
ON THE REALIZABILITY OF HOMOTOPY GROUPS

AND THEIR OPERATIONS

S Z E - T S E N liu

1. Introduction. Let /> be a given arcwise connected topological space and b0

a basic point of />'. 1 hen we obtain a sequence of homotopy groups

TT^B), 7T2(B), ' " , TTniβ), "••

Ίhe fundamental group TT^B) is in general non-abelian and written multiplicatively.

All higher homotopy groups ττn{B), n > 2, are abelian and written additively. The

group v{(B) operates on the left of every higher homotopy group πn(B), n > 2; that

is to say, for every w G ^\{B) and every a G τίn{B)9 a unique element wa G τrn{B)

is determined, and

w\\a\ + α 2 ) — wa\ + wd2, wiywia) — {wiwojdj lα = α .

For arbitrary elements a£.τrm(B) and b £.ττn{B), m > 2, n > 2, a Whitehead product

c ° i is defined [10, p . 4 1 l ] , which is an element of 77m+7ϊ_ι (B). The Whitehead

product is known to be bilinear; namely,

(αi + α 2 ) ° δ ^ α j o 6 - f α 2 ° 6, α ° (6χ H- 6 2 ) = α ° ό x + α o 6 2 .

Roughly speaking, the realizability problem is whether these homotopy groups

and mutual operations described above are otherwise completely arbitrary. It can

be formulated precisely as follows. Let

771

be a given sequence of abstract groups. All groups except the first one are abelian

and additive, while 77£ is written multiplicatively. There are given two kinds of

operations between these groups. First, the group 77! operates on the left of every

group 77̂  with n > 2. Secondly, for arbitrary elements (A G?7m, β G 7 7 ^ m > 2,

n > 2, a bilinear product GC ° β is defined and is an element of the group
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The realizability problem is to construct an arcwise connected topological space

B and a basic point b0 d 3 satisfying the folloλving conditions:

(1.1) There exists, for each integer n > 1, an isomorphism hn: τrn(B) ~ τrn of

7Jn(B) onto ττn.

(1.2) For arbitrary elements w £ TT^B) and a £ 77^(5), n > 2, we have hn(wa)

= hι{w)hn(a).

(1.3) For arbitrary elements a £ τrm{B) and b £ τrn(B), m > 2, n > 2, we have

M ° δ) = Am(α) o /^(6).

This general problem has not yet been solved. The first partial solution was

given by J. lί. C. Whitehead [l2] . By means of an inductive construction based on

his previous contributions, he succeeded to give an infinite polytope B which

satisfies the conditions (1.1) and (1.2). However, he gave no explicit information

as to the Whitehead products of the higher homotopy groups of the space he con-

structed.

The object of the present work is to give a synthetic and algebraic construction

of an arcwise connected topological space B with a basic point b0 and prove the

following:

REALIZABILITY THEOREM. There exists an arcwise connected topological

space B and a basic point b0 £ B satisfying the conditions (1.1), (1.2), and

(1.4) For arbitrary elements a £ τrm(B) and b C ττn{B), m > 2, n > 2, we have

α o b = 0.

Our principal construction is motivated by the following observations:

(a) Let 77 be a given group and n a positive integer (we assume 77 to be abelian

if n > 1). Then we can construct an arcwise connected space P(ττ, n) such that:

(1.5) πn(P(τr fn)) ~77, τri(P(π,n)) = 0 (i φ n);

(1.6) If n > 1, there is a correspondence which associates with each endo-

morphism h: 77—» 77 a continuous map h : P(τr9n) —>P(τr,n) such that {hίh2)

— h\Λ|, and A is the identity if h is the identity.

(b) Let 772,773, , be a sequence of abelian groups, and let Y denote the

topological product of all the spaces P(ττn,n), n — 2,3, . Then Y is simply
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connected and 77^(1) ~ 77; for i > 2; moreover, all the Whitehead products in 1

vanish. This is a consequence of J. Jl. C. Whitehead [ 13, p. 289] .

(c) Let G be a group of homeomorphisms of Y, and let A = P{τri, 1) where ττι is

any given group. Let )(: ττ1 —> G be a homomorphism. Let X denote the universal

covering space of X. It is well known that X is a bundle space over X with dis-

crete fiber 7T1 and discrete structural group 77L . The homomorphism )(: 771 —> Q

induces a bundle space 3 over X with fiber }' and structural group G which is

weakly associated with A. Then the operations of 771 on Ήn — nn{Y) are given by

w —> χ*(u;), where χ*(u>) is the automorphism of τin(Y) induced by the map

χ(z^): } —> Y. ί3y suitable choice of the homomorphism χ . 77t —> G, the bundle

space β has the properties described in the llealizability Theorem.

As an application, we are able to show7 that Whitehead products of the higher

homotopy groups of a given topological space are essential invariants of the

space; that is, they are not completely determined by the homotopy groups and

the operations of the fundamental group upon the higher homotopy groups.

2. Semi-simplicial polytope. First of all, let us recall the definition of semi-

simplicial complexes of S.Eilenberg and J.A.Zilber [2] as what follows.

