VOLUME IN TERMS OF CONCURRENT CROSS-SECTIONS

HERBERT BUSEMANN

1. Cf the two expressions

1 ran 1 o= (w+m/2)
‘M|=—/ r2(w)da)=—/ (fr K \p%dp)dc-)
2Jo 2 Jo -r(w=-m/2)

for the area | M| of a plane domain M, given in polar coordinates p, o by the

inequalities 0 < p < r(w), 0 < w < 27, the first has the well-known extension
(1) | M| =l‘/ r(u)do™
n Yy u

to n dimensions. Here , is the surface of the unit sphere in the n-dimensional
Euclidean space, do; is its area element at the point u, and M is given by

0<p<r(n),u€Q,

In the second expression, |p| may be interpreted as (1-dimensional) volume
of the simplex with one vertex at the origin z and the other at a variable point
p=(p,  *7/2) in the cross-section of M with the line normal to w. The pur-
pose of the present note is the proof and the application of the following ex-

tension of this second expression ton — 1 sets My, «ee , M,y in Ep:

(2)  [My[eee Myl

(n—l)!/‘ /‘ / . )
TE — LR e ace n- LRI n- n
- 2 ‘ln Ml(u) Mn-l(u) T(pl, > Pp-v? Z)dl/;)l d% d(lJuo

n-1

Here Mj(u) is the cross-section of Mj with the hyperplane H (u) through z normal
to the unit vector u, the point p. varies in Mj(u), the differential dVl’,’,'1 is the
((n — 1)-dimensional ) volume element of M]-(u) at p;, and T(p, ,«-- ,] Ppoys 2)

is the volume of the simplex with vertices Pys** s Ppoys 2
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Replacing the sets M,_,4y, -+, M,_; by the unit sphere U, with center z

yields expressions for [, | ««« [#,_;| in terms of the volume T (p,+++,p,_,2),

in particular (1) for r=n - 1.

With the notation
Ky = |Uy| = n"/'?/r(

+1),

Steiner’s symmetrization leads from (2) to the following result:

ro |

If M{, ««e , M,_, are convex bodies in E, (n > 3) with interior points, z
is a given point in E,, and Mj(u) the cross-section of M; with the plane normal

to u and through z, then

n-2
Kn

1
(3) | M| oM, ] Z; ’/('ln lMx(u)ln/(”'l)"' iMn_l(u)ln/(n-l)de’

n
Knp-1

and the equality sign holds only when the M; are homothetic ellipsoids with

center z.
It follows in particular for a convex body M that, forn > 3,

Kn-2

1
(4) IMI"'IZ-; ‘/('ln [ M(u)|™ do,

n
Kp-1

with the equality (if | M| > 0) only for ellipsoids with center z. The efforts to
prove this inequality, which has applications in Finsler spaces, led to the

present investigation. The—because of Jensen’s inequality —weaker estimate

1 n/tn >/ /(n-1)
(5) AR Kn"' n-1 o | M (u)|™ ' dwz,

S

with equality sign (if |M| > 0) only for the spheres with center z, was found
previously by L. A. Santald who communicated it to the author. It is also the
special case M,y =M, M; = U, for j < n -1, of (3).

2. Let M, «++, M,.; be bounded Jordan measurable sets in £,, n > 3, such
that the intersection of i/; with any i-dimensional linear subspace (which in the

future will be indicated Ly L,) through a fixed given point z possesscs a
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v-dimensional Jordan measure. Since the subscripts run sometimes from 1 to
n and other times from 1 to n—1, we agree to use ¢, 3 for the former type,
and J, k for the latter, and may then omit mentioning the range.

et x, be rectangular coordinates in £, with z as origin. Take n — 1 copies
['f{l of I, with coordinates xé, and let M]., be} the image of 1; iq E{;; that is,
x! € M].' if and only if the point x with x = «/ lies in ¥;. Then x/ may be con-

sidered as rectangular coordinates in the product space
e b et <1
L=k, x x kgt = LE)
hence

(6) I_IleI =H|M;| = /dxl‘ dxri dx:‘" ...dx;:'l.

