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Introduction The present paper presents an analysis of certain transition

operators arising in some learning models introduced by Bush and Mosteller

[2] They suppose that the organism makes a sequence of responses among a

fixed finite set of alternatives and there is a probability pj1 at moment n that

response s will occur. They suppose further that the probabilities ps

 ι ' are

determined by the pj1, the response sn made after moment n, and the outcome or

event rn that follows response sn. We shall examine in detail the one-dimensional

models which occur in their theory. These models can be described in simplest

form as follows: There exist two alternatives Ax and A2, and two possible out-

comes Γγ and r 2 , for each experiment. There exists a set of Markoff matrices

Fq which will apply where choice i was made and outcome ry occurs. Let p

represent the initial probability of choosing alternative A2f and 1 — p the prob-

ability of choosing Aχ Depending on the choice and outcome, the vector (p,

1 - p) is transformed by the appropriate F/y into a new probability vector which

represents the new probabilities of preference of A2 and AΪ9 respectively, by

the organism. The psychologist is interested in knowing the limiting form of the

probability choice vector (p, 1 — p) .

The mathematical description of the simplest process of this type can be

formulated as follows: A particle on the unit interval executes a random walk

subject to two impulses. If it is located at the point x, then x—> Fxx = σx

with probability 1 - φ(x), and x —• F 2 * = l - a + O# with probability φ(x)

The actual limiting behavior of x depends on the nature of φ{x). The transition

operator representing the change of the distribution describing the position of

the particle is given by

(TF)(x)= [X/σ[l-Φ(t)]dF + [(Xl+a)/a Φ(t)dF.
Jo Jo

We introduce an additional operator, acting on continuous functions, and

given by
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Uπ(t) = (1 - φ{t)) π(σt) + φ(t) π{ 1 - Oί + at).

It turns out that T is conjugate to U; hence knowing the behavior of U one ob-

tains much information about T. This interplay shall be exploited considerably.

The operator T is not weakly completely continuous, nor does it possess any

kind of compactness property; thus none of the classical ergodic theorems apply

to this type [3]. The limiting behavior of TnF depends very sensitively on the

assumptions made about the operators F; and the probabilities φ(x).

Section 1 treats the case where φ(x) = x. This causes the boundaries 0

and 1 to be absorbing states, and thus the limiting distribution concentrates

only at these points. However, the concentration depends on the initial distri-

bution. By examining the corresponding U in detail, we have been able to obtain

much additional knowledge. For example, we have shown that if π is m times

continuously differentiable then {Unπy' converges uniformly for each 0 <̂  r <_

m - 1. It is worth emphasizing that the knowledge of the convergence of the

distributions does not imply the uniform convergence of Unπ for any continuous

function 77. Additional arguments are needed for this conclusion. In this con-

nection, we finally remark that R. Bellman, T. Harris, and H. N. Shapiro [ l ]

have analyzed only this case independently. They did not point out the con-

nection between the operators T and ί/ The methods they used to establish the

convergence of TnF are probabilistic. Our paper in § 1 overlaps with theirs in

some of the theorems, notably 6, 8, 9, 12, and 15; our results subsume theirs,

and their proofs are entirely different from ours. Section 2 considers the case

where φ(x) is monotone increasing and

\ Φ i χ ) - Φ ( y ) \ < u < l .

This leads to the ergodic phenomonon, or steady-state situation, where the

limiting distributions are independent of the starting distributions.

In §3, we examine the situation φ(x)=l — x This corresponds to com-

pletely reflecting boundaries, and of course the ergodic phenomenon holds.

Other interesting properties of the operators are also developed. We consider

in §4 the case where φ(x) is linear and monotonic decreasing. Section 5 intro-

duces a further possibility where we allow the particle to stand still with cer-

tain probability. This type has been statistically examined by M. M. Flood [5].

In § 6 we investigate the general ergodic type where φ(x) is not necessarily

linear. The arguments here combine both abstract analysis and probabilistic

reasoning involving recurrent event theory. Furthermore, it is worth emphasizing,

the proofs given in § 6 apply without any modifications to the case where we

allow any finite number of impulses acting on the particle. In a future paper we
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shall present the extension of this model to the circumstance where changes

in time occur continuously and the possible motion of the particle has a con-

tinuous or infinite discrete range of values.

The last section studies some of the properties of the limiting distribution

in the ergodic types. It is shown in all circumstances that the limiting distribu-

tion is either singular or absolutely continuous, and the actual form depends

on the value of Ot + σ.

Most of the analysis carries over to higher dimensional models where more

alternatives are allowed. In a subsequent paper we shall present this theory

with other generalizations. We finally note that this paper represents a combina-

tion of abstract analysis and probability; it is hoped that the methods used

will be useful for future investigations of this type.

It has been brought to my attention by the referee that the material of [6],

[7], [8], and [9] relate closely to the content of this paper. This techniques

seem to be different.

1. Λ particle undergoes a random walk on the unit interval subject to the

following law: If the particle is at xf then after unit time x —» Ot + (1 -CC)%

with probability x, and x —> σx with probability 1 - x, where 0 < Ot, σ < 1. If

F(x) represents the cumulative distribution describing the location of x at the

beginning of the time interval, with the understanding that F (x) = 1 for x >_ 1

and F(x) = 0 for x <^ 0, then the new distribution locating the position of the

particle at the end of the time interval is given by

(1) G U ) = Γ
fx/σ /*(λ>α)/(l-α)
/ (l-t)dF(t) + tdF(t).

Jo Jo

Indeed, the probability dG(x) that after unit time the particle is located at

x can materialize in two ways; namely, the particle was at x/σ and moved with

probability 1 - x/σ to x, or it jumped with probability (%-C()/(l-Ct) from

{x — Ot)/(1 — Ot) to x during the unit time interval. This yields

dG(χ) = 11--)dF(-) + dFl ),
\ σj \σl 1-ot \ l-0 ί/

which easily implies the conclusion of equation (1).

Equation (1) represents the transition law for the particular Markoff process

on hand.

The transformation T is easily seen to furnish a linear bounded mapping

of the space of functions of bounded variation (V) on the unit interval into
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itself. Furthermore, T takes distributions into distributions and is of norm 1.

This section investigates the behavior of Tn for large n with the aim of deter-

mining limiting properties of Tn.

We consider the following additional mapping U applied to the space of

of continuous functions defined on the unit interval C[θ, 1]:

(2) { U π ) ( t ) = ( l - t ) π ( σ t ) + t π ( θ i + ( 1 - O ί ) ί ) .

The operator ί/has a probabilistic interpretation which we shall speak about

later; but its direct relevance to T is given in Theorem 1. The inner-product

notation

(π,F) = / π(t) dF(t)
Jo

will be extensively used.

THEOREM 1. The conjugate map {/* to U is T.

Proof. I t i s n e c e s s a r y to verify t h a t (Uπ, F) = (π, TF) for a n y c o n t i n u o u s

funct ion π(t) a n d a n y d i s t r i b u t i o n F(t) w i t h F(t) = 1 for t >_ 1 a n d F ( ί ) = 0

for ί < 0 ~ . I n d e e d ,

(Uπ, F ) = f ( l - t ) π ( σ t ) d F ( t ) + J t π ( θ L + ( 1 - α ) ί ) d F ( t ) .

