
CHANGES OF SIGN OF SUMS OF RANDOM VARIABLES

P . E R D O S AND G. A . H U N T

1. Introduction. Let xi9 x2» be independent random variables all having

the same continuous symmetric distribution, and let

Our purpose is to prove statements concerning the changes of sign in the se-

quence of partial sums s i9 s2, ••• which do not depend on the particular distri-

bution the x^ may have.

The first theorem estimates the expectation of Nn9 the number of changes

of sign in the finite sequence s i9 ••• , sn + ι Here and later we write φ(k) for

2 < [ * / 2 ] + l ) / * \ 2 . k ~ { 2 π k ) . W 2

j f c + l \[k/2]

THEOREM 1.

It is known ( s e e [ l ] ) that, with probability one,

( 1 ) lim sup = 1
n-*°° {n l o g l o g n ) ί / 2

when the x^ are the Rademacher functions. We conjecture, but have not been

able to prove, that (1) remains true, provided the equality sign be changed to

< , for all sequences of identically distributed independent symmetric random

variables. We have had more success with lower limits:

THEOREM 2. With probability one,
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v • t N n X

lim min —> log n

By considering certain subsequences of the partial sums we obtain an exact

limit theorem which is st i l l independent of the distribution of the x^\ Let OC be

a positive number and a the first integer such that ( 1 + C ί ) α >_ 2; let 1', 2 ' , •••

be any sequence of natural numbers satisfying (A + 1 ) ' > _ ( 1 + OC)A;'; and let

N^ be the number of changes of sign in the sequence s^9 ••• , s ^ + 1 > where s^

stands for s^ .

THEOREM 3. E{/V'} > [n/a]/8, and, with probability one,

= 1.

For &' = 2 , it is easy to see that E{ Nή\ = ra/4; so with probability one the

number of changes of sign in the first n terms of the sequence sίf s2, ••• ,

5 fc , is asymptotic to w./4.

The basis of our proofs is the combinational Lemma 2 of the next section.

When translated into the language of probability, this gives an immediate proof

of Theorem 1. We prove Theorem 3 in § 3 and then use it to prove Theorem 2.

A sequence of random variables for which /VΛ/log n —> 1/2 is exhibited in §4;

thus the statement of Theorem 2 is in a way the best possible. Finally we

sketch the proof of the following theorem, which was discovered by Paul Levy

[2] when the x^ are the Rademacher functions.

THEOREM 4. With probability one,

Our results are stated only for random variables with continuous distri-

butions. Lemma 3, slightly altered to take into account cases of equality, re-

mains true however for discontinuous distributions; the altered version is strong

enough to prove the last three theorems as they stand and the first theorem with

the extreme members slightly changed. The symmetry of the x, is of course

essential in all our arguments.

2. Combinatorial lemmas. Let α i , , o Λ be positive numbers which are

free in the sense that no two of the sums ± o t ± ±an have the same value.
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These sums, arranged in decreasing order, we denote by Sl9 , S n; qtis the

excess of plus signs over minus signs in SJ; and Q ι~ qγ + + q^ It is clear

that Q n = 0 and that Q. = Q n . for 1 < i < 2n.

LEMMA 1. For 1 < i < 2n~ι,

The proof of the first inequality, which is evident for n = 1, goes by in-

duction. Suppose n > 1 and i < 2n~ι. Define S ' and Q1 for 1 < / < 2n"1 just

as Sj and Qj were defined above, but using only aί9 ••• , anm\ Let A: and / be

the greatest integers such S£ - an > S^ and S^ + αn > S .̂ It may happen that

no such k exists; then i = I and the proof is relatively easy Otherwise k < ί,

k < 2n'2, and i = k + I. If Z < 2""2 then

ρ . = Q'k - k + ρ ; + / = ( ρ ^ - A ) + ( ρ ; - z ) + 2Z > i .

If 2 n ' 2 < Z < 27*'1 then

= ( £ £ _ * ) + (<? 2 Γ l . U / - 2 ^ 1 + Z) + 2n"1 -

Finally, if Z = 2"" 1 then, recalling Q'nml = 0, we get

In order to prove the second inequality we note that for each i the maximum

of Qi is attained if the ai are given such values that S > S^ implies q >^ q^

— this happens if the αy are nearly equal. Assume this situation. Then if n is

odd qi is positive for i < i0 = 2n~ ι and Q^ - i is maximum for i = i0. We have

A similar computation for n even gives

Λίί 1 __

/2
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for the index iQ of the maximum and the same expression for Q — iQ. This

completes the proof.

