IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY

EpwarDp R. FADELL

INTRODUCTION

0.1. Given a Mayer complex M, a subcomplex M is termed an unessential
identifier for M if the natural projections from ¥ onto the factor complex M/M*
induce isomorphisms-onto on the homology level (see [1, $1.21). The present
paper is a continuation and improvement of certain results obtained by Rado”and
Reichelderfer (see [1] and [3]) concerning unessential identifiers for the
singular complex R of Radd (see [1, § 0.1]). We shall make use of the results,
terminology, and notation in [1] and [3] with one exception. Because of a con-
flict in notation in [1] and [3], we shall use the notation mp for the homomor-
phisms

. S
m, i C

CR
p T p

defined as the trivial homomorphism for p < 0, and for p > 0 as follows:
np(do, ceey dp, T)s - (do’ ceey, dp’ T)R

(see [1, $0.31).

0.2. The principal results of the present paper may be described as fol-
lows. Let N (o Bg) denote the nucleus of the product homomorphism

R ., rR S
THEOREM. The system { N (op BPR )} is an unessential identifier for R.
Furthermore, for each p we have
R AR ~ R
N(opo ) D AP P} Fp ,
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where {3R} and {fR} are the largest unessential identifiers for R obtained by
Reichelderfer [3, §p3.6] and Radd [1, $4.7], respectively. Thus {N(ap B;z )}
is the largest unessential identifier presently known for R and imposes all the

classical identifications in R.

Let N (B:) denote the nucleus of the barycentric homomorphism

S.rS S
BP : CP — Cp .
THEOREM. The system {N(B;)} is an unessential identifier for S.

It is interesting to note that the foregoing theorem gives for the Eilenberg

complex S the result corresponding to that of Reichelderfer for the Radd complex
R (see [3, $3.2]).
I. PRELIMINARIES

1.1. Let vy, «++, vp denote p + 1 points in Hilbert space Eo. The bary-

center b = b (v, +++, vp) of these points is given by
b=(vg+e+e++vp)/ (p+1).
The following lemmas are easily verified.
1.2. LEMMA. Letvj(j=0, -+, p) denote p + 1 points in Ex, and

p
X = Zp'jb(vo’ cee ,v]-),

j=o

where K is real for j=0, <+« , p. Then

5 M £
x = — vj, wit = (TP
bt = S = % L+l g

1.3. LEMMA. Let vj (j=0, -+, p) denote p + 1 points in Ew, and

P
x = z B Y
]=0

with K (j=0,+.+,p) real and satisfying
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Bo 2 By 2o 2py 200

Then
P
X = Z Ajb(voouo 1)]')’
j=o0
with

)‘i=(j+1)(“j"”j+1) for j=0,++,p—1(providedp-1> 0),

and

. Aj:

p p
Ky e
j=0 j=o

1.4. As in [1], let d,, d,, d;, +++ denote the sequence of points (1, 0, 0,
0,.--), (0,1,0,0,...),(0,0,1,0,++2), e« in Eoe. For integers p, ¢ such
thatp > 0, 0 < ¢ < p + 1, the homomorphism

Qup Cp——an“
in the formal complex K of E. is defined by the relation
(dp+1, vgs «++» vp) for ¢=0,
q*p(vo, R Up)= (=1)(vgy «+, Vg-1s dp+l’ Ugs ***» vp) for 1 < g <p,

(=1)P* (g veey vp, dp+q) for g=p+1.

1.5. For p > 0, let 7, denote an element of Tp, (see [3, $1.91), and let

(igy o2+, ip) denote the permutation of 0, -+, p which gives rise to 7p. Then
we let sgn 7, denote the sign of the permutation (ig, +++, ip): i.e., sgn 7, is
+1 or =1 according as an even or odd number of transpositions is required to

Obtain (io, LU Y ip )-
The following lemmas are then obvious.

