
ON THE LINEAR INDEPENDENCE OF ALGEBRAIC NUMBERS

L. J. MORDELL

1. Introduction. Besicovitch [ l ] has proved by elementary methods in-

volving only the concept of the irreducibility of equations the following:

T H E O R E M . Let

a i β blPl> a2 = ^ 2 P 2 » •*• » as β bs Ps 9

where pi9 p29 ••• , p$ are different primes, and bl9 b29 . . . , bs are positive

integers not divisible by any of these primes. If xi9 x29 9xs ore positive

real roots of the equations

and P(xχ, X2' > #s ) * 5 α polynomial with rational coefficients of degree less

than or eqv d to nx — 1 with respect to xl9 less than or equal to n2 — 1 with

respect ί. x29 and so on9 then P(xι x29 ••• , xs ) can vanish only if all its

coefficier ts vanish.

It i i rather surprising that this has not been proved before, since results of

this kind occur as particular cases of a general investigation in the theory of

algebraic numbers, and some have been known for many years. We have the

well-known general problem:

PROBLEM. Let K be an algebraic number field, and let xl9 x2f ••• f xs be

algebraic numbers of degrees ni9 n2f ••• , ns over K. When does the field

K(xϊ9 x2f •• 9 xs ) have degree nx n2 •• ns over K?

This holds if either the degrees or the discriminants over K of the fields

K(xί)9 K(x2), , K(xs) are relatively prime in pairs. The first part is a

simple consequence of the usual theory of reducibility when s = 2, and the ex-

tension is obvious. The second part for s = 2 is given as Theorem 87 in Hubert's

report on algebraic number fields, and its proof depends on algebraic number
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theory. The result for general s follows easily.

We discuss here the special case when xl9 x29 ••• , xs are specified roots

of the respective equations

\l) x - al9 x z - a29 9 x = as >

where al9 a2, ••• , as

 a r e numbers in K. In the particular case when nιaί9

n2 a2, , ns as are relatively prime in pairs, the discriminants of the fields

K{xί ), K(x2), , K(xs ) are certainly relatively prime in pairs, and the

foregoing conclusion holds. We consider two types of more general fields K.

For the first, K and xl9 x2, , xs are all real. For the second, K includes

all the ^ t t h , n2th9 ••• , τιsth roots of unity, and then the fields

K(xι),K{xa),...,K(xs)

are the so-called Kummer fields and have been known for many years. The

elementary ideas used in their discussion are similar to those employed by

Besicovitch. We have now the result really asked for in the problem, but stated

as follows:

THEOREM. A polynomial P(xi9 x29 ••• , xs) with coefficients in K and

of degrees in X\?x29 ••• , xS9 less than nl9 n29 ••• , nS9 respectively, can

vanish only if all its coefficients vanish provided that the algebraic number

field K is such that there exists no relation of the form

(2) < ι ^ ί-«.

where a is a number in K9 unless

Vγ = 0 (mod n<ι ), v2 = 0 (mod n2)9 9vs = 0 (mod n s ) .

If K is of the first type, then a particular case, which includes the result

of Besicovitch and is equivalent to it, arises when K is the rational number

field, the x's are all real, the α's are integers, ar (r = 1, 2, , s ) is exactly

divisible by a prime power pr

 r (that is, by no higher power of p) with (Ctr, rcΓ) =

1, the pr are all different, and pr is prime to at when r ^ U The condition im-

plied in (2) is satisfied, as follows easily from the lemma below.

When K is of the second type, the theorem is given by Hasse [ 2 ] , in the

equivalent form that K includes all the nth roots of unity, where n is the least
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common multiple of nu n2i ••• > ns Hasse, however, is also investigating the

relation of the Galois group of the field K(xi9 x2, > xs ) to those of K (xγ ),

K(x2 ), and so on, and so his proof is not particularly elementary. In view of all

this, an elementary proof of the theorem may be worth while.

2. Lemma. We prove first, for completeness, a well-known result:

LEMMA. Let K be an algebraic number-field such that either K is real and

the equation xn - a = 0, where a is in K, has a real root, or K contains all the

nth roots of unity. Then the equation xn - a = 0 is reducible in K if and only

if a is the Nth power of a number in K for some N > 1 dividing n. When K is of

the first type, a real root is the root of an irreducible binomial equation in K.

When K is of the second type, xn - a factorizes completely into binomial factors

xm — b in K and irreducible in K.