If cί9 • •• , cn + ι are real numbers let m(cι, « »C/ι + i ) be the number of

indices / for which

We now consider n + 1 positive numbers al9 ••• , α n + 1 which are 'free' in the

sense explained above, and define

M = M ( a i 9 ••• , a n + ι ) = ^ m ( ± a ί 9 » » , ± α Λ + t ) ,

the summation being taken over all combinations of plus signs and minus signs.

LEMMA 2.

2»+ 1 < M < 4([/ι/2] + l ) / n \.
~ ~ \[n/2]J

It is clear that M = 2n + ι if

and we reduce the other cases to this one by computing the change in M a s

an + ι 1S increased to dγ + + α n + 1. Using the notation of Lemma 1, we sup-

pose that Sj + i < α/i + i < Si, where i of course is not greater than 2n~ , and that

α^ + 1 is a number slightly greater than S;. We now compare M{al9 ••• , an> α^ + i)

with M ( α ! ,••• ,an9 α ^ + i ) . The inequality an+χ < Si becomes a>ή + ι > Si if

an + ι is replaced by aίi+if a n ( ^ w e s e e that there is a contribution + 4 to Λί coming

from the terms ±a^ + i in the four sums ± S j ± α ^ + i In like manner, each + αy oc-

curring in Sj contributes — 4 to M, and each — αy in Sj contributes + 4 if / is l e s s

than n + 1. So

- M{al9 , α Λ , α^ + 1 ) = 4 (ςrt - 1) ,

where <JN has the meaning explained at the beginning of this sect ion. Thus in-

creasing an+1 to a i -f + an + 1 decreases M by
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and Lemma 2 follows from Lemma 1.

There is another more direct way of establishing the first inequality of

Lemma 2. Since the inequality is trivial for n = 1, we proceed by induction.

Considering the numbers {a,ι + a2), a3, , an + χ we assume that there are

at least 2n'2 inequalities of the form

(2) a} > U (j > 2 )

or

( 3 ) ( α t + α 2 ) > F ,

where the right members are p o s i t i v e , and U i s a sum over (aί + a2 ) , α 3 , ••• ,

α/-i> α/ + i> ••• , cin + i with appropr ia te s i g n s , and V i s a sum over α 3 , ••• , an + lΛ

From ( 2 ) we obta in an inequa l i ty ( 2 ' ) by dropping the p a r e n t h e s e s from (ai+a2)

in U; from ( 3 ) we obta in an i n e q u a l i t y ( 3 ' ) : aγ > a2 - V or av > V - a2 a c -

cording a s α 2 i s g rea ter or l e s s than V ( w e a s s u m e without l o s s of g e n e r a l i t y

t h a t a,χ > a2). We c o n s i d e r a l s o the numbers ( α t - a2 ), α 3 , ••• , an + ι and

i n e q u a l i t i e s

(4) aj > U ( / > 2)

( 5 ) ( α t - a 2 ) > V,

of which we assume there are at least 2n~2. From ( 4 ) we derive an inequality

( 4 ' ) by dropping the parentheses from {aγ - α 2 ) in ί/, and from ( 5 ) we derive

an inequality ( 5 ' ) : aγ > a2 + V. It is easy to see that no two of the primed

inequalit ies are the same. Hence there must be at least 2 2 Λ " 2 = 2 n " 1 in-

equalit ies

ai > Σ ± aj (1 < i < n + 1)

iti

in which the right member is positive. Taking into account the four possibilities

of attributing signs to the members of each inequality we get the first statement

of the lemma.

We now translate our result into terms of probability.

LEMMA 3
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Here of course the random variables satisfy the conditions imposed at the

beginning of § 1, and φ(n) is the function defined there. Since the joint distri-

bution of the %ι is unchanged by permuting the %ι or by multiplying an %ι by

- 1 , we have

n+l

n + 1

S
E\ m (xί9 ,

E

*. > Xj

E{M(\Xι\ , . - . ,

where m and Λ/ are the functions defined above. Since | xγ | , , | xn + ι \ are

'free' with probability one (because the distribution of the X{ is continuous),

Lemma 3 follows at once from Lemma 2.