By a change of variable, we get

Γ / t\ /t\ c t - α /£ - α \
(ί/ττ, F ) = / (1 \π(t)dF[- + /τr(ί) rfFI )

J \ σf \σl J 1-α \ l - α /

^π(t)dG(t) where G ( ί ) = TF.
• / •

The value of Theorem 1 is that, by studying the iterates of ί/Λ, we deduce

corresponding results about the conjugate operators Tn We proceed now to

study this operator ί/. To be complete, we should denote the operator by Uσt0L9

but where no ambiguity arises we shall drop the subscripts. Let W denote the

isometry

IΓιr(ί) = ι r ( l - t ) .
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Clearly W'1 = W. We now observe the identity

( 3 ) £ / i . α , i - σ - W/σ,αV.

The mapping ( σ , α ) — • ( l - α , 1 - σ ) of the parameter space into itself has

the effect of mapping the triangle of the unit square bounded above by l - ( X - σ = 0

into the other triangle located in the unit square. This isomorphism property

( 3 ) enables us to restrict our attention to the case where 1 - Oί - σ >_ 0. Cor-

responding theorems valid for the other circumstances, where l - ( X - σ < 0,

are deduced easi ly by virtue of ( 3 ) and will be summarized at the end of this

section. From now on in § 2, unless explicitly stated otherwise, we shall as-

sume that 1 - α - σ > 0.

The next two theorems, which we state for completeness, are immediate

from ( 2 ) .

THEOREM 2. The operator U preserves the values at 0 and 1.

THEOREM 3. The operator U is positive; that is, it transforms positive

continuous functions into positive continuous functions.

In particular, if πχ(t) > π2(t), for al l ί, then JJπγ >_ Uπ2

THEOREM 4 . If π9 π',..., π(n) > 0, then Uπ, (ί/ττ)', . . . , (Uπ)(n) > 0.

Proof. A s imple ca lcu lat ion y i e l d s

( 4 ) (Uπ)M = (1 - t)σn πM(σt) + t(l -a)n πM(0L + (1 -OL)t)

+ n ( l ~ α ) n - 1

 π(
n-ιHa + (l-0L)t)-nσn-1 π{n'ι)(σt).

Since

σt < t < a + ( 1 - α ) ί ,

we conclude s i n c e π (t) i s monotonic increas ing that

π(n-ι)(0L + ( l - 0 ί ) ί ) > π(n-ι)(σt) > 0 .

The assumption that 1 -(X > σ implies that (1 - α ) " " 1 > σ11'1. As π^n\t) >_ 0,

it follows that (Uπr11' >_ 0* The same conclusion and argument apply to

(Uπ)(i){oτ 0 < i < n - 1 .
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In particular, U transforms positive monotonic convex functions into func-

tions of the same kind. Although in the proof of Theorem 4 we assumed the

existence of derivatives, the argument can be carried through routinely at the

expense of elegance, by use of the general definitions of convexity and mono-

tonicity.

THEOREM 5. // c > πU)(t) > 0 for 0 < i < n9 then (Urπ){ί)(l) < K( for

0 < i < n and hence (Urπ){i)(t) < Ku

Proof. The proof is by induction. By Theorem 2, the theorem is trivially

true for i — 0. Suppose we have established the result for the t'th derivative

with 0 <̂  i <^ n - 1. Equation (4) yields

(5) ( ί y f f )
( π ) ( l ) - 7 7 ( π ) ( l ) = c1(α)7r(

where cι(d) and c2(cr) are constants depending only on Cί and σ respectively,

and on n. If

7 7 ( n ) ( l ) > M(<X,σ, c ) ,

w h e r e M i s a c o n s t a n t su f f ic ient ly l a r g e , then ( 5 ) y i e l d s

(Vπ)M{D < πM{l).

Since Cj(α) and c 2 (σ) do not depend on k, and by the induction hypotheses

\{Ukπ)*ml(x)\ <M

uniformly in k and x, we find in general that when {U π) (1) becomes larger

than M ( α , σ, c ), then

(ί// c + ι τ r ) ( π ) ( l ) < (Ukπ)in)(l).

Consequently, the iterates (U 7 r ) ^ n ' ( l ) for k >_kQ are bounded by

M(α, σ, c) + cx(a)M + c2(σ)M.

This trivially implies the conclusion of Theorem 5.

The proof of the next theorem is due originally to R. Bellman. We present
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it for completeness.

THEOREM 6. There exists at most one continuous solution of Uπ = π for

which π (0) = 0 and π (1) = 1.

Proof. (By contradiction.) Let πx and 7Γ2 denote two solutions with the

prescribed boundary conditions. Put π0 = πt - 7τ2; then πo(0) = ^o( l ) = 0 Let

ί0 be a point where π0 achieves its maximum. Since

π(to)=(l-to)π(σto) + ί o τ r ( α + ( 1 - α ) ί 0 ) ,

we deduce that σt0 is also a maximum point. Iterating, we find by continuity

that 77(0) = 0 is the maximum value of π(t). A similar argument shows that

0 = min ττ(ί), which implies that πι = Ή2

THEOREM 7. For any function π(t) = tr with 00 > r >_ 1, Un(tr) converges

uniformly as n—^00.

Proof. Clearly t >_tΓ > p(t), where

0 for 0 < t < t0

' for t0 < t < 1
1 — £0

and t0 is close to 1 with r fixed. Since Ut is convex by Theorem 4, and the

values at 0 and 1 are fixed, we find that t >_ Ut. Hence

Unt > ί/n + ιί > 0,

and lim Unt = θ(t) for every ί. Since θ ( ί ) is convex, and by Theorem 5 the

derivatives of Unt at 1 are uniformly bounded, we conclude that θ(t) is con-

tinuous. By Dini's theorem the convergence of Unt to θ(t) is uniform. Obviously,

Uθ= θ. On the other hand, if t0 is close to 1 then ( ί / p ) ' ( l ) < p ' ( l ) ( s e e the

proof of Theorem 5 ) . Since Theorem 4 guarantees the convexity of ί/p, and the

slope at 0 is 0, it follows that Up < p, and hence Unp < ί/n+ιp5 therefore

lim Unp = φ{t). Again, φ(t) is a continuous fixed point, and therefore by

Theorem 6 we infer that φ(t) = θ(t). On account of Unt > ί/V > Unp, we

deduce that lim Untτ = φ(t) with the convergence being uniform*

We denote this unique fixed point of U by φσfa(t)> or by φ(t) whenever no

ambiguity arises.
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THEOREM 8. The iterates Un converge strongly (that is, Unπ converges

uniformly for any continuous function π)

Proof, The constant functions are fixed points of Un Consequently by

Theorem 7, Unq converges uniformly for any function q(t) in the linear space L

spanned by the functions ( 1 , tΓ\ The set L is dense in the space of continuous

functions. Moreover, as -j | ίy* 11 = 1, by a well-known theorem of Banach, Vnq

converges strongly when applied to any continuous function q(t)

The actual limit is easily seen to be given by

( 6 ) lim Unq(t) = q(l)φσt0L(t) + q ( 0 ) [ 1 - φσfCl(t)] .
n-*oo

This is an immediate consequence of the fact that the fixed points of U consist

of the two-dimensional space spanned by the function 1 and φσta Equation (6)

shows that two functions qΛ and q2 which agree at 0 and 1 have the same limit.

