
ON CERTAIN METRIC EXTENSORS

HOMER V. CRAIG AND B. B. TOWNSEND

1. Introduction. A straight line-segment (the basis of the fundamental entity

of classical vector analysis) is perhaps the simplest nontrivial example of a

continuous flat space. Furthermore, it seems that, from an elementary point of

view, a higher space should be regarded as completely βat only if it is composed

of these elementary flat spaces (strokes) in such a way that the vector Δp join-

ing any two points of the higher space lies entirely in that space. A criterion of

similar spirit is the requirement that no such Δp have a component normal to the

space. Since we prefer to regard a plane patch with a concavity in the boundary

curve as being "completely flat", we adopt (for heuristic purposes) the second

test. Either view leads quite naturally to the investigation of certain immersed

spaces RN from the standpoint of the various derivatives of the radius vector p

since these local quantities determine Δ p . With regard to the space Rjy, we as-

sume that it is a Riemannian space defined vectorially by means of the equation

with p the radius-vector from an origin in an enveloping classical vector-space

to a generic point of R^. The function p (x) is assumed to be such that Δp can

be determined by a Taylor's expansion. Obviously, the term completely βat as

used here is applicable to straight lines and planes but not to certain intrinsi-

cally βat spaces ( i . e . , flat in the sense that the Riemann-Christoffel tensor

vanishes), such as curved lines and cylinders. The basic datum here is the

Euclidean vector-space with it directed strokes which can be used to test lines

and other immersed spaces for complete flatness.

Since Δp is determined by the various derivatives of p at the point of issue

of Δp, it is obvious that complete βatness or deviation therefrom will show up

in the derivatives of p. These vector derivatives may have components normal

to RN and hence, in this case, do not belong to RJSJ in a strong sense. How-

ever, by forming certain dot products, they can be converted to scalar functions

which may more appropriately by assigned to the immersed space. Among these
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products are extensors which contain such important quantities as the metric

tensor and the Christoffel symbols and therefore seem worthy of study. Accord-

ingly, we have taken as the primary purpose of this paper the investigation of

the geometrical, algebraic, and differential properties of certain extensors which

are immediately derivable from the derivatives of p.

In developing these extensors, we shall not restrict our attention entirely to

curves and a single parameter, but instead consider two-dimensional spreads

involving two parameters. Kawaguchi has already introduced a highly satis-

factory theory of extensors based on several parameters [ 8 ] . However, to secure

more unity in the present paper, we shall deviate from Kawaguchi's notation and

designate partial derivatives of certain base letters by means of"matrix primes".

A description of this notation and a brief account of the theory of matrix exten-

sors sufficient for applications in this paper will be presented in the next two

sections.

2. Notation. The symbolism to be employed in the present paper is essen-

tially that used in preceding works on the subject (see [9] and [ 1-6]), except

that Greek indices will be used both to denote integers, 0 to M9 as before, and

to denote matrices. To illustrate, if the coordinate variables xa are made func-

tions of a single parameter ί, the usual case, then as before ΛΓ and % α ^wi l l

be used interchangeably to denote daxa/dta, while XpJa and Xaa

r will represent

dx{p)r/dx{a)a and dx{a)a/dx{p)r

9 respectively-indices α, b, c, •• at the first

of the alphabet indicate coordinate system x, while r, s, t, are to be corre-

lated to system ~x. However, if the xa are functions of two parameters u and v,

and α represents the matrix (2, 3), for example, then x^a'a and xa^a' will each

stand for d5 xa/d2 ud3 v. Here the first element 2 in the matrix prime (2, 3) in-

dicates the order of differentiation with respect to the first parameter, etc. Simi-

larly, if α and p have the matrix values (0Cp (λ2) and (pv p 2 ) , respectively,

then X\al^ is to be interpreted as the partial derivative of x^a with respect to

%'^'Γas before, except that x^a'a now represents the result of differentiating xa

partially aι times with respect to the first parameter u and(X2 times with respect

to v, while x^p'Γ is to be interpreted similarly. Evidently,

Λa)a(β) _ Λa + β)a

with the symbol + indicating matrix addition. Summations, on repeated lower case

Greek indices, unless the contrary is indicated, will be from zero to M in the

case of one parameter, and over the set of matrices (0Lt, (λ2) with (λχ ranging

from 0 to Uγ and α 2 from 0 to M2 In addition, *'matrix binomial coefficients"

( β), <λ = ( d p α 2 ) , ,8 = ( 8 p β 2 ) , will be used to denote the product of the
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binomial coefficients obtained from columns in the symbol ( o ), i. e., by defini-

tion,

( a ) _ ( α i \ ( a 2 \

3. Matrix extensors. The foundation for the theory of matrix extensors is of

course the transformation equation which relates the components in one system

{x) to those in another system (%). This equation, which is exemplified by the

relationship

(3.1) Ίfh = TPr Xaa Xσ*
βo σs pr βb*

is formally equivalent to that of tensor and extensor analysis. The essential

points of difference are that the Greek indices now represent matrices, and the

coordinate variables have been made functions of two or more parameters *.