’
Iin;
In £ we introduce new coordinates

v

=1 =1 —n-1 —n-1
’ n-1” “n-1

xl’“"xn-l’ vl,-..,x‘ e s X

through the relations
(7) xi:ii, xi=v1£{+---+vn-l§,{_l.

These equations fail to define v, if [/ |= \h.i']l" =0, i.e. if the points x/ in }, are
contained in an L, with v < n ~ 2, or if the L,_, spanned by the x/ is parallel
to the x,-axis. The geometric meaning of the right side of (2) shows that a

special discussion of this case is superfluous.

To evaluate ]| (M;)l in the new coordinates, observe that the first n rows
in the n(n - 1)rowed Jacobian J of the transformation (7) are in blocks of

n X n matrices:

0 ... 0 0 0 0 ...0 0 0 0 ..-0
01 ...0 0 00 ... 0 0 00 -+« 0
0 0 ...1 0 0 0 ---0 0 0 0 .--0

-1 .
Vp Uy cee Upop X4

S O O O

hence
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(8) I=1%).
The unit normal v in £, to the plane

Xp = Xy Uy + e+ Xpoy Upay

is, with w = (1 + vf +oeee 4 vj_l)l/z, either

uj = vj w2 u, =~ w2 or uj = - ij'l/z, u, = wt/2,
_Then w™" = |cos 0|, where 0 is the angle between u and the x,-axis, so that
dw, = w duy +++ du,_; is the area element of (Q,. Here we disregard again planes
parallel to the x,-axis. Now

2 2
Wo = Uy TU Uy see =V Upogy
du; 2 2
] _ w'3("'1) —U, Uy wWe—v) eee —vy Upoy
Jvy . . .
2 2
—-vn-l vl —vn-l 1)2 e we — vn_l

Since all principal minors of the determinant |~v; vj| of order greater than 1
vanish, it follows (compare [ 4, pp. 125, 126]) that

duj = w3(n-1) (wz(n-l) _ w2(n-2)zv?) = wt
duy, J

and

(9) dws = !t dvy «ov dvy.y = | cos™0| dvy e dvpy.

The volume element dl;';.'l of the hyperplane xi = Exjk v, is

.

(10) dl”:l.'l = dx{ ceo dacfl_l | sec 6

If we now interpret the points x!,-«., x""! as lying in the same £,, then

(8) shows that |J|/(n —1)! is the volume of the projection of the simplex with

vertices x!, <<+, %" !, z on the plane x, = 0. Since these points determine a

hyperplane H (u) with normal u through z,
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(11) (n = 1) T(xY eeey 2™, 2) = |] secd].
Replacing x/ by Pj» e briefly summarize the results (9), (10), (11) as

(12) a’V: s dlP? = (n= 1) T(ppyeees Pr-y? z)dlﬁ)’:".-- drnt dewy .

1 n-1 n-1

After observing that in (2) by integrating over Q, every M/(u) is counted twice

(once for u and once for —u), we see that the relation (2) follows from (12).

I'or brevity we introduce, for sets M,, -+« , M, in Eg with r < s, the notation

T (M, eeey My, 2) =/".41 /M, TPy nv s By 2) dV5 oen VS,

and may then write (2) in the form

(n-1)! .
(13) (Ml [Myy] = —— 0, Tpoy (M), + ooy Mooy (u), 2)ddf.
3. In order to obtain expressions for |} | e+ |3, | withr < n-—1, we re-

place successively Y, (, ««+, ¥,.r+; by the unit sphere U,. The contribution
of the latter sets to the right side of (13) can then be integrated out by using
the following fact:

Let an L,, 0 < p < n~1, through the center z of the unit sphere U,.; in
En.y, intersect Up_y in U,. For any point g in U,.y, denote by r the distance
qz, and by ¢ the angle between the ray gz and the L. Then

Wy.1

(12) frlsinqS]dV;" =

n-1 Wy

© Kpy V=N — [l

where @, =v .k, = 27¥/2 -1 (1,/2) is the area of the surface Q, of U,, in

particular w, = 2.

