A THIRD ORDER IRREGULAR BOUNDARY VALUE PROBLEM AND
THE ASSOCIATED SERIES

GEORGE SEIFERT

1. Introduction. Certain problems in aeroelastic wing theory [1] give rise
to a third order irregular boundary value problem of the form given in equation
(1) below. Questions have been raised [1] as to conditions under which functions
have an expansion in terms of the associated characteristic functions. It is
shown in this paper that the general approach by L. E. Ward [2] in dealing with
a somewhat more specialized problem can be suitably modified to provide an
answer to these questions.

We are concerned with the differential boundary value problem
(1) L(u(x), A) = u™ (x) + p(x)u”(x) + (g(x) + Nu(x) = 0,
u(0) =u” (0)=u" (1) =0,

where p(x) = xx,bl(xs), g(x) = ¥, (x3), and x/zl(z) and ¥, (z) are real for
real z and analytic on |z| < 1. We seek conditions on f(x) such that it be
expansible in terms of the characteristic functions of (1) and its adjoint.

We shall first need a number of definitions and lemmas. Define:

i) 55(2) = e’ = 06" — 0y e,
8,(2) = - 83(¢),
5,(t) = = 85(¢),
where @; = = 1, w, = €73, o, = ¢ /3,
ii) Az, t,p) = p7t 83lp(x—2)] r(2) = 8, [p(x—2)1p(e)

where r(¢) = q(t) -~ p’(t), and the complex number p satisfies
p> =X, |argp| < 7/3;
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iii) the regions S; and S, of the p-plane by 0 < arg p < #/3 and - #/3 <
arg p < 0, respectively.
We shall be concerned with the integral equation

1
(2)  uln &p) = B lpla= 1= — L7 Alx b p)uls &, p)d.
0
2. Lemmas. We shall use the following results.

LEMMA 1. Equation (2) has for fixed p a unique solution analytic in x and

in £ on |x| <1 and | &| < 1, respectively, where x and ¢ are complex vari-
ables.!

Proof. For fixed p, define
filz, &) = 83[p(x - )],
1 x
fij(o & =~ == [T Alx b p)fjy (1 ).

Then

lfl(x7 f)l <M,

1 x x
|falx, &)] = "Ep-‘é A(x,t, p) f1(2, E)de| < MN ff |de| = MN|x~ ¢

Hence, by induction,

MNI™H %= £
(j-1)!

l.{](x"f)l< (j=293s4y°");

consequently,
Z f](x’ f) = w(x) é‘)’
=t

where w(x, £) is analytic in x and in £in |x| < 1 and | €| < 1, respectively.
By direct substitution into (2), we see that w(x, £) is a solution.

To show uniqueness, consider

1The variables x and & will always be considered real, unless otherwise indicated,
as here; in this case, as in subsequent cases, integration between complex limits, as
in equation (2), may be taken along a straight line in the complex plane.
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z(x, f) = Ul(xv é_) - u2(xv f)v

where u,(x, &) and u,(x, &) are solutions of (2). Clearly z(x, £) must satisfy
the equation

1
z(x, &) = - 3 jg" Alx, t, &) z(t, &) dt;

and for real x and &, z(x, £) is easily seen to satisfy the system?
L(z(x, &), M) =0, 2(§ &) = 2°(§ &) = 27(& §) = 0.

Hence z(x, £) = 0 identically in x for any fixed &, for real x and &; this implies
z(x, &) = 0 identically for complex x and £ and completes the proof.

LEMMA 2. Forreal x and &, (2) is equivalent to the system
(23) L(u(x, ‘f); A) = Oy u’(§9 f) = u,(é-’ 5) = Oy u”(& é:) = 3p2-

Proof. Substitution in (2a) of u(x, & p) as given by (2) shows that the
unique solution of (2) is a solution of (2a). However, for fixed & and p, (2a)
also has a unique solution. Clearly, these unique solutions must coincide, and

our proof is complete.

LEMMA 3. Let u(x, &, p) be a solution of (2). Then?
a) ulx, & p) = e P E(x, £, p)
provided | p| is large enough p € Sy, x > &;
b) W(= way = wyéy p) = - wyulx, &, p);
c) u” (1,0, p) = p2 e U(p),
where |M(p)| > m > 0, provided

2n + 2

V3

p = metd (0 < 0 < a/3),

2Unless otherwise indicated, the prime will always denote differentiation with
respect to the first indicated variable.