A semi-simplicial complex K is a collection of elements \σ\ called sίmpίexes

together with two functions. The first function associates with each simplex σ an

integer q > 0 called the dimension of σ we then say that σ is a ^-simplex. The

second function associates with each ^-simplex cr (q > 0) of K and with each

i (0 < i < q) a (q — l)-simplex o- ( ι ) called the i-th face of σ , subject to the con-

dition

(2.1) [σ^ψϊ = [σω]0-i>

for q > 1 and i < j . We may pass to lower dimensional faces of σ by iteration. If

0 < i γ < < in < q then we define inductively

σ(iv - , ι n ) = [σiι2 . •- . i n / ] ( i l \

This is a (q — τz)-simplex. If 0 < / 0 < * * * < jq~n — <3 i s t n e s e t complementary

to \il9 , in\ then we also write

α-di. in) = σ , .. ) .
\J 0 > » J q-n >

In particular, cr^ for 0 < i < 9 is a 0-simplex called the i-th vertex of σ*. We shall
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also refer to cr^0^ as the leading vertex and σ~(o, i) a s the leading edge. For any

two simplexes σ and r of K, we shall write

T < σ

if either T - σ or r - Q-(1I>'">ιn) for some set (il9 , ιπ) of integers 0 < i ι

< < in < ^. A subcomplex L of iϊ is a subcollection of simplexes of £ with

the property that σ C L and r < ex imply T ζi L. Obviously, every semi-simplicial

complex K is a closure finite abstract complex [5, p .9 l ] with its incidence num-

bers defined by means of the bounding relation

i = 0

Now, let K be a given semi-simplicial complex. We shall construct a topologi-

cal space P(K), called the s emi-s implic ial polγtope associated with K.

For every integer q > 0, to every ^-simplex σ of K let us associate an open

geometric ςr-cell wσ, called the open q-cell corresponding to cr, which is the

interior of some ordered geometric ^-simplex sσ; that is,

wσ = I n t s σ , sσ = <vOf ••• , vq> .

If sσ is 0-dimensional, we define Int sσ — sσ. We assume that no two of these

open cells l7^σ]cr £ K} have a point in common. Let each open cell wσ have the

euclidean topology and the affine geometry of the geometric simplex sσ.

Let σ be an arbitrary ςr-simplex of K and sσ be the ordered geometric qr-simplex

associated with σ as above. We define the closed q-cell C\wσ as a set by taking

Cl wσ = U wτ .

r<σ

There is a natural transformation

Mcr ' $σ —* Cl Wo-

of sσ onto Clwσ defined as follows. For each ^-dimensional face (0 < n < q),

S1 = <VJo , ' , Vjn > , 0 < Jo < * < jn < 9 .

of Sσ-, we define μσ on the interior Int s ' of s ' to be the unique barycentric map

of Int s ' onto wr, τ~ °Γ(jQ, ",jn)> w n i c n preserves the order of vertices. Give
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C\wσ the identification topology determined by μσ; that is to say, a set M d

Cl wσ is called open if and only if its inverse image μ~^(\1) d s σ is open.

Let us denote by P(K) the union of all open cells wσ corresponding to the

simplexes σ of /<. We define a topology of P(K) as follows: A set M of P(K) is

said to be open if !/ Π CΛwσ is an open set of Clwσ for every closed cell C\wσ.

Ίhe topological space P(K) thus obtained is the semi-simplicial polytope associ-

ated with K. It is a polyhedral realization of the semi-simplicial complex K.

-ve remark that, for each simplex σ of K, the natural transformation

μσ: sσ —» Clwσ(ZP(κ)

is a continuous map of s σ onto Clwσ and μσ ιvσ is the identity. Following

J. II. C. Whitehead [ l l , p . 2 2 l ] , we shall call it the characteristic map for the

open cell wσ of P{K)

Obviously, P{K) is a CίF-complex in the sense of J. H. C. Whitehead [ l l , p .

2 2 3 J . Hence we have the following assertions.

(2.2) P{K) is a normal llausdorff space.

(2.3) A transformation f:P(K)—>R of P{K) into an arbitrary topological

space R is a continuous map if and only if the partial transformation f\ Clwσ is

continuous for each closed cell Clw;σ of P{K).

3. Simplicial ma^s. We recall the definition of simplicial maps of semi-simpli-

cial complexes [2, p.δθθ] . A simplicial map T: Kι—> K2 of a semi-simplicial

complex Kγ into another such complex K2 is a function which to each g-simplex

σ of K\ assigns a ^-simplex r— T (cr) of K2 in such a fashion that

τ ω = 7'(σ-(ι)) (i = 0 , ••• , q).

(3.1) A simplicial map T : Kι —> K2 induces a unique continuous map fγ :

P{Kχ) —> P{K2)9 which maps wσ of P(Kχ) bary centric ally onto wτ of P(K2) with

r= T{σ).

Proof. For each integer q > 0, let Kγ denote the ^-dimensional skeleton of

Kγ that is, K^ is the set of simplexes in Kγ with dimensions not exceeding q.