To obtain a simple example of a matrix extensor, let the coordinate variables

xa be made functions of the parameters u and v, and let / be a function of the

χ\
a)a

9 with β Γ u n n i n £r through the set of matrices (ow l, ύ.2) for which (λί and U2

have ranges 0 to M ι and 0 to /!/2, respectively. If we denote by / the function of

the ΛF'S obtained by replacing each of the variables x^a'a in / by its value in

terms of the barred coordinates as determined by the coordinate transformations

xa = xa{Έ), xr = xr{x)9

and take / as the x mate of /, then we have an instance of an absolute invariant,

and may write f — f. Differentiating the left member directly with respect to x^a'a

and the right member through the x^p'Γ as intermediate variables, we obtain

(3.2) / = f Xpτ .

Hence, as in the one-parameter case, /. is an extensor.

A successive application of the matrix differentiators (Ml9 0) and (0, M2 ) to

a product of two functions Fand G with application of the Leibnitz rule of differ-

entiation gives

0,M 2 ) * M1 ( α p O ) r(Mι-aι,o) ( θ , M 2 )

Λ yl Mt (M2 ϋ

α 2 = 0 α-j = 0

An incomplete study of matrix extensors by H. V. Craig and a subsequent check by
J. C. Evans has shown that most of the properties of the one-parameter extensors carry
over without formal change to the multiple-parameter case.



28 HOMER V. CRAIG AND B. B. TOWNSEND

M

(3.3) (FG){M) = £ (Λ

α

7

a = o

and the form of the Leibnitz rule for the differentiation of a product is the same

as in the one-parameter case.

Similarly, the commutation-reduction formula,

(M\ F (M-A) A , v
K ] t Λ = U = {U ^ )

may be established by following the procedure used in the one-parameter case.

See [ 1, p. 457 and 3? p. 215] . Consequently, we have

( 3 . 5 ) X™ = ( $ ) X?A-p), A = α = ( G γ α 2 ) , P = P = ( P ι , p 2 ) .

It now becomes immediately obvious that if F α is a contravariant tensor then

ya\a) | s a matrix extensor, for

(3 .6) ]/a(a) = ( j/r j^σj(α) y> ^ α ^ j^r(p) χa(a-p) = j/r(/?) ^ α o #

4. The fundamental metric extensors. Given the Riemannian space RN intro-

duced in the first section, there are at Least three methods for generating exten-

sors having the property that they contain among their components the funda-

mental metric tensor and the associated two-index components of connection,

[ a , c ] ( = [ a b , c ] x b ' ) a n d { « J ( = { « , } x b ' ) ,

quantities which are derivable from the radius vector p. Because of the obvious

and well-known metrical properties of the g's, and the fact that the Christoffel

symbols are involved in the equations for geodesies and the equipollent dis-

placement of vectors, matters having direct metrical implications, it seems ap-

propriate to refer to these extensors collectively as metric extensors. The com-

ponents of two of these extensors are of the nature of higher order components

of connection; and we shall distinguish between them, for reasons which will be

presented later, by referring to them as the direct and alternating components of

connection.

The direct connection extensor g . As a preliminary to the development of

the direct extensor g , let us note that the part of Δp which belongs to the com-
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pletely flat tangent space TN is given by the invariant expression

Δ P P Pb \Pb =

 Ί 6 ' P = S Pa '

\ dx I

and that Λp may be written in the form

Δ~p = \~p ~p p £ + ϊ ,

in which y is normal to T. in the sense that
Λ

t . r = v .-p c = o.
To establish this last relationship, it suffices to multiply the preceding equation

by ~nC', and note that j!>C ~ΐ)L = δf. See [ 3? P 202-203]. In order for our space to

be completely flat in the sense of the foregoing definition, it is necessary and

sufficient that v = 0 for all Δp's, which means of course that the quantities

Λp p constitute a complete set of components for Λp. Expanding Λp in a power

series, and noting that

/ ->->(A/) \
->(M + l) MM) Λa+l)a {MM) _ P 1
p = p . -v , i p . — i

we see that, whether R^ is flat or not,

(4.1) M$-t= f P^
M = o v

Hence if we adopt:

D E F I N I T I O N 4.1. gb

n = p ! M ) p 6 ,

then we may assert :

THEOREM 4.1. IfP and Q are any two points of R^, Δp their joining vector,

and C is any analytic parameterized arc joining P and Q, then

oo t M + l

., a a (M + 1 ) !
M = 0

That is, the quantities g , which obviously are extensors have the property

that they determine (through contraction with the extensor x'^a'a) the coeffi-

cients in the fundamental power series (4.2). Thus they obviously play a basic
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role in the determination b) means of curves in the imbedded space /{..(intrinsic

determination) of the part of Λp that belongs to R^ in the sense of belong-

ing to the tangent space 7 . As noted previously (see [ 3> pp. 279-281 ]), the

gaa contain the Kronecker delta δ^ and the two-index Christoffel symbols { a \.