This enables us to show:

THEOREM 9. If q(t) is any bounded function continuous at 0 and 1, then

Unq converges strongly.

Proof. Let q(t), in addition to being continuous at 0 and 1, possess finite

derivatives at 0 and l Then clearly there exist two continuous functions hx(t)

and h2(t) with

h x ( t ) > _ q ( t ) > h 2 ( t ) ,

where hγiO) = h2(0) and / ^ ( l ) = h2(l). We conclude the result from this using

the argument of Theorem 7 and equation ( 6 ) If now q(t) is only continuous at

0 and 1, then we can find for any e a qe(t) satisfying the properties assumed

about q ( t ) in the first part of the proof with \q(t)~q£(t)\ < €. As 11 Un \ \ = 1,

the conclusion of the theorem now follows by a standard argument.

T H E O R E M 1 0 . / / \ π ( i \ t ) \ < c t f o r 0 < i < m , t h e n \ U n π ( i \ t ) \ < c i f o r

0 < i < m.

Proof. The proof is by induction. For r = 0, the result is trivial since U

preserves positivity, and the constant functions are fixed points of U Suppose

we have established the result for r = m — 1. We note that

Uπ(m) = ( l - f ) σ m τ 7 ( m ) ( σ ί ) + t ( 1 - α ) ( m ) τ r ( m ) ( α + ( 1 -

+ m ( l - α ) w - ι ι r ( ϊ l I - ι ) ( α + ( l - α ) ί ) - i ι i σ l l | - ι ι r ( l l | - ι ) ( σ ί ) .
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This easily yields that

where

| | < λ raax|;r(m)U)| + C max 177 ( m" ι )(ί) | ,
t

λ = m a x [ ( l - ί ) σ m + ί ( l - 0 ί ) m ] < 1.
t

Therefore,

m a x | ( ί A r ) ( m ) ( ί ) | < λ max \(ϋkmlπ)M(t)\ + C max I ( ϋkmiπ)m'1 (t) I
t t

< λ max \(U(k'ι)π)(m\t)\ + K

by our induction hypothesis. Iterating this last inequality gives that

Λ-i

m a x \ ( U k π ) { m ) ( t ) \ < Ύ\ λ ' K + λ k m a x I τ τ ( m ) ( ί ) I < M .
t ~~ ~ t

This establishes the theorem.

THEOREM 11. Ifq(t) belongs to Cn (n continuous derivatives), then

lim [Umq(t)Ϋr)

converges uniformly for 0 < r < n - 1.

Proof. We prove the theorem only for r = 1, for the other cases are similar.

On account of Theorem 10, the uniform boundedness of (Umq) implies the

equi-continuity of Umq \ Thus we can select a subsequence converging uni-

formly since Umq are also uniformly bounded. Let

Ψ(ί) = lim ί/V0.

Since lim U ιq converges uniformly to a unique limit θ(t)9 we obtain that

θ / ( ί ) = Ψ(ί ) As 0 ' ( ί ) is independent of the subsequence chosen, the con-

clusion of the theorem easily follows.

THEOREM 12. The fixed point φσ>a is analytic for 0 £ t < 1 with φjf a >. 0.
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Proof. Let p(t) denote a function infinitely differentiate with p (ί)>_ 0

and p (0) = 0, p ( l ) = l . By virtue of Theorem 11 and Theorem 4 we deduce that

lim ( ί / * p ) ( r ) = φ(r) > 0.

Therefore φσ$a *s absolutely monotonic and hence, by a well-known theorem,

is analytic.

At this point it seems desirable to summarize the analogous results of

Theorems 2 through Theorem 12 for the case where OC + σ <_ 1. We enumerate

the corresponding theorems.

T H E O R E M 4'. If ( - I ) 1 ' " 1 π{i)(t) > 0 for i = 0, 1, 2, . . . , n9 and π{t) > 0,

then(-lY'ι(Uπ){i)(t) > 0.

In particular, positive increasing concave functions are transformed into

functions of the same kind.

THEOREM 5 ' // C > π(t) > 0 and C > (-1) 1 ' " 1 π{i)(t) > 0 for 1 < i < n,

then 0 < (-IΫ'1 {VΓπ)U)(0) <Ki9 and hence \ Ur π{i)(t)\ < Kt for 1 < i < n.

Theorem 6 remains unchanged and is valid independent of the conditions on

α and σ, provided only they lie in the open unit interval.

Theorem 7 holds with a modification of the proof where p(t) is replaced by

the concave function

pit)

1 for 1 > t >_ t0'

1
— t for 0 < t < t0

to

and the functions tr are replaced by l - ( l - ί ) Γ . These also constitute, with

the constant function, a family of functions whose linear span is dense in

C[0, 1 ] . This enables us to infer the validity of Theorem 8. Theorems 9, 10,

and 11, with suitable changes in their statements which we leave for the reader,

are established by simple appropriate modifications similar to that indicated

above for Theorem 7. The unique solution φσta for this situation, where 0ί + σ <: 1,

is completely monotonic and hence analytic. In the remainder of this section the

theorems are established without any specification as to the value of OC + σ.

THEOREM 13. The functions
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ΦmU)- Σ Vn(t(l-t))

converge geometrically to 0.

Proof. It i s immediate from ( 6 ) that

t e n d s uniformly t o z e r o . S i n c e the d e r i v a t i v e a t 0 and l o f ί ( l — ί ) i s l and — 1,

we c o n c l u d e by T h e o r e m 11 that for n s u f f i c i e n t l y large there e x i s t s an

s u c h that

[ l - O ) < λ ί ( i - ί )

with λ < l Let kn0 denote the last integer k for which kn0 < m. We obtain

o < Φm(t)<ΦknoU) < — Σ, vHt(i-t)) < c\k < cP

(n°*ι)k <cP

m,

where

ι/(/ιo + i) ,
p = λ < l

T H E O R E M 1 4 . // q ( t ) i s c o n t i n u o u s , \ q ' ( l ) \ < oo a n d | ς r ' ( O ) | < o o ,

ίAen lim Un[q(t)] converges geometrically.

Proof. We first establish the result for special functions tr with 1 <̂  r <̂  oo.

A simple calculation shows that

- C ί ( l - f ) < U(tr) - ίΓ < C ί ( l - f ) .

For /i < m, we obtain upon continued application of ί/ and summation that

n n

-c £ i/^ίd-o) < ί/n(ίΓ)-ί/m(ίΓ) < c Σ, ί/'ud-o).

The conclusion now follows from Theorem 13. The general function q(t)9 satis-

fying the hypothesis of Theorem 14, can be bounded from above and below by

two polynomials Pι(t) and P2(t) which agree at 0 and l The result now follows
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directly from this fact and the first part of this proof.

We observe easily the identity

£ / ί - f = ( α + σ - l ) ί ( l - ί ) .

Applying successively V and adding, we obtain

oo

( 7 ) 0 σ , α = lim υmt = t + (α + σ - 1 ) £ ί £ ί ( l - ί ) .

This is useful for purposes of calculation.

Some remarks describing the dependence of φσ,a

 o n σ a n ( l & a r e *n order.