1.6. LEMMA, Forp >0 and L € Tp+1 0y there exists a unique my € Ty,
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and a unique q, 0 < g < p + 1, such that

(dos e dy,,

7%,+1(d0".'-'d )=q*P17p(p+1) )-

pti pt1

1.7. LEMMA. For p > 0, let E, 4, denote the set of ordered pairs (q, mp),

0<qg<p+1,m € Tpo. There exists a biunique correspondence

& Tper0 —Eps+y

with
f’fpﬂ = (g, m,),
such that
7o Uos ++v 5 dpit) = 9,1 (p+ 1), 4, (dos o 5 o)
and
+g+1
Sgn T,y = (=1)P79%! sgn L
1.8. Let

hp : Cp — Gy
denote a homomorphism in K such that
hp(do LR dp) =t (wO, eoey, wq).

Then [hp] will denote the usual affine mapping from the convex hull |dg,««+,dy|

of the points dg, +++, dg onto the convex hull |wg, <+, wq| of the points

Woy +++ 5 wg such that [A,] (d;) =w; for i=0,--+, 4.

1.9. Let B: denote the barycentric homomorphism in R, and pfp the bary-
centric homotopy operator in R of Reichelderfer (see [3, $2.1]1). The bary-

centric homomorphism
S.rS S
ﬁp : Cp — Cp
in S may be given by

/3: =9, B}f Mp (see [2, §$3.71).
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The corresponding homotopy operator
S S
p*p C —’Cp‘*l
is given by

p*P P“p*P Mp >

1.10. Employing the structure theorems for B}’f, p*RP (see [3, $2.21) we

obtain the following:

LEMMA. Forp > 0,

B:(do,"’adp, T)S= Z sgn Tp(d0’°°"dp’ T[Op+1 bpo 71-;)])51
7p € Tpg

P
pr(dO""’d[u T)s= kz 2 ( ]-)k sgn T, (dos"'ydp+l, T[bpk'ﬁ;])s.
=0 75 € Tpg

Proof. We have

By (g o5 dp, T)° = 0 BR(dgy v 5 dp, TIR

i

Up Z (0p+1 bpo 'Ti;(dw ey dp), T)R

7p € Tpo

= 2 Sgn %(do,o.o,dp’ T[Op+l bpo 7;,])5,

Tp € Tpo
and

p*P(do, -oo, .T)s= p+1p*p(d0’ ooo,dp’ T)R

= %+t Z > (bpk (doy +ev s dp), DI

k=0 Tp € Tpk

P
=2 T G e p(doy ey dpar, Tlopk 1.

k=0 T, € Tpg
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1.11. In [2], Rado’ makes use of the following identities which we state in
terms of p*}; :

R R
(1) Opt1 Pap Mp %p = Opsy Prps -0 <p < ®,
R _ R
(2) oy B mp 0y =0y By -@<p <.
The proof of (1) may be modeled after the proof for the corresponding identity

stated in terms of the classical homotopy operator pg (see [2, $3.5]1). From
identities (1) and (2), we have

(3) By oy =9, By

s R
(4 pip % = Tpay Pup>s

S S R R
(5) Bp+l p*p op = ap+l Bp-H p*p
for all integers p.
1.12. Let P; and P, denote the following propositions:

Py, Let cg denote a p-chain of S such that

s s _
chp-O.

Then

s s s _
Bpﬂ Pap p = 0.

P,. Let clf denote a p-chain of R such that

R R _
o, BP cp 0.

Then

R R R
Up+l ﬁp+l p*p cp = 0.
THEOREM. P, = P,;i.e., P, is true if and only if P, is true.

Proof. Assume P,, and let c}f denote a p-chain of R such that
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Then via identity (3) we have

Therefore

But via identity (5), we have
R R R
%p+1 Pper Pup ¢p = 0

and P, follows.

Now assume P,, and let c}f denote a p-chain of S such that

S S
=0,
Bp <p
Then since
s _ R
Bp =9y By mps
we have

Therefore, via P,, we have

R R s _
Tp+1 Bper Pup Mp ¢p = 0-

But via (5) and the fact that o, np =1, we have

R R S _ S S S_ S S .5_
9541 Bpr1 Pap Mp p = Ppur Pup %p Tp 5 = Bpay Pip & 0,

and P, follows.