Then P(Kγ) can be chosen as a subpolytope of P(Kγ) and will be called the q-

dimensional skeleton of P(Kι) Define a map

φ0:
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as follows: For each simplex σ in K°i9 C\wσ = wσ is a single point of P{K\).

Since r ~ T (σ) is of dimension zero, Clwr = w τ is a point of P{K2) Then 0 O is

defined by taking φo(wσ) ~ wτ. It is clear that φQ is uniquely determined by T,

Since PiKγ) is discrete, φ0 is a continuous map.

Now assume that there exists a unique continuous map.

which maps ẑ ;̂  of /'(/v^ ) barycentrically onto w;r of P(K2) with T = T (σ) for a

certain integer q > 0. We are going to construct a map

φq:

as follows: Let σ be an arbitrary g-simplex of Kγ and τ ~ T(σ); wσ is the interior

of the ordered geometric simplex sσ9 and wτ that of s r . Denote by Bσ : sσ —>s r

the unique barycentric map of sσ onto sr preserving the order of vertices. Then

φq is defined by taking

' X ~ Bσ(x) (x€

Now φq is uniquely determined by T and maps wσ barycentrically onto wr with

T— T(pr) for each simplex σ of Kγ To prove the continuity of φq, it is sufficient

to prove that of the partial map \bσ — φq\C\wσ for each ςr-simplex σ of KχΛ^y

means of the property of T and that of φn (n < q), it is easily seen that in the

following diagram

Bσ > s

I
μτ

C l wσ "tz > C l κ;τ

commutativity holds; that is, μrBσ — ψσμτ, where r = T {σ) and μσ, μr are

characteristic maps. Let [/ be an arbitrary open set of Clwτ and V — \p^1 (U) in

Clw;^. Since μrBσ is continuous, μ,^1 (^) ~ (^r^σ ^ 1 W) is an open set of s σ .

By the definition of the topology of Clw;σ, V is open. Hence \pσ is continuous.

This proves the continuity of φq. Hence we have completed the inductive con-

struction of a sequence of continuous maps \φql> uniquely determined by T,

such that
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1) =Ψq-l

for every q > 0, and φq maps wσ barycentrically onto wTf T = T(cr), for each

simplex σ C &?.

The required continuous map fj : P(Kγ) —> P(K2) is defined by taking

fτ\P{Kq

1) = Φq ( q = 0 , l , • • • ) .

This completes the proof of (3.1).

4. The singular polytope P{X). Let λ be a given topological space. The singu-

lar complex S(X) [2, p.502] is a typical semi-simplicial complex. The semi-

simplicial polytope associated with S (X) and constructed in §2 is essentially the

singular polytope of J. 13. Giever [4, p. 182], which will be denoted simply by

P(X).

For the remainder of the present section, we shall assume that X is arcwise

connected and that x0 ζ^_ λ is a given point. Following S.Eilenberg, we denote

by Sn(X) the subcomplex of S (X) consisting of all singular simplexes σ such that

all faces of σ of dimensions less than n are collapsed at χo» The associated semi-

simplicial polytope of Sn(X) can be chosen naturally as a subpolytope of P(X) and

will be denoted by Pn (A
7).

Now let M be a minimal subcomplex of S (X) ['2, p. 502]. We can choose the

associated polytope P(M) as a subpolytope of P(X) The following assertion is an

immediate consequence of a corollary of Eilenberg and Zilber [2, p. 503] .

(4.1) If the homotopy groups v^iX) vanish for each i < n9 then P(M) is a sub-

polytope ofPn(X).

Let ί\g be a given ordered geometric ^-simplex and let / be the closed unit

interval of real numbers. The topological product Δ^ X / has a standard triangula-

tion into ordered simplexes without the introduction of new vertices. By means of

this standard triangulation and the arguments analogous to those used in §3 and

those used by Eilenberg and Zilber [2, p. 504], it is not difficult to construct a

homotopy

δ t : P(X)—*P(X) (0 < t < 1 ) .

subject to the following conditions:

(i) δ0 is the identity map;
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(ii) §! maps PCX) into P{M);

(iii) St \P(M) is the identity map for all t C /.

Then the main result of Eilenberg and Zilber [2] can be stated as follows.

(4.2) The polytope P(M) is a deformation retract of P{X).

Note that δj is not simplicial if 0 < t < 1. The family of simplicial maps

fΦt- P(X)-*P(X) (0 < t < 1) ,

induced according to (3.1) by the family φt : SOY) —> S(X) (0 < t < 1), of

Eilenberg and Zilber [2, p.504] is not continuous in t because of our topology

introduced in P(X).

The following assertion is a direct consequence of (4.2) and a theorem of

J.B.Giever [4, Theorem VI] .

