
SOME HAUSDORFF MEANS WHICH EXHIBIT

THE GIBBS' PHENOMENON

A R T H U R E. L I V I N G S T O N

1. Introduction. The regular Hausdorff mean of order n with kernel g (x ) for

the sequence (s^ ) is defined by

[ι
Jo

where g ( x ) is of bounded variation on the interval 0 < % < 1, g ( l ) - g ( 0 ) = l ,

and g ( 0 + ) = g(0). The integral in the definition being a Stieltjes integral, it

is clear that g ( 0 ) may be taken to be zero.

For the sequence

n sin kx

Otto Szasz [ 3 ] has proved the following result: If, as n—»oo, xn—» 0+ and

nxn —4 A < oo, then

where

/ Si(Ax)dg(x),

Γx sin t
5i(*) = / it.

Jo t

He defines the Gibbs' ratio for the kernel g(x) to be

2 z i
F(g) = max — / S i ( / 4 ^ ) J g ( % ) .

Λ > o TT Jo
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If F(g) > 1, then the sequence \hUtg(x)\ exhibits the Gibbs' phenomenon on

the right at x = 0.

It is here proved that (1) if d(x) is a regular Hausdorff step-function kernel

whose points of jump are linearly independent over the rationals, then F(cί) > 1;

(2) if θXx) is regular and has precisely two jumps, then F (θί) > 1. It seems

reasonable that the first result is true without the hypothesis of linear indepen-

dence, but the author has been unable to show this.

The Euler method of summability ( 6 , p), 0 < p < 1, is a regular Hausdorff

method having for its kernel the one-step function ep(x) which vanishes for

0 < x < p, and has the value one for p < x < 1; the method ( e, p ) is ordinarily

denoted by {E, (1 - p )/p ). Clearly,

2
F(ep) = - S i U ) > 1 (0 < p < 1),

77

so that the one-step case of (1) above follows trivially (this was shown by

Sza'sz [2, 3]).

2. Notation. It is convenient to collect here some notations which will be

used throughout this paper.

(a) (λ(x) is a step-function defined as follows:

a(x) = ax = 0 ior 0 < x < β l 9

= afo for βfc. i < x < βk and k = 2, , N,

= 1 for/3/v < x < 1 ,

where a^ ^ α/c + i for k = 1, , N

Γx sin t
( b ) S i U ) = / dt;

Jo t

1 Γx sin t

2 Joo t

2 Γi 2 _ !
(d) / U ) = fa(x) = — / Si (xy )da(y) = — 22

π Jo 77 Λ = 1

where A^ =

(e) F(α) = max fa(x).
x > 0
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It is clear that it is no restriction to assume that all regular step-function

kernels are of the form ( a ) .

3. The zeros of s i(ac). It is well known that s i [ ( 2 n + l)π] > 0 and

si (2^77) < 0 for n = 0, 1, , and that S I ( Λ ) has precisely one zero, call it

zn , in each interval nπ < x < (n+l)π (n = 0, 1, •••)• It is intuitively clear

and easy to prove rigorously that

/ 1 \

\ 2 /

It will be shown in this section that even more is true, namely, that

zn - I n + — 177 I 0 .

The tables [ 4 ] for the sine integral show that

1.9264 < z0 < 1.9265 and 4.893 < zι < 4.894.

It therefore follows that the following statement is true:

THEOREM 3.1. The function s i (%) is positive whenever

- 1.2150 < x - (2/ι + l ) τ τ < - π ,

and is negative whenever

x > 0 and - 1.389 < % - 2 π 7 7 < - 7 7 , ( π = 0, 1, •••).

This result is needed in § 5.

It will now be shown that the zeros modulo π of s i(%) form a strictly de-

creasing sequence with limit π/2 The formal statement i s :

THEOREM 3.2. Let (n + 1/2 + ̂ )77 be the zero of f™ u~ι sin u du in the

interval

nπ<x<{n + ϊ)π (w = 0 , 1 , • ) .

Then the sequence (xn) is strictly decreasing with limit zero.
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(The first two paragraphs of the following proof are due to Harry Pollard,

the fourth to the referee. Both Pollard and the referee point out that the relation

4 [FUl/FU)] > 0
dx

of the fourth paragraph can be deduced from general theorems on completely

monotonic functions [ 5 , pp. 144, 145, 167] . I. I. Hirschman, Jr., has observed

that the zeros modulo π in the interval 0 < x < oo of J^° g(u) sin u du are mono-

tone decreasing for any g(u) which is completely monotonic on 0 < u < oo).