II. THE PROOF OF P,

2.1. We shall use throughout this section the notation 7 for the p-cell
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(dgs +++ 5 dp, T)S when there is little chance for ambiguity. Under this con-
vention a chain c: having the representation

n
S
¢y = 2 Aj(dgs voe s dp, Tj)°
j=t

may be written Z}Ll Aj Tj. Thus T represents both a transformaticn from the
convex hull |dg, «++, dp| into the topological space X and the p-cell (dgy+--,
dp, T)°.

P

2.2, For p < 0, the proposition P, is trivial. For p = 0, P, is also trivial.

For since B(If =land o n =1, we have

0
implying

whence clearly
Bls pfo cg = 0.
Now, take a fixedp > 1. Let
s n

j=1

denote a p-chain of S such that

S .S
Bp ¢y = 0.
Via §1.10,
n
(1) Byes =2 Ajsgn 7 Ti[0p+y bpo 7 1.

j=1 Tp€Tpg

Let E denote the set of ordered pairs (j, 7,), 1 <j < n, 7 € Tpo. Then
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2 Ajsgn 7y Tj[0p4y by 7p 1.

(2) B‘; c:
(j,Tp)€E

We now define a binary relation ‘““="’ on £ as follows:
(s ) = (G5 77)

if and only if 7;[0p+y bpo 1, Tj»[0p+y bpo 7] are identical p-cells. Then

““=” as defined is obviously a true equivalence relation and induces a parti-

tioning of £ into nonempty, mutually disjoint sets E5 (s =1, «+., t) with
¢
E= U E;.

s=1

Therefore, via (2), we have

(3) Bpep=2 2 Msenp TjL0pubpo )
s=1 (j, 7p) € E;

Take 1 <s < s’ < ¢ Then for (j, Tp) € Es, (j5 Tp) € Es-, the p-cells
Til0p+1 bpo ), Tj2[0p41 bpo 7p ] are distinct. Therefore, since

s S
Bpcp =0,

we must have for each s, 1 < s < ¢,

(4) Z Aj sgn P Tj[0p+l bpo '7?,] =0,
(j, Tp) € Eg
and hence
(5) z: )‘j sgn 7 = 0,
(j, Tp) € Eg

since all p-cells occuring in (4) are identical.

2.3. Again via $1.10,
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3

M~

s s S
(6)  BpuiPup G =

2

TpETpk Tp+l€ Tp+10

~
]
—

x>
il
o

(~1)* sgn T sgn Tar A Tilbpr 7] [0p45 bpuy o7per]e

Applying the lemma of § 1.7, we obtain

—

pt

n
A DD DD MR R
0

|4

S S 5 _
(7) p+1 p*p Cp - Z
k=0 Jj=1 Tp €Tpg T, € Tpg

q:
sgn mp Ti[bpk 1 [0p42 bpﬂoq*p mp(p + Dp+1l }.

Thus, to prove that

s s s_
Bp+i Pipp = 05

we are led to consider for a fixed k and ¢, 0 < &k < p, 0 < g < p+1, the ex-

pression

n
(8) Yeg= 22 2 2. Ajsen 7 sgn mp Tjlbpk 7p]
j=t Tp €Tpp mp € Ty

[0p+2 bp+l'0 94p "p(P + l)pﬂ]'

Now to prove P; we need only show that Y, = 0. Therefore % and g will remain
fixed throughout the remainder of this section; and even though subsequent
definitions will depend upon % and g, they will not be displayed in the notation.

2.4: FOI‘
T = 727(':0”"":p) € Tpo

(see [3, $1.9]) there exists a unique permutation (ng, +++, nz) of 0y «oe, k
such that ip  <eee <ip. Let

Ty = T (jos *++ s ip),

where j; =ip; for [ =0, «e+, k, and jy =i, for k+1 <1< p. Then there exists
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a unique permutation (mg, +++, mg ) of 0, +++ , k, namely (ng, +++, ng)"!, such
that

= 7;,(]',"0, ooy fmps Jesrr = ]‘p),
Furthermore, let A(7,) denote the set of m, € T,, defined as follows. For
mp = np(uo, ceey up) € Tpo

we have a unique set of integers lg, «++, 1, 0 < g <+++ <[, <p such that
(ulo’ s+, uy) is a permutation of 0, +++, k. Set m, € A(7) if and only if
”‘0=“10’ ceey, mk=u[k,

2.5. Let B denote the set of ordered pairs (7, mp), B € Tpo, mp € A(7),
and B’ the set of ordered pairs (7;,', n};), 7i; € Tpk’ n}; € Tpo- We define a
mapping

y: B —™B’
as follows:
)’('ﬁ)’ 77p) = ('727', TT};)

where 7.'= 7, and mj = mp. One shows with little difficulty that y is biunique.