(4.3) The homotopy groups of P(M) are isomorphic with those of X that is,

5 The polytope P{π,n). Throughout the present section, let 77 be a (discrete)

group and n a positive integer. If n = 1, we make no assumption on 77 and write it

multiplicatively; otherwise, we assume 77 abelian and written additively. Eilenberg

and MacLane [3, p.517] define a semi-simplicial complex K(ττ,n) which is very

useful in the relations between homology and homotopy groups. A qr-simplex σ of

K(ττ,n) is a function σ with values in 77 defined over all sets of arguments 0 < α 0

< < an < q and subject to two specified conditions, namely the conditions

(2.2) and (2.3) of [3] . We denote by P{τr,n) the semi-simplicial polytope associ-

ated with K(τr,n). Since K(τr,n) has only one 0-simplex, P(π,n) is arcwise con-

nected. We shall use the unique vertex p 0 of P(ττ,n) as the base point for the

homotopy groups.

THEOREM 1. The homotopy groups of the polytope P(π,n) are given below:

"nlPfan)) ~77;

πάPM) =0 (i^n).

1ΓΓhis theorem is known to S.Eilenberg. He mentioned this fact in his address delivered
before the Topology Conference of the International Congress of Mathematicians, 1950.
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Proof. According to Realizability Theorem of J. II. C. Whitehead [12, p . 2 6 l ] ,

there exists an arcwise connected topological space X with

(5.1) rrn(χ)zπt nt(X) = 0 (i ^ n).

Choose a minimal complex M of the singular complex S(X) [2, p.502] , and con-

sider their associated polytopes P(X) and PCM) C P{X). It follows from (4.3) and

(5.1) that

(5.2) ττn(P(M))~τrt nt(P(M)) = 0 (i £ n) .

Since 7Ti(X) = 0 for each ί < n, (4.1) tells us that P(M) is a subpolytope of Pn(X).

According to Eilenberg and MacLane [3, p. 517] , there is a natural simplicial

map

K: Λί—>/f(π,n).

Since 7Ti(X) — 0 for each i > n, a result of Eilenberg and MacLane [3, p. 519]

gives a simplicial map

K: K(ττ,n)-^>M

such that κ~k is the identity on K{τr,n). It follows also from the construction of

K and /< given by Eilenberg and MacLane [3] that κκ{σ) = σ for every rc-simplex

of M. Now let

/ : p(ji)—>p(π,n), f : P(π,n) —>P(u)

be the continuous maps induced respectively by K and K according to (3.1). De-

noting the rc-dimensional skeleton of P(M) by Pn{M), we obtain the result that //

is the identity map on P(π,n), and // | Pn{M) is that on Pn(M).

Since Ήi(P(M)) —0 for each i > n, it follows from a standard obstruction method

that / / : P(M)—> P(M) is homotopic with the identity map on P(\l). Since / / is

the identity map on P(ττ,n)9 this proves that P(M) and P(π,n) are of the same

homotopy type. Hence (5.2) implies Theorem 1.

Let 77̂  be a subgroup of 77. Then K(ττ* ,n) is the subcomplex of K(τr,n) con-

sisting of all simplexes σ of K(ττ,n) such that

O"0*o, • " » an) C 77*

for all sets of arguments 0 < a0 < < α π < dim σ. We can imbed P(77* , n) as



592 SZE-TSEN HU

a suhpolytope of P(Ή9Π) in an obvious way. If v^ is the subgroup consisting of a

single element, then we use the notation Po (ττ,n) for this P(π* ,n). It follows from

Theorem 1 that

(5.3) ^(PoCπ.π)) = 0

for all integers ί > 1. Now (5.3) and the exactness of the homotopy sequence imply

that the identity map

j : (P(π,n),po) —* (P(π,n),P0(τr,n))

induces the onto isomorphisms:

(5.4) j.:πi(P(jτ,n))Z7Ti(P(π,n),P0(π,n)) (i > 2 ) .

For the remainder of the present section, we shall assume n > 2. There is a

natural homomorpbism

k* : 77—>ττn(P(π, π),P0(τ7, n))

described as follows. For an arbitrary element α of 77, there is one and only one

^-simplex σ of ΛXτ7, n) such that σ (0, , n) — 0,. The open rc-cell ιvσ of P(ττ, n)

is the interior of a geometric /i-simplex sσ with ordered vertices. The order of the

vertices determines an orientation of the pair ( s σ , 3 s σ ) . The characteristic map

μσ : sσ —>C1 wσ

carries the pair ( s σ , 3 s σ ) into the pair (P(π,n), P0{τr,n)) and maps each vertex of

sσ into p 0 . lience /x σ determines an element [μσ] of the group Ήn(P{π,n),

Po (77,72)). The homomorphism k^ is defined by setting /c*(u) = [/xσ] .

By a careful examination of the proof of Theorem 1, it is not difficult to see

that the homomorphism j~ιk* is an isomorphism of 77 onto τrn(P(π,n)); that is,

(5.5) λ Λ = j 7 1 f e . : π~77π(P(τ7,n)) .

lience k* is also an isomorphism onto.