To prove (14), let the L., normal to the L, through g intersect U, in p,
and U,., in the sphere S,_;. If p=pz then S,_; has radius o= (1 -p?)!/2,
Then s = pg =1 |sin ¢ |; hence

U/ rlsing| dV™ = /l; < s/s quv-x) ave,

n-1 M v-l

If dw%’_’l denotes the area element of the Q,., with center p in the L, at the
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point g of the ray pg, then

o v w
/s dvy-l = / / V-2 gs de¥ -t = - - (1 - ,2)w2 2t
q QV-I 0 s s S O)q v wV—l ( P ) .

S
v-1 1

Therefore, with a similar notation,

/rlsing{;}dV”'l:wv-l/ _/-l(l—p2)v/2 pHt dp dw*
Uity 9 v QY P

wyr oy D(p/2) T(w/2+41) ey 0, D(/2)v/2T(v/2) w0y,
—_ = = Kn.

B v 20 (p/2+v/2+ 1) v 20(n/2 +1) Wy

Returning to (13), we replace ¥,_, by U,. Then M,_;(u) becomes the (n—1)-
dimensional unit sphere U,(u) in the hyperplane with normal u. If ¢ is the angle

between the ray zp , and the L,., spanned by p,,-+-,p, _,, z, then, with

r=2zp,_,»
T(pl""’Pn-l’z) =(n-1)" rlsin qS\ T(Pl,o--, e z).

Hence, carrying out the integration over U,(u), by (14) we obtain

| M,

Mn-2 l * Kn

1 @y
= 5(”"2)! ZZ' Kp '/S;n Tn-l(Ml(u)’ ) Al!n-z(u)y Z)d(,)::

or

(15) [My]«ee [Myoy]

_2)!
- (_”_2_)_/9 Ty (My (), +oey Myop(u), 2) doo?.
w n

If now M, _, is replaced by U,, then because of (14) the factor

1 Wy
— Kp
n“z C:)3




-~
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is introduced on the right. Continuing in this manner leads to the general re-

lation

—-r)!
(A6) My ] +ee || = 27

/&;n Ty (M (u)y ooy My (), 2) do))

r

The integrand occurs in many //(u), and it would be more natural to replace
the integration over {1, by an integration over all L,.;. The results of integral
geometry [ 5] lead to such a reduction for general r; however, we restrict our
attention here to the two simplest cases, where no new formulas of the type

(12) are required.

It is clear that the last formula in the sequence (16),

1
|3, | = _/0 Tner (M (), 2) dof?,
Wy N

must be essentially identical with (1). Indeed, if M, can be represented in the
form 0 < p < r(u), u € Q,, and we write the induced representation of M,(u)

in the form

0<p<r(v), v € Qrnlu) =H(u) nQ,,

then, with pz = p, we have
T(M (), z) = / pdVnt ___/ /r(l‘) p p"2 deo 1
1 ’ My () p Q) Jy v

1
; Qn-l(U')

r"(v) d(ut')l'l

and

—
U - n n-2 n
LA Q( Q.. " (V) ey )dwu.

ne Wpo2

Now according to the results on cinematic measure on the sphere (see [5], for
n =3 already [3]), integrating over the v-normal to u first, and then over u,
leads to the same result as integrating over the H(w) that contain v, that is,
those for which w is normal to v, and then over v. The first of the latter two

integrations yields wp.,r™(v), and (1) follows.