3Functions of p and other variables which are bounded for | p| sufficiently large

will be denoted by E( ).
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for sufficiently large n.

Proof of a). As in Lemma 2 of [3], p. 211, it follows that for p € S,, we

have
u(z £, p) = P Loy =T P L g, 001,
where |z(x, &, p)| < M for | p| sufficiently large and x > £. Hence

u(x, £, p) = ew:,p(x"f) E(x, &, p).

Proof of b). Using (2), we have

u("wzxy - @261 P) = 83[—(1)2p(x—'f)]

1 ~wy X
- f 2 A= 0y, s, p) uls, = wé, p)ds
3p TTwf

=~ w35 [p(x=8)]

[O)) x
+— ‘I; A(- W2 %y, — w3 i, p) u(~wyt, = (‘)2‘5’ P)dt'

3p
But
A= oy = gty p) = - w—: 85 [p(x - )] r(t)
+ @8, [p(x~8)] (- w, p(2)) = = w3A(%, ¢, p).
Hence

u(- wzxs—wzé p) =-— C0333[9(95— &)1

1
-—fo(x, t P) u(- (‘)ztv"(‘u‘f’ p)dt.
3p ¢

Multiplying this last equation by — w,, we have

1
z(x9§’P)=83[P(x"§)]_3_‘/§‘ A(xytyp)z(ta f,P)dty
0
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where

2(%, £, p) = — wu(~ w2%, - 03, p).
But by the uniqueness of the solutions of (2), we have

- waul(=wy%,— w2 &, p) = u(x, &, p);

upon multiplication by ~ w3, this gives b).

Proof of c). We have, from (2),

w3 p
u”(1,0,p) = p2[8;(p) + Ey (p)]
=p2e™P 1+ glorTwsle ——EZ(p)
p

for p € S,. Let p = x + iy, and define ®(p) and r, by

_ 2(n+1
®(p) =1+ e(w2 @) P and r, = _) 7,

V3
respectively. With p = [3(r? - x2)]1'/2, we have
|®(p)| > |1+ e cos (V3 x)],
provided p =1, €% where 0 < 0 < n/3, and will show that

— 1 Tn
eP cos (\/3x)>—; for ?ﬁxs e

Since

cos (/3 x) >0 for rn—....ﬂ_.<x<rn,

2v3

it is clearly sufficient to show that

n T

1
e P cos (V3 x)>~— for — < x <7, -
v 2 2 - " ooy3

Accordingly, we note that for x in this interval, we have
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- — 1 1
eP |cos (V3 x)] < =< < —
p 2

-

P 211/2
Tnp —
23

for all n > N, provided N is sufficiently large. Taking N large enough we also

have
<= for p=ry€’ (0 <6< n/3).
p 4 -
Hence
Ey( E,(p) 1 1 1
D(p) + > | ®(p)]| - > — == —
P > |2(p)] 5 7 32

This completes the proof of the lemma.

By the formal series for f(x), we shall mean the series

Z aj uy (x) where aq = {l f(x) v (x)dx /l;l up (%) vp(x) dx,
k=1

in which u; (x) and vg (x) are respectively the characteristic functions of the

system (1) and its adjoint corresponding to the characteristic value Aj.

LEMMA 4. The sum of the first n terms of the formal series for f(x) is given
by

1 x
In(x)= -2—"7 ‘l}"n [‘/(; f(ff) u(x, f:P)df
u(x, 0, p)

! . deld
oy b O & ede|dp

[ oy - 22020 i)
= — 0(x) -~ ———— o ,
Qi Yn u”(1, 0, p) P

where o(x) = ./(;x fCE) ulx, & p)dE, and y, is the arc of the p-plane given by

2n + 2
V3

p = ref — n/3 <0< /3,
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the p integration proceeding in a counter-clockwise direction.

We omit the proof of this lemma, as its details almost duplicate the discus-
sion in [2], pp.424-426. We point out, however, that Lemma 2 is required in
this proof.