Furthermore, the result of contracting g^a with Va^a' for M = 1 is / V — the in-

trinsic derivative of V . In general, if σ denotes Va p , the vector with scalar

components Va, then our contraction j / α ' α ' g^ equals ^M' . p , which we recog-

nize as the scalar components of the part of σ which belongs to T „. Thus we

see again that the extensor g Q is involved in the intrinsic geometry of /? γ , and

that, since, for M — 1, / V = ^σ p , there is justification in regarding

ya{a) ^^ a g a ^ ^ j of higher order intrinsic derivative. Since derivatives of σ

may not belong to T^,, it is perhaps more appropriate to think of higher order

derivatives ~σ ' as being computed (see [7, p. 573]) directly from the values of

σ at a set of points converging to the given point instead of by a process of suc-

cessive differentiation.

The alternating connection extensor L . From the viewpoint of the envelop-

ing space, intrinsic differentiation in the usual sense is a process which applied

to the scalar components of a vector a (directed stroke) in TN yields the scalar

components of the part of σ ' which belongs to TN The strict iteration of this

process consists in computing the components of the part of the derived vector

which belongs to TN after each differentiation. Thus the steps in the iterated

process are as follows: given Va construct σ,

σ = V p a ,

differentiateσ, and compute σ ' p (the components of the part of σ ' that belongs

to the space 7^). The result is the intrinsic derivative, IV . The strict iteration

of this process consists in replacing the original V with / V and proceeding as

before. The extensor L (together with its mate L? α ) , which plays the role of

g in this iterated process, is derivable from the extensor g , M = 1, by a

process called extensive differentiation. See [4, p. 24-29]. This process in-

volves the nontensor component of g ((λ = 0 ) and generates the new quantities

by repeated application to the tensor components ( 0. = 1), δ Q . These extensors

have been called the extended components of connection.

The extensors a and L coincide in the ranks 0, = ;!/, U=/l/— 1; other-
°αα aa

wise, for M > 1 they are distinct. The primary difference between their associ-

ated derivatives gb Va^ and Lh Va^ is that the former may be obtained by

first computing the derivative (Va pa) directly and then selecting the com-

ponents of the part that belongs to IN, while the latter involves an alternation
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of the process of "priming" and "dotting" into the base vectors p . It is for this

reason that we have adopted the terms direct and alternating to distinguish the

extensors of this section.

Since

P aa = { A } Pa

and is thus the simplest extensor obtainable by priming the base vectors p ,

while p α ^ α ' is the simplest extensor obtainable by priming p α , it seems that the

quantities g^a defined by g™ - p α ' α ^ . p^ are in a sense the mate quantities of

g^ obtainable by interchanging the role of p α and p . This immediately raises

the question of the construction of suitable extensors g ^ , g°^' for raising

and lowering doublet indices: a problem which introduces the third set of metric

extensors and to which we shall turn presently.

In passing, we note that both g^a and gaa are included in the extensor p α ^ α ' .

~p.βl denoted by g ^ . Other quantities which should be grouped with these from

the structural viewpoint are the extensors gaaPb and gaao^ which are defined as

follows:

8aaβb
D E F I N I T I O N 4.2. 8™

βb - * β ( β ) PHβ\

These last two extensors contain the metric tensors g , and ga and the two-

index Christoffel symbols [ ab, c] xc .

The interchange extensors. To complete the introduction of the metric exten-

sors, we return to the problem of the construction of the extensors to be used in

raising and lowering doublet indices ( i .e . , in interchanging contravariance and

covariance). We shall see presently that a satisfactory formulation is given by:

D E F I N I T I O N 4.3. Zaaβb = ( Λ % ) g^M'A'B\ Zaaβb =[Λ

M

B] 6

a b

Λ = α, β = Q.

The symbols (A

M

β)t [AJ*] a r e given in [ 5, p. 334; see also p. 335-336,

Theorems (2.1), ( 2.3)1-

Ίhe prime requirement of an interchange extensor is that it have a kind of

group property so that the successive raising and lowering (or vice versa) of a

given index leaves the extensor unaltered. This characteristic for the quantities

just defined is ensured by:
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THEOREM 4.2. 9 α α / 3 6 faΎC = δ p 6

c .

Proof. Expanding

which is obviously equal to the right member in the relationship to be estab-

lished, we get

If we now replace 0, according to the relationship U = M — 0. - 5 , subsequently

drop the bar, and then make use of the formula

( Γ ) ( T-B ) _ r Λ , Γ i / M v
v B ' v M-A-B' L M } x A B} >

there results the sum Σ %aaβi) o)

aaγc

9 with summation on (λ from M - γ to M - ,3.