3 HERBERT BUSEMANN

As second example, we indicate briefly the reduction of (15). Denoting by
LP_ the L _ spanned by Pys *** s Py 2> and by MP the intersection of M; with
Lr[;-z’ we obtain from (12) that if L;F;-z lies in A (u) and has there the normal
v, then

Tpeg (M(u)y eee y My (u), 2)

= LN o e n-l o e n-l
—~/A.ll(u) An-z(u) T(Pl’ * Pn-2o Z)del o

Pn-z

(n-2)! / / / T2 n-2 'n-2 n-1
= oy Jur S (pl,...,pn_z,z)an/pl e AV g

n-2 ne2

Substituting this in (15) leads besides the integrations over the MP to inte-
grations over Q,.;(z) and Q,. Similarly as in the preceding case, these latter
two may be reduced to one integration by using the cinematic measure dL?_ on
Qy of the Qp_; in which LP  intersects Q, (compare [5]). The result (given

without verification because it will not be used) is

(17) | M,

o | Myl

L( n—2)!]2/
S ¢

2 -2 -
7 ‘/“;lp cen ./A;p T (pl,oqq,pn_z, Z)dV};)l DR dV: 2 dL’I,')_Zo

n -2 n-2
4. To obtain the estimate (3) we use Steiner’s symmetrization in the form
suggested by Blaschke’s treatment of Sylvester’s ’roblem (compare [1, § 241).

In the following the subscripts i, 2 run from 1 to m.

Let M,, ++«, M, be convex bodies with interior points in E,. In an arbitrary
system of rectangular coordinates with origin z, symmetrize each M; with respect
to the (x,,+++,%p., -plane P; that is, slide a segment in which a line L, paral-
lel to the x,-axis intersects M; along L, such that its center falls on P. Call
M_,- the image of M; under this transformation, and Fi the image in 47, of a given
point p; in M;. The mapping preserves volume, de_”.' = dV;il. We are going to

show that T, (M, +++, M, z) does not increase. !

If p; € M;, denote by p; the point symmetric to p; with respect to the center
of that chord of M; parallel to the x,-axis which goes through p,. If pi‘,. e, pl

are the coordinates of p,, then with 7 =1/m!

’ ’ 'h
£T(pyseee s Pppz) =n|pFls £ T(pls e spps2) =nlp;
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The images p, of p, and p/ of p/ satisfy the relation
.—h —,
B = - 15
hence
OT(Byvees Py 2) = 2T (P’ eeesl, 2)=nl| P - 177"
P, s Pps 2 P, » Pp» 2)=11 1 P; P; .
But
p!‘: pi’h=—§ih=_p'i'h for 1<h<m-1, and p ~ p/™ = p[" - p/™ .
—h —sh h hy,
lpil_lp,' I=lPil"lPi |5
hence
(18) T(Pl' et P z) + T(Pl” sy P,,:, z) > ZT(ITI’ ’_P-m’ z).
Since

Tm(Mp‘",Mm’ z) = ‘/M.l .“'/’;m T(Pl9"°9pm’ z)dV;:°"de

’ ’, m m
/Ml /Mm T(pl,...,pm,z)dvpl, Lo dvT,

we conclude from (18) and
dV = dV™, dUT = dV™,
p; p; p; p;

that
(19) Tm(Mp"',Mm,Z)ZTm(—Mu""Mms z).

To discuss the equality sign, consider points p; in M; which are centers of
chords parallel to the x,-axis. Then p, = p/, and the points p, = p/ lie in P, so
that the right side of (18) vanishes. Therefore the equality sign can hold in
(18) only when the points Pys*** s Py 2 are coplanar. Choosing p ,«-+, p;_ .,
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P;41s *** » P, such that they and z do not lie in an L,_, (the M; have interior
points!) we see that all centers of chords of M; parallel to the x,-axis must
lie in the L,,., spanned by Pys*** s Pips Pigys *** s Pps 2o Moreover, this same
L,,.; must contain the centers of the chords parallel to the x,-axis of all the

other M,. Thus we have proved:

(20) IfM,..., M, are convex bodies in E,, with interior points, then simul-
taneous symmetrization of the M; with respect to any plane P through z de-
creases T, (M, +«., M., z) unless z and the centers of the chords perpen-

dicular to P of all ¥; are coplanar.