LEMMA 5. The function o(x) defined in the previous lemma satisfies the
equation

x 1
(3) o(x) = fo f(&) 83lp(x-£)1dE - re fo A(x, t, p) o(t)de;

furthermore, o(x) is its unique solution, is analytic on 0 < x < 1, and can be

put into the form
o(x) = u(x,0,p) ¥(p) + ¥, (%, p),
where

3 Ei(x, p)
‘Pg(xv P) = f(x) + . ’ El”(x, P) = P2 E2 (x’ P)a
P p?

provided f(x) = x* ¢ (x3), where ¢(z) is analytic on |z| < 1.

Proof. Using (2) in the expression for o(x), we obtain

o(x)

L7 1) 85 [p(x-6)1dE

1

L1 L7 Azt p)uls, &, p)didé
3p 0 3

x 1 x
S 53[p(x—§)]d§—£‘£ Az, t, p) a(t)ds

on changing the order of integration in the second integral. Uniqueness of the
solution o(x) can be shown in the usual manner. (See the proof of Lemma 1.)
We next substitute u(x, 0, p) ¥, (p) + ¥, (%, p) into (3) for o(x), and obtain

u(z, 0, p) ¥y (p) + Yo(x, p) = [ f(£) 8 [p(x- &)1d¢

¥, (p)
3p

1
fx A(x, t’P) u(t,O,p)dt "—fx A(x, t’P) ‘I‘z(t,p)dt,
() 3p Y0
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Using (2) with £ = 0, and subtracting the term u(x, 0, p) ¥, (p) from both sides,
we obtain

(4) Wz p) = [T () 8 1p(x~O]dE - ¥i(p) 8 (px)

9 ’ .

On integrating by parts twice, we obtain

fox (&) 85 [p(x—&)1dE = 3f(x)

+ 072 [T 178 8ylp(x-)1d¢

3f(x)
p

+ 072 85 (px) [T [ ()P dE + Ly [7(£) Pt de,

where y is a complex number to be determined later, and
0, F(t)de=e“1P* jy" F(t)dt - w,e®2P” fy""”‘ F(t)dt

— e P* fy—‘"sx F(t)ds.

It is in this step that we use the form of f(x) as stated in the hypothesis of
this lemma; for the details, see [2], pp. 428-429.
We also have

x ]- X
L7 MGty 0) Walh )t = = f7 55 Lo (x = 0)1r(0) Wl p) e

+ 7 8, Lo(x = )1p(e) Wals, p)de

83 (px)

foy r(t)ePt Wy(e, pYde + £y r(e)eP? W,(t, p)dt

+ 83 (px) jo" p(t)ePt W,(t, p)det + Ly p(t)ePt W,(t, p)de
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= 83(px) foy R(t)eP* Wy(t, p)dt + L3R (1) et Wy(t, p)dt,

where R(t)=r(t)/p +p(t), and where we have made use of the properties
of p(¢) and r(t), and the fact that, from the form of ¥,(¢, p) in terms of u(x,
0, p) and Lemma 3, part b, we have

¥o(= w3t p) = = w5 ¥,(2, p).

Putting these results into equation (4), we obtain

3f(x)
P

1
¥(z, p) = + 8(px) [Wi(p) = — [7 [7(£)ert dg

p

1
Y pt
+ —3p ‘/; R(t)eP* ¥,(t, p)dt

1 1
+ — Ly f7(t)ePt dt — — L4 R(t)eP W,(t, p)dt.
p? %

This equation will certainly be satisfied if

(5)  Wyxp)= L L ryertar s 3i Oy R(2)ePt W, (¢, p)dt
p? p

and

1 1
¥,(p) = p—2 f f7(&)ePs de - = joy R(t)eP® W,(t, p)dt.

The proof of the existence of a unique solution ¥,(x, p) of (5) will follow
along the lines of the corresponding proof in [2], provided we can show that
an expression of the form |3 F(t)ef! dt| is bounded for complex p and 0 <
x < 1 whenever | F(z)|is on |z| < 1 and we take y = — ™! ™8 £ For we have

|£5 F(e)e! de| < || [T |F(0)] |e”] |de]

+ | e“2P%) fy—wzx |F ()| |er?| \dtl+|€%px“/;_w3x | F(e)] |ePt| |de]
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< w1 f5 et | de]
|5 [T e i) 6] [T ] el
where |F(z)| < p on |z| < 1; and since each integrand in this last ex-
pression assumes its maximum at its upper limit, we have
| L3 F(t)elt dt]| < 6p.
We omit the rest of this existence proof. (See [2], pp.429-430.)