We consider the following identity:

1-0

If f(t) is any function with bounded derivatives, then we obtain by the mean-

value theorem that

Applying equation 8 to f(t) = φσ'iσ?y and remembering that inequalit ies are

preserved by Theorem 2, we obtain

\K,aΦσ',a-Φa',a'\< C( | σ - σ'| + |α - d'| ) Σ V
1=0

Allowing n to go to oo, we have easily that

! < ? W χ - φσ',a'\ <K(\σ-σ'\ + | α - α ' |

where £(77) is finite, provided that 0 < η < OC, Oί'σ, σ ' < 1 - 77 < 1.

It is worthwhile to discuss the nature of φσ>a for (σ,0C) lying on the boundary

of the unit square. First, we observe by direct verification that when (X + σ - 1,

then φσ9a(x ) = x. Next let OC = 0 and σ < 1; then
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Uφ = (l-x)φ(σx) + xφ(x).

Therefore, if φ is a fixed point with φ(0) = 0 and φ(l) = 1, then for x ^ 1 we

have that φ (x) = φ (σx), and hence φ(x)^φ(0) = 0 (0 <^ x < 1) provided

that φ is continuous at 0. Similarly, when σ = 1 and 0C < 1 then the only fixed

point φ continuous at 1 and satisfying φ(0) = 0, φ (1) = 1, is φ(x) = l for

0 < x < 1. On the other two boundaries of the unit square the solutions are

easily calculated and turn out as follows: If 0 < σ < 1 is arbitrary and (X < 1,

then

φσ.l = l - Π
Γ=0

while when σ = 0, 0 < Gί < 1, then

r=o

where L° = / and the operation L applied to x gives (X + (1 -0t)#. Finally for

α = 0, σ - 1 the operator U reduces to the identity mapping. We now investigate

the dependence of φσ%a

 o n σ and 0L as we allow σ and (X to tend to the boundary.

We limit our attention for definiteness to studying the case where (σ, (X)—»(σ0, 0)

with σ0 < 1, and we show that φσiα converges pointwise to 0 for 0 < x < 1,

and φσ9α (1) = 1 otherwise. Moreover, the convergence is uniform in any interval

0 < * < 1 - δ < 1° L e* (σn, (Xn) —> (σ 0 , 0); then without loss of generality

we may assume that 1 - σn - 0Ln > 0. Therefore the φσnfαn

 a r e convex, mono-

tonic increasing and positive, with φσn,αn (0) = 0. Also, for any interior in-

terval 0 <x < l - σ < 1, the first derivatives φ'σnf0Ln

 aτe uniformly bounded.

Since this implies the φσn,αn

 a r e equi-continuous over the subinterval, and as

0 ^. Φσ ,α £. 1> w e c a n select a subsequence which may be denoted as φσ f0Lr

converging to Ψ ( ί ) uniformly, for any interval of the form 0 < Λ ; < l ~ δ < l As

we get Ψ ( l ) = l and similarly Ψ ( 0 ) = 0. The uniform convergence of φσrtαr

guarantees the continuity of Ψat zero.

Put

^r = Vσr,αr> Vθ = ^o-0,o and φr = φcrnαr'
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We consider the following identity:

ψ - ί/oφ = (Ψ - φΓ) + (φΓ - ί/rΨ) + (I/ΓΨ - ί/0Ψ) = 7t + /2 + / 3 .

We take a fixed x < 1; then trivially | / | = ( Ψ - φr | < e when r is suf-

ficiently large. Also

| / J = |e£ r -ί/ r Ψ| = |f/ r ( ί6 r-t/ rΨ| = \(l-x)[φΓ(σrx)-y(σrx)]

But for X-XQ < 1 fixed, we observe that 0ίΓ + (1 — <XΓ)XQ varies in an

interval < 1 - δ as 0ίr —» 0, and the same applies to σrx. The uniform conver-

gence of φr —»ψ inside 0 ;< x < 1 - δ yields \I2\ < e . By construction,

I 73 I <C 6 for r large. Thus we infer the equality Ψ = t/oΨ for 0 <^x < 1, and

by direct verification for x - 1. However, the fixed point to the equation f/oΨ = Ψ

with Ψ ( 0 ) = 0, Ψ ( l ) = l and Ψ continuous at 0 is Ψ (*) = 1 for 0 < x < 1

and Ψ (1) = 1. Thus the limit function Ψ is the same for every subsequence of

φσn,an>
 and hence we deduce that φσn,<xn converges pointwise. We furthermore

note that Ψ is independent of σ0 < 1. A similar analysis applies to the case

where (σ, Cί)—»(1, Oί) (Cί > 0). The continuity properties of the solution for

the other two boundaries yield to simpler analysis. Summarizing, we have es-

tablished the following theorem:

THEOREM 15. The fixed points φσja satisfy the following continuity

properties: IfO<η<a,a'<^l and 0 < σ, σ' < 1 - 77, then

I * - σ ' | + |θC - < * ' | 1 .

// (σ,0ί)—» (CΓQ, 0) with GQ < 1, then φσja(
χ}—* 0 pointwise for 0 <̂  x < 1

and φσta( 1) = L // (σ, α) —> ( 1 , α 0 ) with α 0 > 0, ίAe/i φσ,a(x) —> 1 point-

wise for 0 < Λ; < 1.

Finally, a word concerning convergence of Unπ for π continuous when the

parameter values lie on the boundary. When α = 0, σ < 1, then Unπ converges

pointwise. The same conclusion holds when CC > 0 and σ = 1. On the other two

boundaries the convergence is uniform for Unπ We omit the proofs.

We now return to the study of the operator T.

THEOREM 16. For any distribution the iterates TnF converge in the sense
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of distributions to the distribution

G(x) = Iχ(x)fφσtadF + I0{x)j(l-φσ>a)dF,

where I0(x) and Iχ(x) are the distributions concentrating fully at 0 and 1 re-

spectively.

Proof. From the convergence of Vnπ for any continuous function π and

Theorem 1 follows the weak*convergence of TnF. This is equivalent to the

convergence of ΊnF in the sense of distributions. The actual form of

lim TnF = G
n-*oo

as given in the theorem follows directly from (6)

By choosing the distribution F = I X Q , we obtain from Theorem 6 that

Φσ,a(χQ ) represents the probability with which the limiting distribution con-

centrates at 1, or in other words-as can be easily shown-the probability with

which the particle beginning at xQ will converge to 1. This furnishes a prob-

ability interpretation to the fixed point of the operator U which is different

from a constant.

In connection with Theorem 8, we remark that Unπ cannot converge for an

arbitrary Lebesgue measureable bounded function. In fact, if we assume that

Unπ converges for every bounded measureable function π(t), then TnF would

converge weakly if F were absolutely continuous. Since the space of all in-

tegrable functions L [ 0 , l ] is weakly complete, and T maps distributions into

distribution, we could find a fixed point TF = F with F absolutely continuous

and total variation 1. However, in view of (16) the only fixed distributions

which exist concentrate only at 0 and 1, and hence cannot be absolutely con-

tinuous.

Finally, we present a slight application of Theorem 14. We show that the

expected position of the particle converges geometrically for any starting dis-

tribution, although the iterated distributions converge slowly to the limiting

distribution. The expected position of the particle is given by

Γ xdF(x) = (x, F),
Jo

where F is the cumulative distribution describing the position. The expected
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position at the nth step is given by

( * , TnF) = (Unx9 F ) .

