT}

= {f°[6" () = kI[K(e +a~=7) —K(e +2a~7)]dr]

—A2 '—B2, say .

Now A4, — 8, > 0 by hypothesis, and we wish to show that 4, — B, > 0.

By simple changes of variable we get
+o, +
SoKk(e—T)dr = [*K(z)dz, [ff “Kle +a—7)dT = fo"’ “K(z)dz,
and

+2¢ +20
fole JLK(e +20="T)dT = f(;e K(z)dz .

Then we have the following:

A =k f:*o‘K(z) dz,

By = [°[G*(e —2) = k][K(z) =K(z + )] dz,
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et20
A, =k K(z)dz
2 j; ( ) ]

B, = foe[c*(e —2) —k][K(z+«) —K(z +20)]dz.
Another change of variable gives
Ay =k fe”o‘K(z + o) dz.

Now over the interval e <z <e + & we have, by (2.3),

K(z +a) =K(z)[K(z + w)/K(2)] > K(z)[K(e + o)/K(e)] .

Flurthermore, the strict inequality holds except for z = e. It follows that A4, >
[K(e + w)/K(e)] 4, .
To obtain an inequality for B,/B,, we note first that G *(e — z) — k is positive

or zero for 0 < z < e. Over this range for z, we have
[K(z + ) —K(z +2a)1/[K(z) —K(z + )]
<K(z +«)/K(z) <K(e + &)/K(e),
by (4.1) and (2.3). Thus it follows that B, < [K(e + w)/K(e)] B,. Then
A, =B, > [K(e + w)/K(e)][A; =By >0.

Thus we have seen that if e > p, «. > 0, and Y(e + &)> Y (e) then Y (e + 2&)
> Y(e + «). 3ut then it follows that Y(e + 3u) > Y(e + 2«); Y(e + 40 ) >
Y(e + 3w), and so on. Now if e =r, and ¢ =s —r, we have Y(e + 1) > Y (e) by
Lemma 6.1. Divide the interval [r,s] into n equal subintervals by the points
Xg =T, Xy, Xy, ** ¢, X, = s. It follows that for some i we have ¥ (x;4+;) > ¥ (x;).
But x;4; = x; + «n™!, so that Y(x; + an™') > Y (x;). Thus we see that Y (¢) is
strictly increasing over the points of an arbitrarily fine mesh. Hence, by conti-
nuity, it is always increasing for ¢ > s, therefore a fortiori for ¢ > a. This com-

pletes the proof of Lemma 7.1, and thereby establishes Lemma 5.1.
8. A stronger result concerning y (t). We now prove:

LEMMA 8.1. Under the hypothesis of Lemma 5.1, y(t) is strictly increasing
on the interval [0,T].
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Proof. If the lemma is false then there exist points p and @ (0 < p <a) such
that y(7) < y(p) if 7<p, and y (1) = y(p) if p < 7 < a. Define G *(7) = G [y(7)]
for 7 <p, and G*(7) = G [y (p)] for 7> p. Then we have the situation of §7, and
Y (¢) is strictly increasing for ¢ > p. But over [p,a], we have Y (¢) = y(¢).

9. Another result concerning y (). Our last lemma is the following:
LeEmMA 9.1. For every t (t > 0), we have y(t) <1.

Proof. Assume the lemma is false, and let b be the smallest number such that
y (b) = 1. Then by (1.5), (1.6), and (1.7) it follows that G [y (¢)] strictly decreases

from 1 to 0 as ¢ increases from 0 to b. (See Fig. 2.)

cly(n)

By (4.4), there exists an R > 0 such that for every & (0 < § < b/2) we have
(9.1) K[(b/2) — 8] —K(b/2) >RS.

Set ¢ = G [y(b/2)] and d = G[y(b — §)]. Then ¢ is fixed and d is a function of
§ such that d — 0 as § — 0. Also K(b) > 0 and K is continuous. Therefore

it is clear that we can fix § so that
(9.2) (b/2)(c —d)R > 2dK (b),
(9.3) K(b —38) <2K(b) .

We shall show that for this choice of § we have y(b) < y(b — §), which is a
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contradiction. Now
y(b=38) =d [Tk =5 =7)dr + [ (Gly(1)] = d)K(b =5 = 7)dr

b8
/2 (

+

=u+LB+7y, say.

Gly(m)] —d)K(b—=8 —T7)dT

Similarly, we have

y(b) <d [PKG —m)dr + [P [y(0)] = Kb —7)dr

+ bj’;s (G[y(T)] —d)K(b —’7') d7 = A + u + v, say,

where the inequality arises from replacing G [y(T)] by the greater quartity d, for
b—6<7 <b. Then

(9.4) y(b) —y(b —=8) < (A=) = (B—n) + (v—-7v).

By (2.1) we have

(9.5) v—y<0.

Furthermore,

N—o=d [fo”K(b —7)dr = [PK(b -8 —T)dT] =d [TK(b—T)dT,
since

fO'bK(b —7)dT = j(;SK(b —7)dT + ./S'bK(b—T)dT,

and since replacing 7 by z + & gives _fob_SK(b — & — z)dz for the second integral.
But by (2.1) it follows that

LPRG —7)dr <8[K(b—8)],

so that

(9.6) AN—o < dS[K(b —8)] < 2d8K(b) .
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Similarly, by (4.2),

Bp= [ CIyM)] = Kb =3 =7) —K(b =7)]d7
> (c=d) [ [K® =5 ~7) —K(b —7)]d7

> (¢ —d)[K(b/2 —8) —K(b/2)](b/2) .
Thus using (9.1) and (9.3) we have
9.7 B—=u>(c —d)Rs (b/2).

In view of (9.2), (9.6), and (9.7), it is clear that 8 — u > A — «. Hence, from
(9.4) and (9.5) we have y(b) —y(b — &) <0, a contradiction.

10. Proof of Theorem 2. To complete the proof of Theorem 2, we now assume
in addition that X (z) satisfies (2.4).

We know that y(¢) is a strictly increasing function of ¢, y(0) = 0, and y(¢) <1
for all ¢. We must show that y(¢) — 1 as¢ —> ®©. Assume on the contrary that
y(t) — k ast — ©, where 0 < k < 1. Then G [y ()] > ¢ (k) >0 for all ¢. By
(2.5) we have

y(t) = 6Lyt =7)dm > [ GLkIK(t =7)dT

= G(k) jotK(t —7)d7 = G(k) fOtK(z)dz;
but, by (2.4), the last integral increases indefinitely as ¢ — ©, so that we have

a contradiction.

11. Conclusion, In conclusion it will be shown that if hypothesis (2.3) on
K(z) is replaced by the stipulation that K(z) be convex, then y(¢) is not neces-
sarily monotonic increasing,.

Let G(y) =1 — y and K,(2) =1 — z (0 <z <1). Then if y(¢) denotes the

bounded solution of the equation

y(&) = [TGLy(m)]K: (¢ = 7)d7,
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it is readily shown that y(¢) is actually decreasing over a small segment, 1 — §
<t <1

To get a similar example where [(K(z)dz —> ® as t — ®, we select a
fixed ¢, 1 — 8 < ¢ < 1, and write K(z) = K,(z) for z < ¢, K(2) =dz"" for z > ¢,
where d is chosen so that the functions 1 — z and dz~” have the same value at
z =c; thatis, d = ¢”(1 — ¢).
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