For the asymptotic form of ¥, (x, p), we substitute

3f(x)
P

+ v(x, p)

\P2(x9 P) =

into (5). We obtain

0(5 p) = — Ly f7(2)eP di

(6)
p2

_1 £, R(e)el? [3](“) + v(t,p)} dt.
P

For fixed p let m= max |v(x, p)|; then
0<x<1

m < — Ly L7 () + RCOF()1et de] + 3‘1 - 1L R0 (s, )t
p

p 2
L} My 1 m
+ 5.. + =,
lel2 ol = lelz2 2
provided |8| > 2p,, where | £5 R(¢)ePtdt]| < p,+ Hence for such p we have

m < 2p,/|p|2, and it follows that v(x, p) = p~2 E (%, p).
It remains to show that v (x, p) = E, (x, p). Differentiating (6), we have

IA

1
@ ) - = (e, [f”(t) RO + = Byl o) e )
0

E3(x9 P)
—_—
p2
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where

L,F(t)de = 17" jy"F(c)dz_w3e‘°2P" j;wsz(t)dt

- @, fy"%" F(t)de,

and we have used the fact that

3f(=wyx)
1B, (e 0 )] _)

p

p? (‘I‘z (~ wz%, p) -

3f(x
= ‘Pzws(‘yz(x,l’)— f: ))’=lEl(xrp)l’

We can also show, as before in the case of the {3 operator, that if | F(z)| <_u
on|z| < 1, then | £, F(t)ePt dt| < m,.
Differentiating (7), we obtain

Ey(%, p)
v (%, p) = £y |f7(8) + R(Ef(2) + 3i Ey (s, ,,>] ot dy 4 —2 P
p p

where

L, F(t)ds = e1P” jy" F(t)ds + e*** jy""z" F(¢)dt

+ 3% [T F(4)ds,
Y
and we have used the fact that | E{ (- w,x, p)| = | E{ (x, p)| and that

E{(x,p)| = [p2v"(%, p)| < [p| M

for [ p| sufficiently large.
Hence v’ (%, p)=E, (%, p) since again |F(z)| < p for |z| < 1 implies
| £, F(t)ePt dt] < my, and the proof of the lemma is complete.

3. Theorem. We proceed now to the proof of the following theorem.

THEOREM. If f(x)=x2¢(x3), where ¢(z) is analytic on |z| < 1, the
formal series for f(x) converges uniformly to f(x)on 0 < x < 1.
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Proof. Since, for real x and &, u(x, &, p) is real for real p, by the principle
of reflection we have u(x, & p*)=[u(x, & p)1*. This implies that the inte-
grand in the expression for I,(x) given in Lemma 4 takes on values for p on
Yy =¥, nS; which are the complex conjugates of those it takes on for p on
Yy =7y, nS;. It suffices, then, to consider only the p integration over y,. De-
noting the result by I (x), we have, by Lemmas 4 and 5,

+

1
L(x)= — [, {|lu(x,0,p) ¥ (p) +
2ni Yn p

p2
u(x, 0, p) 3f" (%)
—,-,—,p—- u”(1, 0, p) ¥;(p) + L— + E (%, p)|{ dp;
u”(1, 0, p) P
and since, by Lemma 3, parts a) and c), we have
u;(x’ o, P) < M
u'(lyosp) - Ipi2
for p on y, and n sufficiently large, we obtain
1 3f(x) E(x,p) (=)
Ihz)=— [, 1=, P dp=f + €n(x),
27 Y, p p2 2

where

lim €;(x) =0
n—oo
uniformly in x. This proves the theorem.
At the expense of brevity, this theorem clearly could be generalized to prob-
lems involving somewhat more complicated boundary conditions and somewhat

weaker analyticity conditions on f(x), p(x), and g(x); in connection with the
latter contention, see [2].
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