Our later proofs could be made somewhat simpler than they stand if we could

use the inequality

m

m + n

rc+m

x i
n+ 1

for m < n. This generalization of Lemma 3 we have been unable to prove; and

indeed a corresponding generalization of Lemma 2 is false. However, we shall

use

(6) Pm,n < 6φ([n/m]) < 3[/ι/m]" l / 2,

and establish it in the following manner:

Let a = [ n/m ] , and write
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where the γ^ have the same distribution as the XJ, and the XJ and y^ taken

together form an independent set of random variables. Let E be the set on which

the four inequalities

\w\ < \u ± v ± z I

hold; by Lemma 3 the probability of any one of these inequalit ies is at leas t

1 —<£(α + l ) ; hence E has probability at least 1 — 4 ^ ( α + l ) Similarly the

probability of the set F on which the two inequalit ies | υ ± z \ < \u\ hold in at

least 1 - 2φ(a) Now clearly |w + f | > \w\ on E F and also

3. Proofs of Theorems 1, 2, 3. It is easy to see that the probability of

Sfc and Sβ. + 1 differing in sign is one-half the probability of s^ + 1 being larger in

absolute value than s^. Thus

E ί / V n } = Σ P r \ s k s k + ι < 0 ί = i £ P r { | * , + 1 | >\sk\\,

and Lemma 3 implies Theorem 1.

Let us turn to Theorem 3. Clearly the probability of s£ and

2k'

S2k'= ΣXj
1

differing in sign is 1/4. Also, Sj.+ α ~s

2k' 1S independent of both sk and s2^./,

for

(A + o ) ' > ( 1 + α ) α £ ' > 2k'.

Thus sΓ+ ~~s2k' ^ a s a n e v e n chance of taking on the same sign as s 2»*; so
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we must have

Now, if s^ sjί+a < 0 then must be at least one change of sign in the sequence
sk> 5&+i' " " ' sk+a* ^ e n c e » ti Pk * s ι ^ e probability of s£ and s^ + ι differing

in sign, we have

1

~ 8

and consequently

(7) E ί Λ ί = £ P / f > - ίn/a].
l 8

This proves the first half of the theorem.

As a preliminary to proving the second half of the theorem we show that the

variance of N^ is O(n) by estimating the probabilities

Suppose that i < j ; set

7 ~ s i + i'

and define the events

A : uv < 0,

β : | u I < 11; I ,

C : (u + v + w)z < 0 ,

D : \u + v + w\ < \z\ ,

D': \w\ < \z\,

E : \ z — w\ > \u + v\ ,

Then
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p. = Fτ{AB\, p. = Pr\Cϋ\, and p. . = P r U f i C D i .

One sees immediately that /I, /?, C, D ' are independent, and that ED -ED'.

Writing £" for the complement of E9 we have

A BCD = EABCD + E A B CD' C E + A B CD',

and

D ' C £ + D.

Hence

P r U θ C D ! < P r ! £ ! +Pτ\A BC\Pτ{D'\

<Pr\E\ +Pr\ ABC] (Pv\E\ + Pr{D\)

< P r U B } P r { C } P r { Z ) } + 2 P r ί £ ! = p. p. + 2 P r { ί ; } .

Note now that z — w is the sum of (/ + 1 ) ' — ( i + 1 ) ' of the Λ ' S , and u + v is

the sum of ( i + 1 ) ' , of the Λ ' S , and that moreover

We may thus apply the inequality ( 6 ) following Lemma 3 to obtain

P r { £ ! < 3 [ ( l + α y - ι - 2 ] " 1 / 2

provided j - i > α This yields an upper bound for p^ . a similar argument

yields a corresponding lower bound. We have finally

Pitj - P i P j + 0 { | l + α | -

for all i and y. This estimate shows that

(8) E ί / v ; 2 u Σ Pi,

-. Σ P . P/ + Σ o i ( i + α)-l i->l/2j = Eί/v i 2 + o ( Λ ) .

Let us denote E { N'k \ by fe^. It follows from ( 7 ) , ( 8 ) , and Tchebycheff 's
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inequality that

Pr μ - l > e <
€2k

for an appropriate constant c and for all positive e. Thus

Pr
V

— 1

is the Λ th term of a convergent series, so that according to the lemma of Borel

and Cantelli

with probability one. Note also that

V
1 .

Now for every natural number n we have

5

with A so chosen that k2 < ra < (k + I ) 2 . Since the extreme members tend to

one as n increases, the proof of the second half of Theorem 3 is complete.

Theorem 2 is obtained from Theorem 3 in the following way. Let r be a large

integer and let l ' , 2 ' , be the sequence

r, ( r + 1 ) ,

r 2 , r ( r + 1), ( r + 1), ( r + I ) 2 ,

r ' , r M ( r + l ) , . . . . ( r

rm, r m " 1 ( r + 1), . . . .
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where m is defined by

r m + ι

Let us call j 'favorable' if (j + 1 ) ' = (1 + 1/r)/' Then it is easy to see that:

a) ( 1 + l / r ) / ' < (; + l ) ' < (1 + r)j' for all j

b) there are k + o (k) favorable / less than k (as k —» oc)

c) log&'=λ: l o g ( l + l/r) + o(k).