Proof. Let

F(x) = ί°° e"xu(l + u2yι du for x > 0.
Jo

Then

( 1 ) I u~ι s i n u du = [F (u) c o s u - F'(u) s i n u ] "
Jx

for a > 0. To prove this, let L{x) and R(x) denote, respectively, the left and

right s ides of ( 1 ) . Since L (a) ~ R(a), it is sufficient to show that L'(x) =

R'(x) for x > 0. But this is immediate, for

L ' ( x ) = — x" ι sin x,

R'{x) = -βinx[F(x) + F"(x)] = -sinx ί°° e'xu du.
Jo

Now taking the limit in (1) as a —> oo gives

(2) - / u~ι sin u du = F{x) cos x - F ' ( Λ ) sin x9

Jx

Since F ( Λ ) > 0 and F'{x) < 0, it follows from ( 2 ) that the finite zeros

of J^° u~ι sin u du occur at the points where

F'{χ)
= cot x.

F(x)

Therefore, to complete the proof of the theorem, it is sufficient to show that
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F'(x)/F (x) is strictly increasing to zero as x —»oo.

Employing the usual derivative notation, one has

, x , foe u

ne'xu roc u

ne
M{χ) = χn + l / d u = Γ

Jo l + u2 Jo 1 + U

so that

—\—x)ty\x)—> n\ as x—» oo.

Therefore,

F'(x) Γ x2F'(x) 1
—» 0 a s x —» oo.

All t h a t r e m a i n s to be s h o w n , t h e n , i s t h a t F '(x)/F {x) i s s t r i c t l y i n c r e a s -

ing, and t h i s w i l l follow if

> 0
dx lF{x)

or, equivalently, if

[F'{x)]2 - F(x)F"(x) < 0.

Now

F(x)-2F'(x)y + F"(x)y2 = / ( 1 + y ^ ) 2 ^ > 0 ,
J 2

(x)-2F'(x)y + F"(x)y2 = /
Jo l + u

so that the discriminant of the quadratic expression in γ on the left must be

negative. Since this discriminant is [ F'{x) ] 2 - F (x )F"(x), the proof is

complete.

4. The main theorem. Two lemmas are needed.

LEMMA 4.1. // 0 < a^ < 1 for k - 1, , n, and α p , an, 1 are linearly

independent over the rationals, then, given e > 0, there exist odd positive in-

tegers x9 119 , Im, m < n, and there exist even positive integers Im+ 1 5 , In9

such that 0 < xa^ - 1^ < e for k = 1, , n.

Proof, If Red u denotes the fractional part of u9 then it is known that the
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vectors (Red jaι, ••• , Red jan), j = 0, 1, , are dense in the ^-dimensional

unit-cube [ 1, p. 83]. Hence there is a positive integer j such that

1 /I -ak + e \
— ( 1 - ah ) < Red iair < min , 1 1 (k = 1, , m),
2 2

1 2-ak + e \
- ( 2 - ajr) < Red yα/̂  < min , 1 ] (k = m + 19 , n)

2 \ 2 I

The conclusion of the lemma i s satisfied by taking

x = 2/ + 1, /& = 2 ( α^ - Red yα^) + 1 for Zr = 1, , m ,

and

Ik = 2{jaji - Red yα^ + 1) for k = m + 1, , n.

LEMMA 4.2. Lei a ( # ) 6e defined as in 2 ( a ) . // βl9 ••• , /S^, 1 are linearly

independent over the rationale, then F (&) > 1.

Proof. Let P9 Q be the sets of positive integers k < N for which Aj, > 0,

/1/c < 0, respectively. Then

/(*) = - f Σ + Σ MΛSi(Λ)8Λ).
77 μ e P keQj

By hypothesis, 0 < βk < 1 for A; = 1, , N Therefore, Lemma 4.1, with

6 = 1/2, asserts the existence of a positive x0 and nonnegative integers nk such

that

0 < πx0 βk - ( 2nk + 1) π < - π for k C P

and

0 < πxoβk-2(nk + l)π < - π ίor k C Q.

By Theorem 3.1, si {πx0 βk ) > 0 for A: C P and si ( πx0 βk ) < 0 for k C (λ Re-

calling that £/4^ = 1, one obtains that/(77%O ) > 1, which is sufficient.
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Since

lim Si (Ax) = — π sign x

boundedly, it follows that F (g) > 1 for every regular Hausdorff kernel.