This range, however, may be changed to the regular range ϋ, Λί, since

( M ) = 0 for o. > M - 6,

while

[ V ] = ° w h e n α < j/ - y-

REMARK. The quantities 9 of Definition 4.3 are obviously symmetric in the

doublet indices; hence their order in Theorem 4.2 is not essential. Furthermore,

the excontravariant g's given in Definition 4.3 are the only symmetric quantities

that will satisfy this theorem if the choice of 9>aaβi) h
a s been fixed as in this

definition. To check this point, we may assume a separate set G sup βbδd and

multiply G into the equation presented in Theorem 4.2. In the following section

we shall see that the script g's have ideal properties relative to the other metric

extensors. They obviously contain the metric tensors ga and ga^ among their

components.

5. Interchanges. We shall refer to any two extensors Ί\\\9 Ί\\\ which are

related in accordance with the equivalent equalities

1 . . βb . . ~
1γcβb- ' 1aaβb.-. ^ouayc βb

as interchanges of each other. We shall now show that certain pairs of quantities

which are otherwise natural mates are pairs of interchanges. We may if we like
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regard the members of each pair as constituting different descriptions of the

same extensor.

T H E O R E M 5.1. //

Λaa = Aa{a) rf A = ( Λ/} AΛM-A)
aa A a '

then ,4 a α and A are interchanges.

Proof. For arbitrary quantities B ,

__ S^ ( M \ ΛM-β) p)b{β) _ A
β b

REMARK. The first equality of the foregoing chain tells us the meaning of

the invariant Q ΩU Aa^a' B ^ this quantity is the Λ/th derivative of the dot
CLCLpO L J

product of Aa and Bb.

REMARK. The proof of this theorem is valid in case Aa represents a set of

directed strokes instead of a set of scalars. Hence, p α ' α ' and p ^J are inter-

changes, since

THEOREM 5.2. The extensors gV1 and g are interchanges, as are the

quantities gaaβb, gaaPb of Definition 4.2.

Proof. We have

Jb _ ~*b . -*(M) _ bd -> β ->c(γ) Q _ bd Q yc

The proof of the second part is similar to the foregoing.

REMARK. The extensors §aaob9 0,aa^ themselves are obviously inter-

changes because of the Kronecker delta relationship expressed by Theorem 4.2.

7

THEOREM 5.3. The two alternating components of connection Laa and L^

constitute a pair of interchanges.

Proof. From the relationship
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^aaβb ST ί α> β \ Jh T δ b j a. + β-M~S a

9 Ls [
 M, δ* ^ ^/ Lh *

δ=o

which is a corollary of the independent proposition Theorem 6.3, we derive at

once by "multiplying" by gjc L£ and extending the range of 8 to 0, M, the

equality

aa ~ Z-* M, δ σ &dc aa h ^f

[\' Γ) W

and since the coefficient j } vanishes when (λ < M + 3 ~ β , the part of the right

member of our equality which involves U may be written in the form

Here, as before, the capitals B and Δ have been introduced for β and 8 to empha-

size that these letters are not to be summed; and ίί stands for the symbolism

M

This abridgement is possible because the pattern of letters in the binomial coef-

ficient and at the base of the summation sign can be generated from the Greek

superscript u - (M + Δ - B). See [6, p. 234]. We next note that according to

Theorem 7.1 the contracted product of the L's vanishes excepting when 8 = .8, in

which case the contraction collapses to δ^ 8°a or 8^, and the factorial multiplier

reduces to unity. Thus the right member of (5.2) is equal to L j , and the proof

is complete.

REMARK. The proof of this theorem points to the desirability for a study of

the contractions of our metric extensors—a matter which we shall consider

presently.

6. The derivatives of equipollent tensors. An immediately obvious but never-

theless useful minor proposition of tensor analysis asserts that if
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/ τa = o,

then

ψa _ γb i T a\ ja < a \ /c1 - 1 {- L b ) , L b = \ b c \ x .

Furthermore, from the structure of the intrinsic derivative of a higher order ten-

sor, it is readily apparent that all derivatives of any equipollent tensor (/ T = 0)

are expressible as linear forms in the components of T with coefficients that are

built up of derivatives and products of L's. The problem then arises of determin-

ing the composition of these coefficients. The resulting formulas are interesting

in themselves as constituting an application of the alternating components of

connection; in addition, they will be found useful in later developments—as a

matter of fact we have already employed one of them in the proof of Theorem 5.3.

As a preliminary, we list two needed recursion formulas:

A + 1
((5.2) Lc = (LC

Δ + L* L f ) , A = α, u < M; LC

M = δc.
v aa M — A / 4 + 1 ' α A+i a b ' 9 Ma a

These formulas were first found by A. Kawaguchi and later independently by one

of the present writers—see [9, p. 105-108; 4, p. 21-29, 5, p. 338-339]. They are

essentially rules for going from a given rank to a rank one step further removed

from tensor rank. In the case of a Greek superscript G;, the tensor rank is that

for which (λ has the minimum value zero, while in the case of a subscript the

tensor rank is given by the maximum value M. It will be helpful to bear in mind

that the operations involved are formally equivalent to intrinsic differentiation

except that (6.2) involves the quotient of two binomial coefficients ^C'/' C .