Now let h : 77 —> 77 be a given endomorphism of the group 77. Then h induces

a simplicial map

Ύ]\ K{ττfn)—> K(n,n)

described as follows: For each simplex σ £ K(τr,n)9 r)(σ) is the simplex of

K(τr,n) such that dim Ύ](σ) = dim σ and
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^ ( c ^ U o , •••, an) = h ( σ ( α 0 , •••, an))

for every set of arguments 0 < a0 < < an < dim O". Let us denote by

the continuous map induced by the simplicial map τ\ according to (3.1). The follow-

ing properties of the correspondence h —» h are immediate.

(5.6) For any two endomorphίsms hχ9h2ι of the group 77, we have

' # .(5.7) If h : 7T—> 77 is ί/ie identity endomorphism of the group 77, ί/ien h is the

identity map ofP{τf,n).

Since h (p0) — PQ, h induces a homomorphism

Λ* : 77π(p(τ7,n))—> πn(P(π,n)) .

THEOREM 2. /TI ί/ze following rectangle of homomorphisms

π r- > 77π(P(τ7,n))

h U*

i ^ > in(P(πfn))

ίΛe commutativity relation h^\n

:=z λ-nh holds.

Proof. It is obvious that the partial map h \P0 {ττ,n) coincides with the identity

map on Po (rr,n). Hence h induces an endomorphism h0 of the relative homotopy

group ττn(P{π,n)9 Po (ττ,n)). Since λ^ = j ~ ι k* , the above rectangle can be decom*

posed into the following two:

τrn(P(π,n),P0(π,n)) <_ 77n

77
k,

*n(Pfan) fP0(77;n)) <- ττn(P(π,n)) .

The commutativity of the left rectangle, k*h = h^k*, is a direct consequence of

the definitions of k* and h . The commutativity of the right rectangle,Λo;* = /*/ί*,

is a property of the induced homomorphisms of the homotopy sequence. Since /* is
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an isomorphism onto, we have j ^ ~ ι h0 = h* j ~ ι . Hence we obtain

h*\n = h*j+ k * = j * ~ hok* — jΓ k*h — λπ/i .

This completes the proof.

(5.8) COROLLARY. // we identify the groups 77 and τrn{P(π,n)) by means of

the isomorphism λn, then the endomorphisms h and h* coincide.

6. Existence of the space B. Throughout the present section and the following

one, let

7T 2,

be a given sequence of groups, where 771 is a (multiplicative) group and πn {n > 1)

is an (additive) abelian group admitting πι as a given group of left operators; that

is, for every ξ £ ΊJX and every α C ^ , the element ξU, ζl Tfn is defined and

ξ(a + β) = ξd + ξβ, ξ(ηa) = (ξη)a, lα = ex.

For each integer n > 1, let Pn = P{τrn,n) denote the polytope associated with

the complex K(ττn,n). We shall use the following notations:

x = Pi, y = p2 x p3 x x pn x .

Both X and Y are arcwise connected Hausdorff spaces. Let θn : Y —> Pn (^ = 2,

3, ) denote the projection of Y onto the factor space Pn . The following proper-

ties of the space Y are immediate consequences of results in a note due to J.ll.C.

W'hitehead, [ l 3 , p. 289] :

(6.1) Y is l-connected; that is, 771(}
/) = 0.

(6.2) ττn(Y) Z πn for every integer n > 2.

(6.3) The ίl hitehead products in Y are all trivial; that is, for any two elements

a C 77mW arι>d b £ πn(Y)9 w e have a ° b — 0.

Each element ξ C 771 determines, for every n — 2, 3, , an automorphism

ξn : 77Π ^ 77n

defined by ζn(b) — ζ:0. ζi τrn for any U £ ^w According to §5, ξn induces a

homeomorphism
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of Pn onto Pn . Define a homeomorphism

ξ*: Y—*Y UCrr,)

of Y onto itself by taking

(6.4) θnξ*{y)=ξi θn (y) (y € Y; n = 2, 3, ) .

The association ζ—* ζ clearly determines a homomorphism

p : 77χ —> Horn (Y)

of the discrete group ΉX into the discrete group Horn (Y) of all homeomorphisms of

Y onto itself. Let

0 = p(πi) C Horn 00 J

then G is a topological transformation group of Y and is isomorphic with the

quotient group of 77t over the kernel of the homomorphism p.

Remembering the isomorphism λ t : πx ~ πχ (X) defined by (5.5), we shall call

the characteristic homomorphism.

Now let us consider the universal covering space X of X. It is well known that

X is a bundle space over X with discrete fiber ΊΊX and structural group ΊTX . Then

the characteristic homomorphism X induces a weakly associated bundle space B

over X with Y as fiber and G as structural group [7] . The bundle space B is

uniquely determined up to an equivalence in the sense of fiber bundles. In the

following sections, we shall give an explicit construction of the bundle space B.

7. Barycentric subdivisions of semi-simplicial polytopes Let K be a given

semi-simplicial complex and P(K) its associated polytope. We are going to define

baryeentric subdivisions of P(K).

For each simplex σ £ K, let us denote by s'σ the barycentric first derived

[6, p. 3] of the ordered geometric simplex sσ associated with σ.