On account of Theorem 14, Unx converges geometrically, which establishes the

assertion. The same conclusion applies to all the moments. This observation

is very useful for computational and estimation purposes.

Finally, we note that the spectrum of the operator T cannot consist of the

isolated point 1. Otherwise, by standard techniques one can show that Unπ

converges for any measurable bounded function π

Z. In this second model the random walk is described as follows: If the

particle is at x, then x —» Cί + (1 - (λ)x with probability φ(x) and x —> σx

with probability 1 — φ(x), where

\φ(x)-φ(y)\ < μ < 1.

The analogous transition operator to ( 1 ) becomes

(9) G ( * ) = 7 T = Γ
Jo

with the same understanding concerning F applying as before. Let

( 1 0 ) Uπ- ίl-φ(t)] π(σt) + φ{t) π((X + ( 1 - α ) ί ) .

In this section, we take 0 < Ot, σ < 1; the case where boundary values for 0C

and σ are considered is easy to handle but not of great interest. The spaces

on which they operate are the same as in § 1. Again, in a similar manner to

Theorem 1, we obtain:

THEOREM 17. The operator T is conjugate to the operator U.

We now further a s s u m e t h a t φ(t) i s monotonic i n c r e a s i n g . T h i s model in-

c l u d e s the important c a s e where φ{t) = λ + μt, where λ + μ <_ 1; and w h e n e v e r

λ + μ = 1 t h e n λ > 0.

THEOREM 18. The operator U preserves positivity and positive monotonic

increasing functions.

Proof. Direct verification.
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Since the hypothesis on φ(t) implies either φ{l) < 1 or φ{0) > 0, we

analyze the case where φ ( 1 ) < 1. The other circumstance can be treated in

an analogous manner. Furthermore, we now assume that if <^>(0) = 0, then <^>'(0)

exis ts and is finite.

THEOREM 19. If π{t) is monotonic increasing bounded and positive, then

Unπ converges uniformly to a constant.

The proof can be carried out easily using the techniques employed above.

The hypothesis on φ(t) easily yields the fact that the only continuous

fixed points of Uπ = π are constant functions. The proof is similar to the proof

used in Theorem 6. This fact directly connects with the result of Theorem 21

below. First, we complete the proof of convergence of Unπ for any continuous

function π( t).

THEOREM 20. The operators Unπ converge uniformly for any continuous

function.

Proof. Since | | Un\\ = 1, and the space of all monotonic positive continuous

functions spans a dense subset of the set of all continuous functions, the

theorem follows by a well-known theorem of Banach.

THEOREM 21. For any distribution F, the distribution TnF converge as

distributions to a unique distribution G for which TG = G which is independent

ofF.

Proof. The weak*convergence of TnF follows directly from Theorem 20 and

Theorem 16. To complete the proof we must establish that if lim TnF = G and

lim TnH = K, then G = K. Indeed, let Ψ denote any continuous function. We

have that

(11) (Ψ, G-K) = Hm (Ψ, Tn(F-//)) = lim ( ί/nΨ, F-H) = a ( [dF-

as F and H are distributions. Hence

Ψ U W F ( ί ) =]

for any continuous function ψ, and therefore G = K.

It seems extremely difficult to determine the complete nature of this unique
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fixed distribution. We shall say more about it in a future section. We denote it

by Fσta.

THEOREM 22. The distributions FσtOi is a continuous function of σ, CC;

that is, if (σn, an) —» (σ, Cί) with 0 < σ, a < 1, then Fσnian —> Fσf(L at every

point of continuity of Fσf0L.

Proof. Let {σn, (Xn)—»(σ, Oί); by Helly's theorem we can choose a sub-

sequence Fr - Fσn an converging to the distribution F at every continuity

point. Write Tr for Tσjι Λn and T for Γ σ > α . Let π{t) denote any fixed continuous

function. We consider the quantity

(77, F - TF) = U, F - FΓ) + (TΓ, FΓ ) - U, TFr) + (π,TFr-TF).

Since Fτ —> F as distributions, we find for r sufficiently large that | (77, F -

FΓ)\ < β. Now we note that

I (IT, F Γ ) - ( I Γ , Γ F Γ ) | - | (IΓ, r r F r ) - ( 7 r , TFr) \ = | ( ϋΓ π ~ t/τr, FΓ) | .

Since ί/ = Uσn ajι converges strongly to U = C/σ>α» a s i s trivial to verify, it

follows that UΓ converges uniformly to Uπ. Whence, as FΓ are distributions, we

infer that

|(ί/Γjr- Uπ, Fr)\ < max \VΓπ - Uπ\ < e
t

when r is chosen large enough. Evidently, with r large we get as before that

|(fr, Γ ( / v - F ) ) | = | ( ί / τ 7 , F r ~ F ) | < e .

Therefore we obtain for r large that | (π, F - ΓF ) | <̂  3e, and hence (7r, F) =

(77, ΓF). Since π is any continuous function, we infer F = ΓF and therefore

^ = Fσfa by Theorem 21. Consequently, as any limit distribution of Fσntan must

be F σ > α the conclusion of Theorem 22 is now immediate.

3. The model considered in this section is with φ(x) = 1 - x In this case

φ is monotonic decreasing. The operator U becomes

( 1 2 ) Uπ{t) = tπ(σt) + ( 1 - t) π(l - 0 ί + α ί ) .

Note that we have replaced (X by 1 —01. This is only for convenience in Theo-

rem 28, and does not restrict any generality. In this model the closer the par-

ticle moves to the ends 0 and 1 the greater probability there is of moving back
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into the interior. The situation described here is of completely reflecting

boundaries. Again it is easy to show that the only continuous fixed points

Uπ - π are the constant function. Therefore, we shall find as in § 2 that the

distributions describing the position of the particle converge to a limit distribu-

tion independent of the initial distribution. We first proceed to analyze conver-

gence properties of Vnπ In this case it is no longer true that U preserves the

class of positive monotonic functions. Only positivity is conserved by the

mapping U. However, a new quality as described in Theorem 23 serves here

well.

Throughout this section in order to avoid trivial changes of proof and dif-

ferent results at times, we suppose that 0 < OL, σ < 1.

THEOREM 2 3 . If π(t) has a continuous derivative, then

m a x \ ( U π ) ' ( t ) \ < m a x | n r ' ( ί ) L
t t

with equality holding if and only if π ( t ) is linear.