For given positive values | M, |,+++,| M, |, the expression Tp, (i}, s ¥y, 2)
can therefore be minimal only if the centers of every family of parallel chords
of the different #; lie on the same plane thrcugh z. This implies, first, that
each M]' is an ellipsoid with center z,* and then that all these ellipsoids are

homothetic.

That the minimum is actually reached in this case is proved by the follow-
ing standard argument (see [1, $241). Using a suitable sequence P, of planes
through z, and symmetrizing M, ««+, M,, successively in £, P, .+, yields
a sequence MY, ..., M» of convex bodies which tend to spheres S;, ..., Sy,
with center z and, of course, |S;| = |MY|=|M;| (compare [2, a1l

The functional T, (M,, .-+, M, z) is monotone [that is, Mi' C Mi implies
Tm(Ml', cee, M,;, z) < Tp(My,«ee, M,, z)] and positive homogeneous:

T (AMyy ooy MM, 2) = am(m+t) ¢ (M, eeey My, z) for X > 0.

For a given € > 0, choose N(€) > 0 such that 5; C (1 + €)M for v > N(¢)
and all i, Then for v > N(€), because of (20) and the two mentioned properties,

we have

Tm(Syy ey Smy 2) < (14 e)m(m+l) Tm(MlV’ et M;:, z)

(14 e)mm*) v (M, euny My, 2),

IA

which proves T, (S;, s+, Sm, 2) < Tp(My, e+, My, z) and hence the mini-

1The proofs found in the literature all refer to the cases m= 2, 3; for references
[2, §70]. However, the extension to arbitrary m is immediate. A particularly simple
proof, which works for all m and is not found in the literature, is obtained by using
Loewner’s result, that there is exactly one ellipsoid which has a given center, contains
a given convex body, and has minimal volume.
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mum property for homothetic ellipsoids with center z.

To evaluate T, (S,,+++, Sm, z), denote the radius of S; by r;. Then the

results of section 3 show that

1 @y
+
T,,,;(S,, "'aSm’ z) = — ’z ' — Km+1 Tm(Sn ""Sm-lsz)
m ,
1 Wy ;L m+1 2 T (S,, ++e, S 2)=eee
m(m=1) @, ™ mrLfman Smitp Tt S
wy 1 2 m+1
__Hrm+l M= I_Ils |(m+l)/m
Km+1 |
Wm+1 m: Wm+1 K

Therefore we have:
(21) IfM,, «--, M, are convex bodies in E,, with interior points, then

me=1
2 Km+1

m(ﬂ[l"”’ m,z)>m m+1

[Ti fme0/m,

and the equality sign holds only for homothetic ellipsoids with center z.

Applying this result to (13) yields the inequalities (3) and (4) with the
conditions for the equality sign. The latter result may also be formulated as

follows:

Among all convex bodies M with a given volume, the ellipsoids with center

z (and only these) maximize fQ | M (u)|" dole
n

To ask for the minimum is senseless since for any convex body M the in-
tegral f |M(u)|" do, will tend to zero when M moves to infinity. However,
it is a meanmgful but unsolved problem to find the minimum of this integral
for all convex bodies with a given volume and center z. This is equivalent to
the problem of finding the smallest constant K such that for any convex M with

center z the inequality

K Jo 1MG)1" dof > ]

holds. The existence of K follows readily from (2).
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Finally (5) shows:

Among all convex bodies with center z the spheres (and only these) yield

the maximum of
min | M (u)|™ M|,
u

The corresponding minimum maximum problem seems quite difficult.
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