Therefore
n —
(9) qu= 2. AisgnTpsgnm Tf[bpk ]

[0p+2 bp+10 9,, 7p(p+ 1)psi].
2.6, Let A=A (7,(0,+++,p)). For 7, € Tp, we define

f, 1A—A4(p)
p

as follows. For np(uo, ceey up) € A, there exist integers [y, +++, lk ,
0<ly<+e+<l, <p, such that uy, =0, c0e 50, = k. Define

fr mp = mp(ugy +eeyup)

as follows, Let



540 EDWARD R. FADELL

:’_b = ?P(jo’ e ,jp) and = 7i’(jm0’ ey j’"k’ jk+l’ LR ’jp)’
where (mgy «++, m; ) is a permutation of 0, ««+, k. Set ufo =Mmgy ece s ufy = my,
and u=u; for r # lg, <=+, |,. Here again it is easy to show that f_is bi-
p

unique. We have then

n

(10) qu= z Aj sgn —7;', sgn f-rp Tp Tj[bpk ;’p]

j=1 Tp€Tpy M €A
[0p42 bp410 9up f.rp mp(p+ 1)p+1l,

and hence

(11) qu=z > )\isgnﬁ,sgnf,rpﬂp T; Ubpk 7p]
s=1 myeAa (j, p)€E;

[0p+2 bp+l 09p f'rp 77p(P + 1)p+1]

(see $2.2).

2.7. LEMMA. Take np(uo, ooy up) € Tpo and let

A = [0P+2 bp+10 q*P ﬂp(p + 1)p+1]o

Let
p+1
x= 2 #dj
]j=0
with
p*t
#1'.>_O: j=0""’P+1, and z: p].: 1,
j=o
denote a point of [dgs +++ s dp4y|. Then
p+1

alx) = Z aj dj,

]j=0
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where
(i) aj >0, j=0yeee,p+1;
(ii) aj = 1;
(iii) ayy > @y > o002 ayy;

(iv) aygs oo s @y, , Gp+y are independent of mp; i.e., if mp=mp (ugy+++,ug)€

Ty and
&’ =[0p42 bp+10 9up mp(p+1)p+r ],
then
p+1
W(x) = 2 aj'd]-
j=o0
with

’ ’ 4
Auy = Qug s *** ’aup = au{,: ap+1 = Gp+y -

Proof. We consider only the case 1 < q¢ < p since the fringe cases ¢ =0,
p +1 follow in a completely analogous manner. In case 1 < g < p we have

o = [b(wo)b(wo, w‘)'" b(wo’ e 9wp+l)]’

where

wy=dy;,, 1=0,+0, 9~ wg=dpsi, wy=dy; ;, l=q+1-e,p+1.

Therefore,

ptt p+1 [ p+1 w
a(x) = Z I‘jb(woy“‘,wj)=z (Z —|w;

j=o j=o \ 15 t+1

(see $1.2). Let
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p+l I‘Ll p+l p_l
a = —_— ay = : for r=0, ¢« -1
p+1 lg: I+1’ u, E T+ 1 ’ ' q
q r
and
pt+t
ay, = Z for r=gq, «e+, p.

1=ay L+

Clearly, ayg, ---, @u,, ap+y are independent of 7, in the sense of (iv), and
Guy > +++ > ay,. Furthermore, aj > 0 (j=0, -+« , p+ 1), and

ptl ptt

j=o j=o

Also,
ge1 P p+l
(=) = 37 au;du; + apridper + 30 au;duy = 37 ajdj,
].=0 ]=q j=0

and the lemma follows.