Proof. By direct computation, we obtain

Hence, with the aid of the mean-value theorem we get

(13) max | ί/ττ'(ί)| < max | tσπ\σt) + (1 - t) Cίτ7'(l - (X + c α ) |
t t

π ( σ t ) ~ π(l - Ct + a t ) I
+ ( σ ί - ( l - C t ) - O U )

σ ί ~ ( l - α ) - c u I

< max [tσ + ( 1 - ί ) Ct + l - C t - ( σ - G t ) ί ] max | τr'(f) | « max | π'{t)\
"" ί t t

If equality holds, then let t0 denote a point where

max I π'{t) \ = j π'{t0 ) \.
t

It follows easily from (13 ) that

I r r ( σ t 0 ) - π(l ~ α
( 1 4 ) max \π'(t)\ = | * τ ' ( σ ί o ) | = | τ r / ( l - α + α ί o ) | =

σt0 - ( 1 - α ) - Ctί0



744 SAMUEL KARLIN

This yields that π(t) is linear for σt0 < t <_ 1 - OC + CU0, or otherwise some-

where between σt0 and 1 — Ot + CCί0 the slope has greater magnitude than the

slope of the chord subtended by π{t) at these points . Equation (14) yields a lso

that σt0 and ( 1 - C ί + CU0 ) are maximum points of π'(ί). Repeating this argu-

ment success ive ly then shows that equality in ( 1 3 ) requires π{t) to be linear.

T H E O R E M 2 4 . // π ( t ) belongs to Cm ( π ( t ) possesses m continuous d e -

r i v a t i v e s ) , t h e n m a x j | ( U n π ) ' ( ί ) | is uniformly bounded in n for each r ( 0 <

r <£ m )

Proof. The proof is similar to that of Theorem 10.

THEOREM 25. // π(t) possesses two continuous derivatives, and σ £ Ct,

then Unπ converges uniformly to a constant.

Remark. The reason why the two cases σ — (X and σ ^ OC are distinguished,

and necessarily so, will be explained later.

Proof. In view of Theorem 23 and Theorem 24, the first and second deriva-

tives of Όnπ are uniformly bounded. Thus l)nπ and (Unπ)' constitute equi-

continuous families of functions. We can thus select a subsequence τij such

that U ιπ converges uniformly to φ(t), and (U ιπ)' converges uniformly to

φ'(t). It follows trivially that U ι π tends uniformly to Uφ and

U π —> U φ

Moreover, by virtue of Theorem 23,

(15) max | ( £ / % ) ' | > max | ( ί Λ + l ι τ ) ' - | > max | ( £ / Π i + V ) ' | .
t t t

H e n c e

l i m m a x \ ( u π) \ = l i m m a x \ ( U π) \ = l i m m a x \ ( U π) | .
l' — oo £ / —» oo t t —» oo ί

Therefore, by the uniform convergence of the derivatives, we secure

max \φ'(t)\ « max | ( ί / ψ ) ' ( ί ) | = max \(ϋ2φY(t)\.
t t t

Invoking Theorem 23 yields that φ(t) and Uφ(t) are linear. However, if Ot / σ

and φ(t) contains a term with ί, then ί/<£ is quadratic. This impossibility
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forces φ(t) to be identically a constant. Let i be chosen sufficiently large

so that

Then

I f/Πt + 177- c j <_ 11 Uniπ(σt) - c I + (1 - t) I Unίπ(l -CC + GU) - c | < € .

Repeating this argument shows that

\Vni+Pπ-c\ < e

for any p. This establishes that Unπ converges uniformly to c.

THEOREM 26. If π{t) is continuous and σ Φ- (X, then Unπ converges uni-

formly.

Proof. The space of all functions with two continuous derivatives spans

linearly a dense subset of the space of all continuous functions. Since | | ί/ n | | = l,

we obtain the result using Theorem 25 and a well-known theorem of Banach.

In the next two theorems we establish the uniform convergence of Unπ for

the case where 1 > σ = (X > 0, We note in this case the interesting fact that

U applied to a polynomial does not increase its degree. Particularly,

Uxn = [an - nOLnml(l - 0L)]xn + Pn-ι(x)9

where Pn-ι(x) denotes a polynomial of degree n — 1,

THEOREM 27. If P (t) is any polynomial, then UP converges uniformly

to a constant and the convergence is geometric.

Proof. The proof is by induction on the degree of the polynomial. Clearly

if P is a constant = c then UP = c. Suppose we have shown for any polynomial

Pn.ι of degree < n - 1 that the iterates U Pn-ι converge uniformly. To com-

plete the proof, it is enough to verify that U x11 converges uniformly. Let

λ = an - π o c n " ι ( l - α ) ;

then I λ I < 1 since 1 > α > 0. We obtain
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Uxn = λxn + Pnml(x).

Repeating, we get, for k >_ 1,

/c-i
rik^n \kΛ/.n . Ĉ"* \rr;/or-l r>
U X = Λ X + 2^, Λ u tn-1

r=0

This last sum is of the form

k
CL Ui

r k-r>
r-o

with Σ I α r I < oc, and lim^.=oo b^ix) exists. It is a well-known theorem that

lim cΛx) exists uniformly whenever

converges uniformly. Thus, I) xn converges uniformly to a fixed point which

must be a constant function. Finally we note that in this case where σ — (X (the

rate of learning, so to speak, is the same regardless of the outcome of the ex-

periment), then UnP for any polynomial converges geometrically. The proof

can be carried through easily by induction.

This yields the fact that the expected position converges geometrically to

a limiting expected position with similar statements applying to higher moments.

THEOREM 28. // π{t) is continuous and σ- CX > 0, then Unπ converges

uniformly.

Proof. Similar to Theorem 26, since the set of all polynomials is dense.

We now note the important example that when OC = σ = 0 it is no longer true

that Unπ converges. It is easily verified that in this case U2nπ and U2n ιπ

converge separately but that a periodic phenomenon occurs otherwise. The

argument of Theorem 27 breaks down in this case as the quantity λ is - 1 . We

only mention that other difficult convergence behavior occurs when (X, σ traverse

the boundary of the unit square for this model. In particular, when OC = 1 and

σ < 1 it is not hard to show that ί/" aπ does not necessarily converge for every

continuous function 77, and even for the circumstance where 77 is a polynomial.

The case where σ = (X = 1 produces for I) the identity operator for which the

convergence of Un is trivial. For α < 1 and σ = 1 we can conclude again a lack
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of convergence. However, when (X = 0 and 1 > σ > 0, or σ = 0 and 1 > Cί > 0,

then ί/£ α7r converges for every continuous function π.

We return now to the hypothesis 0 < 0C, σ < 1.

THEOREM 29. If π(t) belongs to Cm

9 then {Ukπ)ij\t) converges uniformly

for 0 < r < m.

Proof. This follows easily from Theorems 24, 26, and 28. Let

Let

Γx/σ / U α l ) / α
TF = / ίc/F(O + / (l-t)dF(t).

Jo Jo

This represents the transition law for the distribution describing the position of

of the particle for this model. By arguments analogous to those employed in the

preceding sections, we can establish the following theorems, using the con-

jugate relationship between Jand V.

THEOREM 30. For any distribution F the distributions TnF converge as

distributions to a unique distribution F σ > α for which TFσf0L = Fσf0L9 which is

independent of F,

THEOREM 31. The distributions Fσf0L constitute a continuous family of

distributions in the sense of Theorem 22

Again it seems very difficult to determine any more explicit information

about FσfCL.

4. The model examined here is such that 1 ~ φ(x) = λx + μ, with λ + μ < 1

and at least 1 > λ or 0 < μ. The operator U has the form

(16) Uπ= (λx + μ ) π(σx) + ( 1 - λx - μ) 7r(l -Oί + ax).

Of course, as before, 0 < α , σ < 1. Convergence questions for Unπ turn out to

be very elementary in this case in view of the following theorem which is easily

proven.