Since the characteristic map
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reduces to the identity map if it is restricted within the interior wσ of sσ, μσ

induces a simplicial subdivision of wσ into μ^(Int s'σ), named the barycentric

first derived w'σ of wσ, which is a finite set of open geometric simplexes. If we

replace each open cell wσ of P(K) by its barycentric first derived w'σ, we obtain

a subdivision of P(K), called the first barycentric subdivision P' (K) of P(K).

More generally, let us denote by s ^ ) the barycentric n-th derived [6, p. 3] of

sσ. Then the characteristic map μσ induces a simplicial subdivision of wσ into

μ σ(\nt s^), called the barycentric n-th derived w^ of wσ. If we replace each

open cell wσ by its barycentric τι-th derived w^\ we obtain the n-th barycentric

subdivision P^n\K) of P(K). It is clear that the characteristic map μσ carries

each open simplex of s^ barycentrically onto some open simplex of P^KK).

Let v be an arbitrary vertex (that is, an open 0-simplex) of P^n\K)9 where

n > 1. The star of v, denoted by St(t>), is defined to be the union of all open

simplexes ζ of P^n\K) such that Clef contains v. The following assertion can

easily be proved.

(7.1) The star of each vertex of P^n\K) (n > 1) is contractible {in itself) to

a point.

By a simplicial polytope P, we understand the union of a collection of closed

geometric simplexes {SQJ, where the index CC runs over a certain abstract set A,

such that (i) every face of an arbitrary simplex s α of the collection belongs to

the collection and (ii) the intersection s α Π Sβ of any two simplexes of the col-

lection is either vacuous or a face on both of them, with the topology defined as

follows: A set M C P is said to be open if and only if, for each closed geometric

simplex sa of the collection, M Π sa is an open set s α in its euclidean topology.

Simplicial polytopes are called topological polyhedra by J. H. C. Whitehead [9,

p. 316] . The following assertion can easily be proved.

(7.2) For each n > 2, P^n\K) is a simplicial polytope.

8 Explicit construction of the bundle. Let us return to the notations of §6.

The vertices of the first barycentric subdivision of X are barycenters {xσ\ of the

open cells \wσ\ of X, where σ runs over all simplexes of the semi-simplicial

complex K — K{τfi, 1). In particular, we shall denote by x0 the vertex which corre-

sponds to the unique 0-simplex of K Hence x0 is the basic point of the funda-

mental group ττ1 (X) of X. Let Vσ denote the star of the vertex xσ in the first

barycentric subdivision X. Then we obtain an open covering Ω = \Vσ\ of X,
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indexed by σ £ K According to (7.1), each member Vσ of the covering Ω is con-

tractible (in itself) to the point xσ.

For each σ £ K, let sσ = < v0, , vq > be the associated geometric

simplex. Denote by cσ : / —> s^ the unique linear map such that c σ (0) = ι;0 and

c σ ( l ) — xσ. Define a path

joining x0 to Λ;̂  by taking Cσ — μ-σcσ, where μσ : sσ —^Clw^ is the charac-

teristic map.

Let σ and τ be any two simplexes of K such that Vσ Π Vr is nonvoid. Take a

point x ζiVσΓ\ Vr Choose a path D : /—>Vσ joining xσ to x and a path E : /—>Vτ

joining xr to x. Then the closed path CTE D~~ι CJ"1 represents an element ξτσ of

77f UO which clearly does not depend on the choice of the point x and the paths D

and E. Let σ, r, θ be any three simplexes of K such that Vσ f] Vr Π F# is nonvoid;

then it is easy to see that ξθτζτσ~ ζθσ*

grσ = X(<ίτσ) C G .

Then, as constant maps on F^ Π F τ into G, the collection {g r σ j together with the

covering Ω — \Vσ\ form1 a system of coordinate transformations in X with values

inG [7, § 3 . 1 ] .

The construction of N.E.Steenrod [7, §3.2] gives a fiber bundle (with co-

ordinate system)

F= {B,X,p,Y,G, Vσ,φσ]

with base space X, fiber Y, group G> and the coordinate transformations ( g τ σ s

To clarify the precise situation, we shall briefly describe the entities of F as

follows.

Let us regard the indexing complex K as a topological space with the discrete

topology; that is to say, every simplex o~ of K is considered as a point which is

an open set of K. Let T be the subset of X X Y X K consisting of these triples

(x9 y, cr) such that x C Vσ Define in T an equivalence relation:

(x,y,cr) - (χ\ y\ T) if X = x\ grσ * J = ϊ''

x The author has the advantage of reading the book [7] in manuscript. The system
{g τ σ } oί coordinate transformations constructed here is essentially a particular case of
that constructed by N.E.Steenrod [7, Sec. 13.β] . The sketch given here is to clarify the
precise situation.
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Define the bundle space B to be the totality of these equivalence classes in T,

Let

ω: T—>b

assign to each (x9 y, σ) its equivalence class [x,y,cr]. Give B the identification

topology determined by ω; namely, a set (J in B is called open if ω""ι{U) is an

open set of T. Then B is a llausdorff space and ω a continuous open map. The

projection

p : B-^X

is defined by p( [x,y,σ] ) — x. The coordinate functions

φσ: Vσ xy-^p-1^) (crCK)

are defined by φσ(x,y) = [x9y9cr\ for each x C Vσ and y £ } with σ- running

over X.