Also, it should be noted that for a given Cλ, Lc depends on M9 while L°\a does

not.

The components of the tensors T appearing in the following theorems are to be

regarded as functions of t, the curve parameter of a parameterized arc C. The

existence of the necessary derivatives is of course to be assumed; and in cases

wherein the existence of a solution of the differential equations / T - 0 is re-

quired, the L's must be regarded as analytic functions of t. It should be borne in

mind that neither the intrinsic derivative nor the total derivative of T with re-

spect to t involves values of 7 off of C in their computation. Finally, as before,

we shall assign terms containing out-of-range indices the value zero.

T H E O R E M 6.1. //
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/ Ta = 0 ,

and

Taa denotes the extensor Ta{a),

then

jaa _ rrb j CLCL

~ ^ b '

Proof, The case (λ — 1 is obvious since

T la _ j a .

^b ~ ~ Lb>

accordingly, we proceed by induction. Differentiating

jaa = jc Laa

c '

replacing Tc with -T L^, and subsequently applying equation (6 .1) , we obtain

successively

τ α α _ τ α + 1 Q _ τ c τ a a i τ c J α α _ T^ ( L a a _ L a a Lc) — T^ L α + ι * a

THEOREM 6.2. / /

and

T denotes (M.) T (M~A\ A = U,
CLCL ΓΛ- CL

then

aa b aa*

Method of proof This theorem may be established by means of the procedure

employed in the previous demonstration.

T H E O R E M 6.3. / /

/ Tab = 0,

and

TaaPb represents the extensor [A

M

B] Tab{A + B'M\

then
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M
jab{γ) _ jcd y^

M
ψaaβb _ γcd y * t A, B | τ δα r /4+β-M-δ 6

~ ^—' M, δ c c/
δ = 0

Proof, Given any value of t9 say tQ9 the components of ί at ί0, namely

Ta { to)9 may be expressed as a sum of products of pairs of contravariant vectors

at tQ; thus

Tab (tQ) = AaBb + C α D 5 + . . . .

Here the symbols Aa

9 B , etc., denote fixed real numbers in the coordinate

system at hand; and assuming that the L's and the arc C are analytic, we may

define vector fields Aa(t)9 B ( t), etc., along C, such that

I Aa(t) = 0 , Aa(tQ) = A a , e t c .

The sum

A a ( t ) B b ( t ) + C a ( t ) D b ( t ) + . . .

will then have the property that its intrinsic derivative vanishes, and that it

takes on the value Ta (t0) at t - t0. But the original equipollent tensor Ta has

these properties, and conversely it is uniquely determined by them. Consequently,

Tab = Aa(t) Bb(t) + Ca(t) Db(t) + . . . .

To simplify the writing, we shall denote the entire sum in the preceding equation

by Aa Bb.

Differentiating Ta γ times with respect to ί, and subsequently employing

Theorem 6.1, we get

Ύ
γab(γ) _ ( Λd nb \(y) _ V^ / y \ jα(δ) r>b(y-S)

δ = 0

_ \ ^ ( Ύ \ / δ α T y —$ b -red

δ

To obtain the second equation of the theorem, we substitute A + B — M for y and

multiply by the coefficient [] inf. M, sup. A9 B; thus



38 lίOMER V. CRAIG AND B. B. TOWNSEND

Taa βb Γ / 4 , β - i τab(A+B-M) γcd SΓ* \A9B\ j la r A+B-M-S b
1 ~ L M J i ~ 1 2s Uitz> L

c

 Ld

Evidently, the range of summation on 8 may be taken to be 0 to M since the coef-

ficient vanishes whenever 8 > A + B - M. Whenever A + B < M, Taa'@b is zero;

in this case the multiplier of Tc has the value zero by virtue of our convention

regarding symbols bearing out-of-range indices.

REMARK. Since / ga = 0 , we may take Ta to be ga this special case is

the corollary cited in the proof of Theorem 5.3.

THEOREM 6.4. //

/ r g - o ,

and

then

denotes (*)

V} i b = I d / v L

T*a = ( ^ ) ( M yi j R Ll-(M-A+B) L (unchanged indices omitted).