2.8. LEMMA. Take (j, 7,) and (j, ) € Es (see §2.2), 1 <s <t and
np € A. Then

Tilbpk 1 [0p42 bp+10 9up fr, mp(p + 1)p+1]
=T lbpr "1 [0p+2 bp+10 9up frg mp(p+1p4r ]
Proof. Since (j, 7,), (j% %) lie in E5, we have
Tj[0p+1 bpo 1=Tj+[0p4y bpo 71,
Let
Mp=fry mh=mp(uos s s up)y mp=frgmp=mp (ugs ooesup),

U= [0p+2 bp+10 q*p ”p(P + 1)p+1]9 o= [0p+2 bp+1 0 q*p ”};(P + 1)p+1]9
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Furthermore, let
B= pliosersiph p=Tpligeesjp)s
o= Ty (igs eeesip)y T = Tp (jgseee ,]'1;).
We have permutations (mg, +++ » mj ), (ngy <=+, ng) of 0, «++ , & such that
o= Tolimgs *** s Jmps Jp4rr ""jp)’
B =T Ungs *t s ings jl:+1""’j;;)

Take an arbitrary point of |dgy ++ dp+1 |, say

p+t p+1
x=2p.jdj I‘jZO:Zl‘j=1'
j=o j=o

Then via the lemma of < 2.7 we have

pt+l pt1
a(x):Z a}d] with a]'ZO, Za]'=1,auo_>_..._>_aup,
]’:0 j:o
and
pt1 p+1
‘ d; i ? ! = ‘ s i
W(x)= 3 afdj with af >0, 3" af =1, ajg > -+-> ajs ,
j=o j=o
with
a, =aiss+vesa, =a,’ and a = a}
ug uf » Qup up p+i pHle
Now

Y= [d]o 9 **° djk’ b(dj09 ...’djk)’ sy b(dlo’ ey d’p)].

Hence
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yo(x)=a, d,'o trevtapdp tay,, b(djo, ceey dfp)+"'+
aper b(dj s +ee s dj )
=ap, d]-m° +ees tam, djmk +a,,, b(djo, ,d]-k)+---+
ap+1 b(djo,---,djp)

= am, dj

mg et Omy djmk+ak+l b(d]

mo,...,dimk)+...+

Gp+1 b(d]mo ’.“’d].mk’ d

jk+1’.'.’djp)

=amg dig+eectap, dip +ay, b(di,eee,dip)+ees

+apey b(djgseeesdi)).

Now take integers lgyeee,ly, 0 < ly <e+e<ly < p, such that (ulo"”’ulk)
is a permutation of 0, «., k. Since mp € 4 (7;,), we have mg = Ulgs ®o*s My = Ulye

Hence ap > ¢ > amy, .
In a similar fashion we obtain

‘y’O(’(x)=a,:o d,‘ol +---+a,§k di;c +a1:+l b(d,é ""’dii)+"°

+ apey b(djg,eee5dig),

with ag > «+«>ap, 5 and if Igy e, If, 0 < 1§ <+++ <I{ < p, are integers such
that (u3 ,+.-, ul'l:) is a permutation of 0, ., k, we have

ng=1u/ n, =u;j
== cee = P
0 (¥ " lk

Applying § 1.3, we get

k
Ay dig + o + apmy diy = 12 y  b(digs oov s dyy)
=0

with

yi=+1)(am; —amy,,) for 1=0,cc, k-1,
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Ve = (k+LD)am, ,

and
k k
> Yi = 2 om -
l=0 l=
Similarly,
k
any dig+eeetan, die = 20 y[bdigseeesdir)
l=0
with
yl'=(l+l)(a,;l - a,;l“) for 1=0,¢00,k~1,
y]: = (k+ l)a,:k
and
k k
Z yl’ = ’;l *
l=0 i=0

However, since
* ’ %
p = f'rp Tps Tp = f'r,? Tps
we have
lo=13s 2> L, =l,: and ur=u/ for r £ lgy eee, l-
= ‘s coe = "
Therefore, Gupy = Gufs s » Guy = aufy and hence
4 r'd
am0 = ano, oo amk == ank N

Thus

il

v, =y for r=0,.c0,k.

Furthermore,
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4 4
ay, = ay; for r £ lg, o0, 1, and ap4y = ap4y .