Let y 0 denote the point of Y such that θn(y0) is the unique vertex of Pn for

each n — 2,3, . Denote by 0 the unique 0-simplex of K and call b0 — lxo,yo,Q]

C B. Then we have p(bQ) = %0 and ^o(%o>7o) = ^o ^ e s n a H understand that

^0*70* ^o a r e respectively the basic points of the various homotopy groups of the

spaces X, Y, B studied in the next section.

9 The homotopy groups of the bundle space B. In the present section, we

shall study in details the homotopy groups of the bundle space B, constructed in

the foregoing section, and their mutual operations. The realizability theorem,

stated in the introduction, follows as an immediate consequence of these investi-

gations.

First of all, let us recall the (exact) homotopy sequence [7, §17.3] ,

of the fiber bundle F — \B9X9p9 Y9G9 Vσ9 φσ}9 with xθ9yθ9 b0 as the basic points

of the homotopy groups of the spaces X, Y, B9 respectively. Here, the homomor-

phisms pn {n > 1) are those induced by the projection p : B —> X9 and i% (n > 1)

those induced by the map i: Y —> B defined by

(9.D i(y) =Φo(*o,yo) = [*o,yo,o] (yCY).
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If we identify } with p~ι(xQ), then ί is the injection of p~~ (xQ) into B.

THEOREM 3. For each integer n > 1, there is a natural isomorphism hn : τrn{B)

~ πn of rrn(B) onto ττn .

Proof. First, let us prove that p* is an isomorphism onto. By means of the

arcwise connectedness of the fiber p~ι{%0), it can be shown by a standard argument

that p* maps ττx(B) onto τrx(X). According to (6.1), we have τrx(Y) — 0. An appli-

cation of the exactness of the homotopy sequence gives that the kernel of p* is

i*{ττx(Y)) — 0. Hence p* is an isomorphism onto. We define

(9.2) hx = λVpί : πx(E) Zπx ,

where \ ί : Ήι X TT^X) is the isomorphism defined by (5.5) for n — 1.

Next let n > 2. Since X — Pl9 we have

τrn + 1 ( J θ =0 = ττn{X).

Then it follows from the exactness of the homotopy sequence that i^ is an isomor-

phism onto. The projection θn : Y —> Pn induces an isomorphism onto:

θ*n: vn{Y) Zπn(Pn).

vVe define

(9.3) hn = λ^θ'i*-1 : πn(h) % ττn (n > 2 ) ,

where λ.n: Ήn X ^n^n) ι s the isomorphism defined by (5.5). This completes the

proof of the theorem.

According to S.Eilenberg [ l ] , the fundamental group π^B) operates on the

left of τίn(B) for each n > 2. Let w C ττx(B) and a C ττn(B) be arbitrarily given

elements. Choose a path C : / —> B with C(0) = b0 — C(l) which represents w,

and a map / : ln —> B with f(dln) — b0 which represents a, where / denotes the

closed unit interval of real numbers and ln the closed unit rz-cube of the euclidean

Ti-space with "bln denoting its boundary. Let ft: ln —> B (0 < t < 1) be any ho-

motopy such that /i — / and ft (dln) = C (t) for all 0 < t < 1; then the element

wa C ττn(B) is represented by the map f0. We remind that πx operates on the left

τfn for each n > 2.

THEOREM 4. For arbitrary elements w C ττx(B) and a £ τrn(B) {n > 2) we

have
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hn(wa) = hι(w)hn(a).

Proof. Choose a path C: / —>X with C(0) = # 0 = C(l) which represents the

element p*(w) of the fundamental group π^X). Denote by Yo the fiber over χo; that

is, Yo = p - I (^o) = 2 (Y) Let /: }7

0 —> Y denote the inverse of i. According to

N.E.Steenrod [7, §3.1] , there is a homotopy Ht ' Yo —* B (0 < t < 1) such that

Hi is the identity and pHt(Yo) = C(t) for each 0 < t < 1. More precisely, we choose

Ht to be a translation of Yo along C""1 into itself [7, §13.1 ] . Call

ξ = /li(w) = λ ^ p i M C 77-1 .

It follows from Steenrod's proof in his construction [7, §13.8] of the system

XgrσS °f the coordinate transformations of the fiber bundle F that the homeomor-

phism

φ=jHoi : Y-^Y

is in G, and

Φ = AP*iM =phi(w) =p{ξ) =ξ\

where p : ττi —> Horn (Y) is the homomorphism which maps ξ into ξ^ defined by

(7.4). Hence //0 is the homeomorphism iζ j of Yo onto itself and maps b0 into

itself. Define a path C: /—» B by taking C (t) — Ht(b0) for each t C /. Since

p C — C, and pj is an isomorphism, C represents the element w of TT^B).