THEOREM 32. If π{x) has a bounded derivative, then

max \{Uπ)'(x)\ < a max \π'(x)\
x x

with a < 1.
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An immediate consequence of Theorem 32 is that (U π)' converges geo-

metrically to 0. Let T denote the transition operator of distributions for this

model. In the standard way, we obtain:

THEOREM 33. For any distribution F the distributions TnF converge to

the distribution Fσf(X which is a continuous function of (σ, (X), and TFσi(X — Fσt0L.

Moreover, Fσ^a is independent of F.

5. This section is devoted to some variations of the preceding models.

A new feature added first is that we allow in addition to the two impulses of

motions towards the two fixed points 0 and 1 by the transformations

Fxx ~ σx and F2x = 1 — CX -+- OLx

the possibility of a third motion where the particle stands still with certain

probability. These models are particularly important in learning problems, and

much statistical investigation on this type has been done by M. M. Flood [ 5 ] .

They are referred to as the pure models. The mathematical description of the

first model of this type is as follows: A particle x on the unit interval is sub-

ject to three random impulses: (1) x—> σx with probability πχ(l — x); (2)

x —> 1 - a + CLx with probability π2x; and (3) x —> x with probability

(1 — TΓi ) ( l — # ) + ( l — 77*2 )x, where 0 < πx , π2 < 1. This is similar to model I

where absorption takes place at the boundaries 0 and 1. The operator analogous

to (2) becomes

(17) υπ 2

+ π2x π(l ~<X + <Xx).

Again, let T denote the transition operator which maps the distribution locating

the particle into the corresponding distribution at the end of the experiment.

Theorem 1 is valid for this setup, and T is consequently conjugate to [/. It is

easy to verify that U fulfills the conditions of Theorems 2 and 3 and also pre-

serves the property of monotone increasing functions. Furthermore, we obtain:

THEOREM 34. If π, π' and π" > 0, then (Uπ)" > 0 if and only if

(1 -σ)πx + 772 ( α - 1) > 0,

and otherwise Uπ preserves with π and π' >_ 0 the property of concavity.

Proof. The proof can be carried through by direct computation.
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We remark that the remainder of the analogue to Theorem 4 does not carry

over under the condition stated in Theorem 34 Moreover, noting that we have

here changed CC into 1 - α as compared to §2 , we obtain for πt - π2 = 1 the

condition of § 1 for preservation of convexity, and so on.

The analogues of Theorems 5, 6, 7, and 8 easily extend to this model by the

same methods, and we obtain that Unπ converges uniformly to a limit given by

where φσ a π Ή is the unique continuous fixed point of Uφ = φ with φ{0) = 0

and φ(l) = 1. The entire theory of geometric convergence, continuity of φ as a

function of σ, CX, π\9 and π2, and the form of the limiting distribution of the

particle established for the model of § 1 remains valid with slight changes in

the proofs. The general conclusion is that introducing a probability of standing

still has no effect on the convergence of the distributions or its limiting form

provided only the essential feature of absorbing boundaries still persists.

Finally, in this connection we remark that for special boundary values of the

parameters 77! and π2 the motion may become a drift to one or other of the end

points; for example, π\ = 0, π2 > 0

6. We treat in this section, the following general nonlinear one-dimensional

learning model. The particle moves with probability φ(x) from x to 1 - α + α *

and with probability l-φ(x) from x to σx. The function is only continuous

with the additional important requirement for this case that φ(x) > d > 0 and

l~φ(x) > δ > 0 for all x in the unit interval. This excludes the types of

models discussed in § § 1 and 3, but includes some subcases of the examples

investigated in § § 2 and 4. However, in those cases we obtained much stronger

results about the rate of convergence of derivatives, and so on. The transition

operators become

(20) TF = fX/σ[l-φ(t)]dF(t) +
Jo

f
o

and T is adjoint to

(21) (ί/ιr)(l) = ( 1 - 0 ( 0 ) π(σt) + φ(t) π(l - α + OlO.

We shall show that Unπ converges uniformly for any continuous function π(t).

The proof of this fact shall be based on the following highly intuitive propo-

sition. Let an experiment be repeated with only two possible outcomes, success
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or failure at each trial. Suppose further, that the probability of success pn at

the nth trial depends on the outcome of the previous trial, but that these con-

ditional probabilities satisfy pn >_ η > 0; that is, regardless of the previous

number of failures the conditional probability of success is always at least

η > 0. Then the recurrent event of a success run of length r with r fixed is a

certain event; that is, with probability 1 it will occur in finite time. This result

can be deduced in a standard way using the theory of recurrent events [ 4 ] .

We turn back now to the examination of Unπ. Let

Ftx = σx and F2x = 1 - Ot + 0C*

and by Fx denote the operation that either Fi or F2 is applied. We note the

important obvious fact that

(22) \FΓx - FΓy\ <λr \ x - y \ ,

with 0 < λ < 1, where Fr denotes r applications of Fι and F2 in some order

acting on x and y in the same way.

Next, we need the important lemma:

LEMMA. // \φ(m)(t)\<K for m = 0, 1, . . . , and \ πM(t) \ < Kl9 then

I Unπ(m)(t)\ < K2 uniformly in n and t.

Proof. The proof is similar to that of Theorem 24.

Now let π(t) denote a continuously differentiate function. Consider the

following identity:

(23) Unπ(x) - Unπ(y) = (1 - φ(x))(l - φ(y))[ϋn'ιπ(Fιx) - Un'ιπ(Fσ)]

+ φ(x) φ(y)[Un'ιπ(F2x) - Un'2π(F2y)]

+ (1 - φ(y)) φ(x)[Vn-1 π(F2x) - Unml π(Fιy)]

+ φ{y)(l-φ{x))[Un ιπ(Fix)-ϋn-ίπ(F2y)].

We continue to apply this identity to the factors Vn"1 π( ) — Un~ι π( ); and

when any term of the form Umπ(Frw) - Unπ(Frz) i s achieved, then that factor

is allowed to stand without any further reduction. All other terms are reduced

to expressions involving as factors π( ) — π( ) . Thus we obtain
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ϋnπ(x)- Unπ(y) = /" + /",

when /i consists of terms of the form

ΣpkίU
mkn{Frwk)-Umkπ(FΓzk)},

and Σ p ^ < 1 while I2 consists of the remaining terms. We now conceive of

the following probability model. Let two particles undergo the random walk

described by this model starting from x and y, respectively. We say a success

occurs if the same impulse activates both particles, and otherwise failure

occurs. The probability of success is given initially by

φ(x) φ(y) + [l-φ(x)][l-φ(y)] > 2 δ 2 > 0 ,

and it is easily seen that each p^, where p̂  is the conditional probability of

success occurring on the kth trial, satisfies

pk > 2 δ 2 > 0 .