Therefore,

k P
yoa(x) = Z ylb(dio’ “"dil ) + Zal“ b(dio’ ey dil)’

l=0 i=k
k P
y'O('(x)= Zyl b(d;(;s A di{)"‘ Z 2 b(d169 crcy di{)’
l=0 L=k
with
k p pt+1
2Nt 2y =2 =1
l=o0 L=k l=0
Let
P
y = 2 hjd
j=0
with
h]'= y]- for j=09"'9k—1,
hp =i + 94y
hi =84y for j=k+1,..+,p.
Clearly,
P
hj>0 (j=0ye-+5p), and D> h; = 1.
j=0
Then

P
}/O((x) = Z hl b(di09 sy dil) = [0p+1 bpo 7?)](9')
l=0

and
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P
Y'C('(x) = Z h[ b(dz,év ey d‘l') = [0p+[ bpo 7;;]()’).

l=0
Therefore, since
Tj[opﬂ bpo 7;;]()’)= Tj'[op-n bpo 7j7']()’)y
we have
Tj y o(x) = T/" y’ ol (x).
Since x is arbitrary in |dg, +++ , dp+1 |, our lemma follows.
2.9. LEMMA. Foranys,1<s <t and mp €4,
2 Aj sgn T, sgn pr np = 0.
(j, 'rp)EES
Proof. Since
sgn % sgn f, 75 = sgn T sen 7,
we have
> Aj sgn 7, sgn f,rpn;:sgn p > Aj sgn 7, =0
(i, TpEES (j, Tp)EES
via (5) of $2.2.

2.10. Employing §89.8, 2.9, and (11) of $ 2.6, we see that qu =0, and
hence P, follows. Let us note also that since P, = P,, P, also is valid,

III. REsuLTS

3.1. In [1, $4.2], Radd has established a lemma, which we state here for
the barycentric homotopy operator pfp .

LEMMA. Let {Gp} be an identifier for R, such that the following conditions
hold:

(i) Gp > A: (see [1, §3.41),
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(ii) c € Gp implies that 7, /3 =0,

p P

(iii) c[l} € Gp implies that pfp c;3 € Gp+1 .
Then { Gp} is an unessential identifier for R.

The proof of this lemma is identical with the proof of the corresponding

lemma as given by Rado’with p}f (classical homotopy operator ) replacing pfp.
Since
o pR:CcR ¢S
PP p p

is a chain mapping, the system {N(o_RR)} of nuclei of the homomorphisms
% Bg is an identifier for R (see [1, $1.2]). Furthermore,

R R _. R _ S
N(GPBP)DAP since aPBp _Bpap

(see $1.11). Applying P, directly, we see that N(op B ) satisfies (iii) of
the foregoing lemma. Therefore, since N(o_ pR) is the largest identifier,
satisfying (ii), we have the following maximum result yielded by the same

lemma:
THEOREM. The system {N(ap Blf)} is an unessential identifier for R.

3.2. In order to compare our results with those of Radd'[1] and Reichelderfer
[3] let us first note that

N R R
N(op ,Bp ) = N(op BP),

where ﬁ(ap B;‘S) is the division hull of N(ap [35 ), since C;a is a free Abelian
group. Then since

R R _ R R
N(GPBP) D AP = N(BP) + AP
(see [3, $3.6]) we have

R AR - 1°R
N(o, BR) > AR > T

(see [1, $4.7]).
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The writer has been unable to determme as yet whether N(a B ) is ef-

fectively larger than either AR or FR

3.3. The following lemma (see [1, $4.1]) is immediate from the fact that

pfp satisfies the well-known ‘‘homotopy identity,”’
S S S _ s
(9p+l Pup + P *pla ﬁp—l.

LEMMA. Let {Gp} be an identifier for S such that the following conditions

hold:
. S = . . S .S -
(i) ¢y Gp implies that ﬁp cp o,
.e S c . . S S =
(ii) cp Cp implies that Pep p Gp

Then { Gy} is an unessential identifier for S.

The system of nuclei {N(Bs)} clearly is an identifier for S since ,B: is a

chain mapping. Therefore, applying P; we obtain the maximum result of the fore-

going lemma.

THEOREM. The system { N (Bz)} is an unessential identifier for S.
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