Proof. We write '/£ in the form Aa B^, with the understanding that the latter

expression represents a sum of products of equipollent vectors. Differentiating

this symbolic product y times witli respect to ί, and writing B^ in the form

(g ) ~ ι B»/_§. A> provides the relationship

- Ld ^ ι δ M δ } L c LM-z.b
δ

Replacing the binomial coefficients with the equivalent product ( p ) " 1 (

and subsequently the dummy index 8 with M — 8, we obtain

τo(Γ) T̂ c /Af\-1 ? r δ~(M-Γ)α r o?

the first of the relat ions to be established. We next set Γ = Cλ - β and get
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1 βb = Ld [ B} { A - B } K L L

REMARK. Since

A\ ( M \-l / δ \ _ r / I , Δ ] / /4 + Δ -M \ _ ( α,
B } { A - B } K M - A + B } ~ L Λ ί J V β ' ~ X M ,

the preceding equation may be written in the form

A;
/ / o \ ψaa TC SΓ* S A, δ ) j A + δ~M -B a τ d
( 6 3 ) l βb = ld 2-. ίjtf.fl1 Lc LS6

δ =M-A+B

We note in passing that there is a pleasing regularity with regard to the

pattern of the Greek indices in the right member of (6.3), which may be de-

scribed as follows: ( 1) the positive indices on Lc appear on top in ί }, while the

negatives are on the bottom; (2) the summation is on the repeated index δ in

L L, and starts at the zero of the total Greek superscript and ends at M. When-

ever such regularity holds, we shall write the ί ! without indices and omit the

summation sign. Applying this convention, we rewrite (6.3) in the abridged form

(6.4) Ta

β

a

b = Tc

d{\ L a

c

 + s~M-β'a L d

h b .

THEOREM 6.5. / / / Tab = 0, and

aa βb d e n o t e s y A B)
 I

 a b

then

T = γ y* i M-StA+B+h\ re rd
aa βb cd έs x M,A,B * M-h a A + B + h b9

δ

A = α , β = β, 8: 0 to M -a - ( β .

Proof, As before, we express the tensor as a symbolic product, thus

T h = A β , .
ab a b

We then differentiate γ times with respect to ί, and replace the resulting deriva-

tives of A and B by their values expressed as contractions with L (Theorem 6.2).

The result is the equality

Γ
Lab =Icd Ϊ-* t δ M δ } V Γ _ δ ; L

M - δ . α LM
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Finally, we set y = M - (λ - 8, multiply by ( A

M

β ), employ the numerical equality

/ M w Γ w M r i / M Γ i = (M-A, A+β+Δι Γ = M - A - R

and the theorem follows.

REMARK. Because of the arbitrariness of the numerical values of T at any

one point, we may conclude that the multipliers of T in the expressions for the

extensors Taa * P , 2 ^ , 2 ~» [ Theorems 6.3 —6.5] are themselves extensors.

REMARK. In case / Ί vanishes, the L's and certain semi-contractions (con-

tractions on but one letter of a doublet index) serve to express T(t+h) in terms

of T(t). To illustrate, if/ Ta = 0, then from Taylor's theorem and Theorem 6.1,

we have at once

, {h)a

(6.5) Ta(t + h) = Tb(t) £ La

b

a — - , α O t o c c .
a

In the Cartesian case,

r aa ςvα ςvC
I> = O oc o a

and, of course,

Ta(t+h) = Γ α ( ί ) .

7. Contracted products. As a step in rounding out the theory of the metric

extensors, and as an implement for certain operations involving these extensors,

it is desirable to have a table of their contractions. Several of these contractions

yield Kronecker deltas, and thus provide the possibility in certain instances of

circumventing the restricting circumstance of the lack of a division process cor-

responding to multiplication with contraction.

The methods employed in constructing our tables of contractions are not

always direct. Consequently, it is necessary that we digress and consider at the

outset one or two preliminary matters. The first of these is a formula relating the

L associated with a given value of M with the corresponding L associated with

M - θ. This formula is a result of repeated application of the relation,

( See [ 5, p. 338, equation 13.8].), in which the M of L exceeds that of L by one.

Thus if we denote by U the process of lowering by unity the values of M and U in
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Laa, then we may write, successively,

L = — u L = :—- u2
 L = (M) ( a r ι u2

 L .
U U ( CΛ ~ 1 ) 2 2

C o n t i n u i n g , w e s e e t h a t t h e o p e r a t o r U i s e q u i v a l e n t t o ( ^ ) " " * ( ^ ) ; i . e . ,

( 7 1 ) U^ Lb = ( ^ ) ~ ^ ( ^ ) Lb A — '

Here it should be recalled that while L^a is dependent on the value of M chosen,

La

b

a is not.

As an application (which will be needed presently) of formula (7.1), we note

that the expressions as full range contractions for repeated intrinsic derivatives

may be transformed to reduced range contractions for a higher value of M. Thus

if we denote the order of the intrinsic derivative by M - Θ, the L's involved in

the case of contravariant tensors are those associated with M — Θ, and may be

replaced by the L's correlated to M if the summation index is written in the form

α - θ, instead of u, and formula (7.1) is applied. In order to express the associ-

ation of a quantity with M — θ (rather than with M)9 we shall write it with a su-

perior-, thus L .. Now, with the notations and procedures indicated, the deriva-

tive /A " A may be transformed as follows:

jM-θ *b=

M -θ

aa t-" CL-Θ a
a - 0 α = θ

Y* Aa{a-Θ) rjθ j b / A # \ - l D Λa(a-Θ) j b .

that is,

( 7 . 2 ) (M

θ) lM~θ Ab = R Aa{a~θ) Lb

aa.