Let now a(x) be a regular /V-jump Hausdorff kernel. It will be shown that

if F (a) - 1, then j8 1 5 , jSjv are linearly dependent over the rationals, and

this will prove:

T H E O R E M 4 . 1 . // d(x) is defined as in 2(a) with βv ••• , /3/v linearly

independent over the rationals ? then F (C() > 1.

Proof. Let β = {β p , /3/v) and r = ( r 1 ? , rN ), r^ rational. Set

| /3 | = max βfc,

and let x be a scalar such that 0 < x < \β\~ι. Let Λ be the zero /V-tuple. The

inner product of /V-tuples A and B is defined in the usual way and is denoted

by (A\B). Let

ax(t) = 1 for xβN < t < 1

and (λx ( ί ) = C((xi) otherwise. Then CX% is also a regular /V-jump Hausdorff

kernel, and F (ax ) = F ( a ) .

Suppose now that F(cχ)= 1. According to Lemma 4.2, there corresponds to

each Λ; in the interval 0 < x < I/3I"1 a n r % φ. Λ and a rational number /?% such

that

ixβ\rx) = R % .

But the available r%s i^% are countable while the permissible x are uncountable.

Hence, there is an uncountable set X of x associated with an r ^ Λ and a ration-

al R. If x, x'CX, then

(x-x')(β\r) = 0.

Taking x Φ x' gives ( / 3 | r ) = 0; that is, β l9 ••• , /3/γ are linearly dependent

over the rat ionals .

5. The two-step case. The theorem to be proved i s :
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THEOREM 5.1. // d(x) is a regular two-jump Hausdorff kernel, then F(QL)> 1.

Proof. If βγ and β2 are linearly independent over the rationals, then Theo-

rem 4.1 gives the result.

If (λ(x) is not an increasing function, then either A i > 1 and A2 < 0 or

Aγ < 0 and A2 > 1. Suppose that it is the first. Recalling that Ax + A2 - 1,

one obtains

fix) = -SiUft) ~-A2[Si(xβι) - Si (*&)].
π π

Since A2 < 0, and Si (77) is the absolute maximum of SΪ(Λ ), it follows that

f(π/βx) > - Si(ιr) > 1.
π

The remaining two-jump kernels are those which are increasing and for

which

βi

with p and q integral and (p, q) - 1. If p and q are odd, there is no problem,

for then f(πq/βχ) > 1. Otherwise, one of p9 q is odd and the other even. To

treat this situation, the following lemma, whose proof offers no difficulty, is

useful:

LEMMA 5.1. Let 0 < bγ < b2 < 1. // lγ and l2 are odd positive integers

such that

\lιb2 - l2bγ\ < - (bί + b2),
π

then there exists a positive number x such that

I xbk - πlk I < e for k = 1, 2.

By Theorem 3.1, the proof of Theorem 5.1 will be complete if a positive

x and odd positive integers lx and I2 exist such that

I xβk - πlk\ < 1.215 for 4 = 1, 2.
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By the above lemma, then, one wishes to find odd positive integers 11 = 2i + 1

and /2 = 2/ + 1 such that

1.215
I Ph - <7̂2 I = I 2pi - 2qj + p - q \ < (p + q).

π

Since p and qr have unlike parity, p + q ^ 3 . It will therefore be sufficient to

find nonnegative integers i and / such that 2pi - 2qj + p - q = 1.

If p — qr =s 1, simply take i — q and j = p.

If p - <7 > 3, then the Diophantine equation

1
pi - qj = - ( l - P + <7)

makes sense and, furthermore, has positive solutions t and .

6. Remark. According to Theorem 3.2, the zeros modulo π of si(x) tend

to πj2 Therefore, the method of proof used in this paper can not be expected

to handle all step-function kernels omitted by Theorem 4.1.

REFERENCES

1. J. F. Koksma, Diophantische Approximationen, Chelsea, New York.

2. Otto Szasz, On the Gibbs* phenomenon for Euler means, Acta Sci. Math. Szeged
12 Part B (1950), 107-111.

3. , Gibbs' phenomenon for Hausdorff means, Trans. Amer. Math. Soc. 69
(1950), 440-456.

4. Tables of Sine, Cosine, and Exponential Integrals, vol. II, Federal Works Agency,
Works Progress Administration for the City of New York, 1940.

5. D. V. Widder, The Laplace Transform, Princeton, 1941.

UNIVERSITY OF OREGON