Consequently, a success run of length r is certain to happen in finite time. In

particular as n —> oo, /" —• 0, since /£ is bounded by twice the probability of

no success run in n trials times K. On the other hand, in view of the lemma and

equation (22) we secure that /^ <̂  CλΓ. Therefore,

Πm" \Vnπ(x) - Unπ(y)\ < CλΓ,
n—*oo

which can be made arbitrarily small as r —>oo. Hence, if

lim Unπ(y) = a

exists for a single y, then

lim Unπ(x) = a

for every x. Since a subsequence can be found so that

lim Uniπ(x) = a
l - O O

for one x and hence for all xf an argument used in the close of the proof of
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Theorem 25 shows that

lim Unπ{x) = a.
n —»oo

The lemma easily implies that the convergence is uniform. Using the fact that

| | l)n\\ = 1, we can sum up the conclusions for this nonlinear model as follows:

THEOREM 35. // π{t) is continuous, then l im^^oo Unπ exists uniformly

converging to a constant limit.

THEOREM 36. If φ(t) belongs to Cm, and π(t) is in Cm, then

lim (Unπ)(m)(t) = 0
n—* oo

with convergence uniform in t.

THEOREM 37. For any distributions F9 TnF converges to a distribution

Fσ,a independent of F with TFσf0L = Fσ,<χ and ^σ,α continuous with respect to

σ, α.

This last theorem follows on account of the conjugate relationship of T and
U.

Finally, we note that the method used in this section can be employed to

analyze the random walks with any number of impulses

7. In the present section we investigate the nature of the limiting distri-

bution obtained in the various models. In the case where the boundaries were

absorbing states as in §§1 and 5, we find that the limiting distribution is dis-

crete and concentrates at the two ends 0 and 1. The weight at 1 depends on the

starting distribution F and is given by

Jo

where φσta is the unique continuous fixed point of Uφ = φ with φ(0) = 0 and

φ{\)= 1. Many properties of φσ>a are developed in those sections. In all the

other types the ergodic property was seen to hold and the limiting distribution

was independent of the initial distribution. Let us deal with the following
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general type. The random walk is given by x—*Fγx-σx with probability

l-φ(x), and x—¥ F2x = 1 -01 + α # with probability φ(x\ where l - δ >

φ(x) >_ 8 > 0. The relevant operators are given by equations (20) and (21).

Let the limiting distribution be denoted by Fσ$a.

We now distinguish two cases: (a) σ > 1 — CC and (b) σ < 1-OC Let us

examine case (b) first. We note that the union of the image sets F t [ 0 , 1] +

/^[O* 1] of Fι and F2 applied to the unit interval does not overlap with the

open subinterval (σ, 1-OC). Any two applications of ί\ and F2 leaves empty

the two additional open intervals (σ 2 , (l-OC)σ) and ( σ ( l - α ) , ( 1 - α ) 2 ) .

Proceeding in this way, we find that the limit of the total set covered by n

applications of Fj(i = 1,2) in any arrangement is a Cantor set C. It is easily

seen that F σ > α must concentrate its full probability on this set C.

Now let

We show that Unπto(x) converges uniformly to zero. Note that Uπto(t) is zero

for every t except at most one value of t; namely, F~ιtQ or F2~
ιtQ. Of course, if

σ < t0 < 1 —α, then neither inverse exists for that to; and otherwise only one

exists and

\UπtQ\ <max[φ(x), 1-<£(*)] < 1 - δ.
x

Similarly, Unπt0 <_ (1 - δ)n

9 from which the assertion follows. We now observe

that

(πto,Fσ$α) = (πtQ , TnFσ9α) = (ϋnπtQ , Fσ,μ) —>0.

Consequently, the probability of Fσ$0L at t0 is zero for any ί0 with 0 <_ ί0 <̂  1.

Summing up, we have established:

THEOREM 38. If σ < 1 -0Cf then the limiting distribution F σ > α is α singular

distribution (probability zero at every point) spread on a Cantor-like set.

We turn now to examine case ( a ) where σ >_ 1 — Ot. We note first that at

least one of the two mappings F^1 or F2'
1 is defined for every x in the unit

interval. Let π(t) denote any continuous positive function defined on the unit

interval so that π(t) >_r/ > Ofor some subinterval ί o ~ A < ί < ^ ί o + A (h > 0 ) .
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Since at least Fj*1 or F j 1 exists at tQ (say F [ ι ) , we obtain F^1 tQ = tχ. We con-

struct t2 from tγ in the same way and continue this for n steps, obtaining

tn = F"nto9 where F"n denotes a specific order of application of F [ ι or F^ 1 a

total of n times. Let Fn denote the reverse order of the operators obtained by

passing from t0

 t o tn We n o t e

\ F n x - F n y \ < λ n \ x - y \ < λ n ,

where λ < 1. Choose n so large that λn < h; then for every x we get that

| F n * - F I I t l , | . . | F B * - t o | < h.

Consequently, as

1 > 1 - δ > φ{x) > δ > 0,

Unπ is positive for all x since F~n[t0 - A, t0 + h] covers the entire unit in-

terval and 77(ί) >_η > 0 on this initial interval which is spread out by the

term in Un involving Fn. We have thus shown:

THEOREM 39. If σ > 1 -CC, the operator U is strictly positive; that is, for

each positive continuous function π(t) there exists an n depending upon π so

that Unπ is strictly positive.

Now let ττto(t) be defined as before. Again we establish that UnπtQ con-

verges uniformly to zero. To this end we observe that UπtQ has at most two

possible values at F~χ

ι tQ and F~ι tQ given by I - φ(F~ι tQ) and φ{F^ιtQ\

respectively, while l)πtQ = 0 elsewhere. Also, ϋ2πtQ has at most four possible

values and the maximum value that could be achieved for U2πtQ is

max\[l-φ(Flιt0)][l-φ(Fl2t0)}, φ{F;ιt0) φ(F;2tQ),

To secure a bound for the maximum of Unπt0, let us consider the same repeated-

experiment model set up in the previous section. The conditional probabilities

of success pn at the nth trial satisfy the uniform inequalities 1>1 — l>_Pn >.7/>^>

where success in this case is taken to be an application of the impulse ί\ to

the particle. It is readily seen by standard inequalities that the probability of

securing k (k < n) successes converges uniformly to zero as n —»oo. More-

over, it follows directly thatmax^ (probability of k successes) is a bound for
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Unπt0, and hence Unπt0 —> 0 We deduce as before that Fσt0L has probability

zero for every U Thus the cumulative distribution of F is continuous. Let

F - F\ + F2y where F\ is absolutely continuous and F2 is singular. Observing

that the transition operator transforms absolutely continuous measures into

absolutely continuous measures and singular measures into singular measures,

we find that TFX - Ft and TF2 - F2. However, as the fixed distribution is u-

nique, we deduce that either Fγ or F2 vanishes.

THEOREM 40. // σ >_ 1-CX, then the unique distribution Fσf0L is either

absolutely continuous or singular. Furthermore, Fσ$a has positive measure in

every open interval.

Proof. We have demonstrated all the conclusions of the theorem but the

last. Let π(t) denote a continuous positive function bounded by 1, and zero

outside an open interval /, and 1 on a closed subinterval / ' of /. By virtue of

Theorem 39 there exists an n such that Unπ > δ > 0 for all t. We note that

U/V,α) = U, TnFσta)=(Unπ,Fσta)> δ> 0.

But

/ •
V,α> U Fσ,a) > 8 > 0,

and the proof of the theorem is complete.

We close with the conjecture that when σ > 1 - α , then F σ > α is always

absolutely continuous. An example where this is the case is furnished by

φ{x)= 1/2, σ = 1/2= 1 - α , where F (x) = x.
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