On the other hand, L°ία is independent of M, while

B [ = ( * ) ^
α α L A a

> (M-Λ)-

follows the companion formula to ( 7 . 1 ) , namely,

BAa.

Consequently, the contraction expressing a higher order intrinsic derivative of a

covariant vector B^ may be altered, thus:
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M - θ M
T aa ^ n- T a-θ a ( M \-l RD j a-θ a

aa = y B Lΐ = φ RB L
o £-* a-θ a b θ aa b

o r ,

( 7 4Λ f ^ ^ ΓΛ/— (9 n _ r> n r a—θ a

Similarly, the full range contraction which yields a higher order intrinsic de-

rivative of the mixed tensor T^ may be converted into a form involving one or

more reduced contractions. These expressions involving reduced contractions

can be used to evaluate the contractions of two L's. Accordingly, we shall de-

velop one in detail. Starting with the intrinsic derivative of order M — θ expressed

as a full range contraction, namely,

jM-θ ja = y jyc L U ^ α - s u m g. 0 to M - θ,
b *—* od b yc ' '

we replace the dummy index γ with γ - 0, making the new range for γ from 0 to

M. The symbol La~ must be replaced with La~_^Λ , which in turn may be written

VθLa

yc or ( * Γ « ( Γ ) ^ .

Thus we have the relationship

M -θ
/ 7 - \ / M\ ΊM-Θ γ a _ sr* r> jy -Q. C T $d j a
W . o ; v £ > ' i 6 ~ ^—' hd b yc'

8 = 0

With formulas (7.2), (7.4), (7.5) and Theorems 6.1, 6.2, 6.3 as a foundation,

we are now ready to consider certain of the contracted products of our metric ex-

tensors. Our first proposition of this series may be stated as follows:

T H E O R E M 7.1. RLa

d~
θ'a Lc

aa = dM

θ δc

d.

Proof. If Aa is any equipollent vector, then, by Theorem 6.1,

Aa α~ = LI ' a A .

Multiplication by ( ^) and Z / β with subsequent contraction yields

λb nτa-θ a re Ώλa{a-Θ) jc (M\ jM-θ ΛC %M AC
/ I IX. LJ J LI = i\ /I Li ~ \ n ) * /I = C) o /Ib aa aa θ ' θ

Since the values of A at t = ί0 may be assigned arbitrarily, we conclude that if

0 / M, then
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When Θ = M, we have

R L L = δa

b Sc

a,
b

and the theorem is established.

C O R O L L A R Y . Lf Lc

aa = 8U

O Sc

d .

A formula similar to that of Theorem 7.1 holds for cross summations, as

witness:

T H E O R E M 7.2. RLa~θma L\ = 8M

Ω 8a

u.
C OLD Ό O

Proof. This theorem follows at once from Theorem 6.4 by taking T? = 8? and

replacing Γ with M - 0.

C O R O L L A R Y . La

c

a Lc

ab = 8^ 8a

b .

1Evidently, we can derive companion theorems to Theorem 7.2 by taking

d T , in Theorems 6.3 and 6.5 to be ga and g ,, respectively. Thus we have:

T H E O R E M 7.3. $aamPb = g

c d Σ, \t B,\ LSa L'A+B~M~S'b9 sumδ:09M;

= α, B = β, 5wm δ: 0, Λ/ - (λ - β.

Λf-8,
M,A,B

REMARK. These theorems relate the interchange extensors (script g's) to

the alternating components of connection.

The contractions of the interchange extensors with the direct and alternating

components of connection, as we have seen, convert excontravariance to exco-

variance, and vice versa. Accordingly, we turn our attention to the direct com-

ponents of connection, and consider the contractions g L and g g. In order to

evaluate the former, we first observe that since the p° constitute a set of quan-

tities (directed strokes) that transform contravariantly, their intrinsic deriva-

tives Ia~pa also possess this property. Furthermore, these derivatives may be

computed by equations of the type (7.2), (7.4). Thus we may write
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and

Φ V h = Λ Paa LΓθ'a> where ^ d e n o t e s ? £ > 0 Γ ( « ) ^ ) .