Choose a map g: In—>Y with g(^In) = y 0 which represents the element i^~ι(a)

of 77^(Y).Then the map f— ig: In—^β is a representative of the element a £ τrn(B)

and maps In into Yo. Define a homotopy / t : /Λ —> β (0 < t < 1) by taking /$ = //j/

for each 0 < t < 1. Then we have /\ = / and /ίO/Λ) = C(ί) for every 0 < t < 1.

Hence, by definition, the map f0 = ^ 0 / = i^^g represents the element w α ξ^ττn{B).

It follows that ^ g is a representative of the element i^~"ι(wa) of πn{Y).

The homeomorphism ^ Λ : Pn —> PΛ induces an automorphism

£* : ττn{Pn) ~πn(Pn).

By (7.4), we have θnξ*& = ξξθng. Hence

According to Theorem 2, we have λ"^1^ = ^λ"^1. So we deduce that

hn{wa) = kϊ θX"1 (»a) = λ"1 ^ ^ C - H α )
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= £Xrn

1θUn-1(.a) = ξhn(a)=hί(w)hn(a).

This completes the proof.

For arbitrarily given elements a G 77m(δ) and b G Tfn{B) (m > 2,n > 2), let

us choose representative maps f:Im—>B and g : In—»δ with fCdIm) — b0 —

3/ π ) . Since Γ+n = / m X /", we have

(9.4) 3 l m + π = (Tm X 3 I n ) U Cdlm X T ' ) .

The Whitehead product [lO, p.41l] of the elements a and b is an element a ° b of

τrm+n-ι(β) determined by the map h: 3/m n — * B which is defined as follows:

, , f(χ) (*£im, yGBJ"),
(9.5) h{x,y) =

THEOREM 5. For arbitrary elements a C ηlm^^ an^ b C ^ ( S ) (m > 2, n > 2),

α ° 6 — 0.

Let α = i ^ ί α ) G ττm(Y) and /J = i^""ι(W G T7^(y). Then we have

ϊ^+π-ι((Λ ° β) — a ° b. Hence Theorem 5 is an immediate consequence of (6.3).

According to Theorems 3-5, our bundle space B constructed in §8 satisfies all

the conditions in the Realizability Theorem stated in the introduction. This com-

pletes the proof of the Realizability Theorem.

10. An application. Take an even sphere S2r and let

πn =ττn(S2r) (n = 1,2, •••)•

The foregoing construction gives an arcwise connected topological space δ with

rrn(B) ~πn(S2r) (n = 1,2, •••)•

Since 77!(δ) — 0 — 771(52Γ), the operations of the fundamental groups on the higher

homotopy groups are all trivial for both δ and S2 Γ. However, the Whitehead products

of the higher homotopy groups are essentially different for the spaces δ and S2 Γ.

in fact, if e is a generator of the group ττ2r(S2r), then the Whitehead product e °e

is nonzero because it has Hopf invariant ± 2 [8, p. 205] but all the Whitehead

products for the space B are zero. This proves that the Whitehead products of a

topological space are essential invariants of the space and that they are not de-

termined by the homotopy groups together with the operations of the fundamental
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group upon the higher homotopy groups.
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ERRATA, VOLUME I

Richard Bellman and Theodore Harris, Recurrence times for the Ehrenfest model,

p. 188, formula (21): read φ^iσ/{\ - λ)] for c ^ V / Q - λ) (twice),

p. 191, line 9 from bottom of page: read ''macroscopic >} for "microscopic."

Λ. karush, An iterative method for finding characteristic vectors of a symmetric

matrix,

p. 240, formula (9): read s < rι (i = 0,1, 2, ).

ACKNOWLEDGMENT

The editors gratefully acknowledge the services of the following persons not

members of the Editorial Staff who have been consulted concerning the preparation

of the first volume of this Journal:

R.P.Agnew, S.Agmon, R. Arens, R. Baer, G. Birkhoff, R. P. Boas, R.H. Brack,

H.V.Craig, C.Davis, R. P. Dilworth, N.Dunford, H. P.Edmundson, S.Eilenberg,

A.Erdelyi, J.W. Green, R.M.Hayes, G. Hedlund, A.E.Heins, M.R. Hestenes,

J. D. Hill, V.Hlavaty, R.D.James, M. Kac, I. Kaplansky, D.H.Lehmer, J.Lehner,

H.Lewy, G.Lorentz, C. C. MacDuffee, G.W.Mackey, E.J.McShane, H.B.Mann,

E. J. Mickle, D. Montgomery, C. B. Morrey, A. P. Morse, I. Niven, L. J. Paige,

W.T.Puckett, W.T.Reid, M.S.Robertson, J. B.Rosser, H.Samelson, I.E.Segal,

A. Seidenberg, P. A. Smith, I. S. Sokolnikoff, R. H. Sorgenfrey, J.D.Swift, Q.Sza'sz,

0. Taussky, A. E. Taylor, A. W. Tucker, S. E. Warschawski, W. R. Wasow, G. W.

Whitehead, A. L. Whiteman, F. Wolf, J. W.T. Youngs, A. Zygniund.