Proof. Let us suppose that xn - a = 0 is reducible in K. Write it as

xn-a = f{x) g{x),

where

fix) = xm + bxx
m'1 + . . . •+ bm9

the b's are in K, and f(x) is irreducible in K When K is of the first type, we

may suppose x', a specified real root of xn - a = 0, is a root of f(x) = 0. All

the roots of f(x) = 0 are roots of xn - a = 0, and so they have the form e'x'f
where e ' is an nth root of unity and x' is any specified root of xn - a = 0, but

the specified real root when K is of the first type. From the product of the roots

of/(*) = 0,

where e is an nth root of unity. Hence x' is also the root of an equation

xm = b,

where b is in K since, for the first type, e= ±1. Hence the irreducible equation

/(#) = 0 of degree m must be the same as the binomial equation xm - b = 0.

Further, the equations xn - a = 0, xm - b = 0 have a common root. Write

d = (m, n), n = dN, m = dM, where (N, M)= 1 and aM = bN. There exist rational

integers u, v such that uM + vN = 1. Then
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α * auM+vN - (buav)N,

where N | n. Conversely if a*=AN, where A is in K and N \ n, the equation

xn — α = 0 is obviously reducible in X.

This proves the lemma

3. Proof of theorem. The ideas involved are not essentially different from

those of Besicovitch The given conditions imply that the theorem holds for

s = 1. It will be proved by induction on sf and so it may be assumed that no

such relation as P = 0 holds for 5 or fewer roots of equations satisfying the

given conditions. We then prove it for s + 1 roots. Suppose a relation such as

(3) P(xu x2, . . . , x s + ι ) - 0

holds, so that xχ is a root of the equation, supposed irreducible in K,

(4) Pox
r + ? ι Λ ; r - ι + . . . + PΓ « 0,

where POf Pl9 , Pr are polynomials with coefficients in K9 and of degrees in
χ2> X3> ** ' » *s + i respectively less than n2, 7i3, . . . , n s + 1 . Since 1/PO can be

expressed as a polynomial in x2, x$9 ••• » *s + i with coefficients in K9 we may

take Po m 1. We write

P ι = P \ ( χ 2 ) β Λ ( * 2 » xz> ••• y x s + ι ) ,

and so on, according to the variable occuring in Px which we wish to emphasize.

Each root of the equation (4) in x can be written as

x = e'xi9 where €* ι » l

Hence from the product of the roots of (4), xt is also a root of an equation

e / = ± Pr, where e"1 « 1,

Also € β 1 when the field K is of the first type. Write

Xx^ex[, and so *»ι « α [ .

Then by the lemma, A^ is a root of an equation irreducible in K,
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where Ax is in K. Also,

(5) xιm±pr

say. Hence the relation ( 3 ) is replaced, when the new variable Xx is introduced,

by the relation ( 5 ) which is in general simpler. The equation

( 6 ) ( Q ( x ) ) N ι - A x = 0

has a root x « x2; and since * 2 - α2 is irreducible in the field K(x3, x4t . • ,
xs + ι) by ^ e hypothesis for s variables, each root of x 2 - α2 = 0, for example,

the conjugate x'2ol x2f must be a root of (6); so

where Xι is one of the conjugates of Xι since X ι - At is irreducible in K.

Now Λ̂ & = Q{x2) is the root of the equation in K(x39 x4, . , Λ̂ S + I ) ,

F = {X-Q(x2)) ( A - < ? ( ^ ) ) . . . = 0,

where the product is extended to all the conjugates of x2 Since all the roots

of the equation F = 0 in X are conjugates of Xίt and since, by the hypothesis

for s variables, X ι - Ax i s irreducible in K(xS9 x49 ••• , « s + 1 ) , we must have

for some integer Mx > 0, and so n2 « MιNι* Since /Vj > 1, on comparing coef-

ficients of X 2 " , we obtain

(7) ΣQ(X'2) = o, Σχ; = o,

where the sum is extended over all the conjugates of x2 and Xi9 respectively.

There are of course exactly Mx conjugates of x2 which give the same Xχ.

Write now

X - Q(χ)
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where BQ = BQ(x3, x4, ••• , xs + ί), and consider all the relations obtained by

changing x into x2 and all its conjugates. By addition, on noting (7), we get

β Π 2 . ι = 0 . Write now

Xί /χ2 = X[.

Then by our condition and by our lemma, Xγ must be the root of an irreducible

equation in K,

and the conditions involved in (2) still hold. Proceeding as before, we get

Bn 2 = 0, and so on until Bχ = 0. By the theorem for s variables, a relation

such as

Xt/xn

2*'l-B0

is impossible since Xx /x^ is the root of an irreducible binomial equation.

This finishes the proof.
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