Multiplication of these by p and p c respectively gives the following:

T H E O R E M 7.4. Rg^9"1 Lb

aa = (M

θ) j5c • 1M~Θ ΐb,

RLt~θ'a sc

aa = (M

θ)r iM-θPb-

REMARK. The right members of the preceding equalities determine the

scalar components of the parts of the higher-order intrinsic derivatives of the

base vectors which belong to the tangent space 7\y. In case θ = M — 1, the con-

tractions reduce essentially to contractions of the L's, and we conclude that

/ ~pa and / p either vanish or are perpendicular to R^,

This last property can be established directly by applying the operator p , to

the following chain:

lP = P + P \ h c \ x = >α -» *a
P pb = p -

Thus the geometric meaning of / ρ α is that it is the part of p α that does not be-

long to the tangent space TN Evidently, the set of directed strokes Iρa trans-

forms contravariantly, while the / p α are covariant. In the case of a completely

flat space we have

since in such space we have

for Δp = p{P) - p ( 0 ) with, if we like, 0 fixed and P variable. Differentiating

this last equation with respect to xa and t we get, successively,

Pa = {Pb P >eΛ0 ' Pa a n d Pa = ( P b P } a t 0 * P a

If we now evaluate p at 0, we obtain, on transposing, the conclusion I~pa = 0. In

general, I pa is the part of pa that does not lie in ΊN. Furthermore we observe, in

passing, that in the case of a completely flat space all derivatives of the base

vectors lie in TN.

The interpretation of the contractions g^a g^a and g^a gc^ may be obtained

readily by transforming the latter as follows:

<xa c -> ->α(α) -» ->c -> /-»a -> \(M) ->c
&b %ad = Pb* P Pad * P = Pb * ^P Pd> ' P >
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with

Pad ~ [ A* Pd

Thus g°^a g ^ is the scalar component of the part of the Λ/th derived dyad

( p α p^) that belongs to the space.

S. The tensor D^cd. The intrinsic derivatives based on the direct and alter-

nating extensors g and L coincide for M zero or unity. Furthermore, they coin-

cide for all values of M if the space is completely flat since in this latter case

all derivatives of the base vectors and therefore all derivatives of Va ~ρ lie in
r a

the space. Accordingly, the difference between the second intrinsic derivatives

of Va should lead to a distinction between completely flat spaces and other va-

rieties.

Instead of limiting our attention to the one-parameter case, it will perhaps be

more interesting to carry out the investigation for parameterized surfaces in R^,.

Consequently, we now set each of the variables xa of our immersed space II

equal to a function xa(u9 v) of two parameters. Thus the radius vector of our

enveloping Euclidean space is now a function of u and v through the %'s. Sym-

bolically,

p = ~p[x(u, v)].

The direct metric extensors g^, are defined formally as before:

a ->α -> -> _ MM) __ (M\ -> (M-β)
Zβb^P Pβb> Pβb - P βb - { B> Pb

The difference is that M and β now represent the matrices (M , M ), ( β χ9 β ),

and the binomial symbol is the matrix binomial coefficient defined in § 2.

The mixed second-order direct intrinsic derivative is given by the contraction

Vb{β) ga

βb, with M= (1 1), so that the range of β i s (0 0 ) , (0 1), ( 1 0 ) , ( l 1).

Evidently, s ince the Leibnitz rule for the differentiation of products holds for

"matrix p r i m e s " , we may write, for all admissible matrices M9

Vb(β)

and conclude as before that the direct derivatives give the part of σ^M , (σ =

Va p ) that belong to the tangent space Γ .

In order to compute the alternating intrinsic derivative 7° 1 I1 ° F α , we first

write

/ i o yd = yb(β) d M = ( 1 0 ) j = yd (io) + yb -*d . - d o ) = υd



46 HOMER V. CRAIG AND B. B. TOWNSEND

and then

1° 1 Ua = ϋ d { s ) ga

hd, M = ( 0 1 ) , = ( F n ( l o ) + Vb -*P

a . p ' b

( ι o ) ) { o ι )

+ [Vddo) + yb ->d . - d o ) ] γx . - ( o i )

= v b w s

a

β b , M = ( i i ) , + v h c P

a ( o ι ) - P δ 1 0 ) + P r f P δ ( l 0 ) p α p j 0

= ^ < * > g « 6 , Λ/ = ( 1 1 ) , + F 6 ^ 1 0 > * r f ( ° ι > ( ^ 6 c p S + ί b

e

f i { / « , ! ) .

Consequently, if we denote the parenthesis by DV a,, we have

7 0 1 / 1 0 τ / α r / t ( θ ) a _ T / ^ y c ( l θ ) ^ ^ ( o l ) n α
/ / K - \ g β b - v % % υ b c d ,

and this difference vanishes for all vectors V and all parameterized surfaces

only in case the tensor ^b*c^ is zero.

This tensor2 in one form or another and in particular certain of its associated

quantities occur in numerous places in the literature. The ίliemann - Christoffel

tensor, for example, is a skew-symmetric part of 2D, since L)^ *^ a - U^Yc

 a =

p a
Ubcd *

Summarizing this and our preceding results, we have the general conclusion

that the metric extensors do play a fundamental role in the geometry of the im-

mersed R...

The present writers are indebted to Vaclav Hlavaty for historical information per-

taining to D and its relata.
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