Now, if j is favorable then

; ' - r | ( / + l ) ' - / ' !

and we may apply Lemma 3 to s ' and s ' + 1 - s . . Thus

Hence

/favorable

Note that for every natural number n

P r l s ' s ' < 0 l > -
7 7 " 2 ( r + l )

log n log (k + l ) "

where k is chosen so that k' < n < (k + 1)'. Consequently

2 / v "
lim inf >_ lim inf = lim inf

τι->oo log n k-*oo log(A + l ) ' (k + 1) log ( 1 + 1/r)

Ni 1
> lim inf

E{ Λ£ I (r + 1) log (1 + 1/r) (r + 1) log (1 + 1/r)
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Letting r —> oo we have Theorem 2.

4. An example. Our construction of a sequence Λ;^ ΛJ2, for which

/V,j/log n —> 1/2 with probability one depends on the following observations.

For given k define the random index i - i ( k ) by the condition

\xi\ = \ \

and let A^ be the event \x(\ > Σ*\xj\9 where the summation is over / Φ i9

1 < ΐ < ^ + l Let /j. be the characteristic function of the event 's^ 5^. + 1 < 0 /

and g^ is the characteristic function of the event 'i{k) = k+l and further

(xι + + xjς )xk + ι < 0\ It is clear that gχ9 g2, ••• are independent random

variables, that

and that the strong law of large numbers applies to the sequence g 9 g 2 , •••

also ffc^gfc on A^\ if moreover Y^Vτ\A^\ < oo (here A^ is the complement

of Ah) then, with probability one, f^ - g^ for all but a finite number of indices.

In this case we have, with probability one,

the last step being the strong law of large numbers applied to gχ9 g 2,

Thus, in order to produce the example, we have only to choose the Xj so that,

say,

PrU^} = 0{k'2).

To do this we take Xj = ± exp (exp 1/uj ), where ul9 u29 ••• is a sequence

of independent random variables each of which is uniformly distributed on the

interval (0, 1) and the ± stands for multiplication by the th Rademacher func-

tion. For a given k let y and z be the least and the next to least of « i , , ^ + ι

The joint density function of y and z is

(A + l H U - s ) * " 1 ( 0 < y < z < 1 ) .

Consequently the event
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1 1 1
Dk :->- + —

k J ' k2

has probability

* ( * + l ) /** / / C + 0 dy f l

 o {\-z)kmldz - l + O U " 2 ) ,
«/o Λ 2 y/(/c 2 -y)

and the event £ ^ : \/z > 3 log A; also has probability 1 + 0(k~2) It is easy

to verify that the event Ak defined above contains D^ E^; thus

Pτ{Ak\ = 0(k'2),

and our example is completed.

5. Proof of Theorem 4. We prove Theorem 4 in the form

Tn = 2 1 T = - l o S n + o (log n)

i<k<n k Z

sk>0

by much the same method as we proved Theorem 2. First,

1 * 1 1

1

Next, the inequality following Lemma 3 yields

I k Ί ι / 2

— J ( / > 2 * ) f

so that

\i/2

for I > k. Consequently

1 lk\
- + θ ( τ )
4 \l /

k\i/2

)
1 lk\

Pτ{sk > 0 & si > 0} = - + θ ( τ ) (/ > k).
4 \l /



686 P. ERDOS AND G. A. HUNT

This implies that

E\T2} = — P r ί s A > 0 & S / > 0}
k, ί< n

: k< n k2
Σ. —
Γ?ι* k l

k< ί< n

- ( l o g n)2 + O ( l o g n).
4

T h u s t h e v a r i a n c e of Tn i s of the order of log n* S e t t i n g n(k) = 2^ , vve h a v e ,

a c c o r d i n g to T c h e b y c h e f f ' s i n e q u a l i t y ,

Pr
ιn(k)

log re(A )
- 1

e2 k2

for an appropriate constant c and all positive 6. Since the right member is the

A th term of a convergent series, the lemma of Borel and Cantelli implies that

ln{k)

l o g n(k)

with probability one. Note also that

log n (k + 1)

l o g n(k)

Now, for any n,

Tn{k) ^ Tn

•1.

n(k+l)

log n (k + 1) log rc l o g n ( λ )

where A; is so chosen that n(k) <n <^ n(k + l). Here the extreme members

almost certainly tend to one as n increases . This proves Theorem 4.
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