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1. Introduction. Let { E } denote the class of generalized euclidean spaces

E (that is, E (I { E \ provided all finite dimensional subspaces of E are euclidean

spaces). The problem of characterizing metrically the class { E \ with respect to

the class { B } of all Banach spaces has been solved in many different ways. x

Fre'chet's characteristic conditions [δ]

was immediately weakened by Jordan and von Neumann [6] to

( * * ) l l p t + p 2 I I 2 + I I P I - P 2 H 2 = 2 C I | P l ||2 + l l P a | | 2 ) ( P l , p 2 G B ) .

This relation has now become a kind of standard to which others repair by show-

ing that it is implied by newly postulated conditions [3,4, 10], and it has been,

apparently, the motivation of work in which it does not enter directly [ 7 , 9 ] ,

Perhaps the best possible result in this direction, however, is due to Aronszajn

[ 1 ] who assumed merely that

| | ( χ + y ) / 2 | | = - 0 ( | | * | | , | | y | | , | | * - y | | (*,y G B ) ,

with φ unrestricted except for being nonnegative and φ ( r , 0 , r ) = r , r >_ 0.

These conditions, and others like them, are all equivalent in a Banach

space, for each is necessary and sufficient to insure the euclidean character

of all subspaces. In a more general environment, however, this is not the case,

and so the desirability of making a comparative study of such conditions in

more general spaces is suggested. In this note the larger environment is fur-

nished by the class { M } of complete, metrically convex and externally convex,

This note deals exclusively with norrned linear spaces over the field of reals.
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metric spaces, of which the class of Banach spaces is a very special sub-

class,^ After giving purely metric interpretations of those conditions that we

shall discuss (in order that they might be meaningful in spaces of class \M\)

we are chiefly concerned with showing that the Jordan-von Neumann relation

(**) characterizes class | E } among the class {M},3 This is true, a fortiori9

for Fre'chet's condition (*) also, but an easy example shows that the inequality

used in Schoenberg [10] is not so extensible,

2. Metrization of the Jordan-von Neumann relation and comparison with other

four-point conditions. Writing (**) in the form

we see that the length | | ( p χ + p 2)/2 | | of the median of the triangle with ver-

tices θ, pχ9 p2 ( θ denotes the null element of B) is the same function of the

lengths | | p ι | | , \\p2 | | , | | p ι - p 2 | | of the sides of the triangle that it is in

euclidean space. Since any three elements x9 y9 z of B are superposable with

θy pι=y -x, p2=z -x (the middle-element (y + z ) / 2 of y, z being carried

into ( p ι + p )/2, the middle-element of pι$p2) we have the following metric

interpretation of (**): ( f ) every four elements p9 q9 rf s of B with q a middle-

element of p9 r (that is9 pq = qr = pr/2) are congruentlγ imbeddable in the

euclidean plane E%*

In this formulation, the Jordan-von Neumann criterion is meaningful in every

metric space and may, therefore, be compared with other so-called four-point

conditions that antedated it,

A metric space has the euclidean kφoint property provided each ά-tuple of

its elements is congruently contained in a euclidean space (and hence in an

£&.i). Observing that every metric space has the euclidean three-point property,

W. A. Wilson [ l l ] investigated in 1932 the consequences of assuming that a

space has the euclidean four-point property. It follows from a result due to the

writer [2, p. 131] that if U is any metric space whatever, and M 2 denotes the

space obtained by taking the positive square root of the metric of M9 then M 2

has the euclidean four-point property. Thus the special class {M 2\ of spaces

with the euclidean four-point property has the same cardinality as the class of

For definitions of these and other metric concepts used in this paper see [2].

3The abstract of [8] given in Math. Fev. vol. 13 (1952) p. 850 indicates a con-
nection between that paper (which the writer has not seen) and the present note.
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all metric spaces (of which it is a proper subclass) and consequently the same

is true of the class of all spaces with the euclidean four-point property.

But none of the spaces \M M is metrically convex, and Wilson proved that

if a complete, metrically convex space has the euclidean four-point property,

it is congruent with a subset of a generalized euclidean space. If also external

convexity is assumed, then congruence with a generalized euclidean space

results.

The weak euclidean four-point property, introduced by the writer in 1933,

assumes the congruent imbedding in euclidean space (and hence in E2) of

only those quadruples that contain a linear triple (that is, a triple which is

imbeddable in Eγ), and it was shown that the weak euclidean four-point property

suffices to obtain all of the results that Wilson had proved by use of the stronger

assumption [2, pp. 123-128]. But the Jordan-von Neumann condition, as metriz-

ed in ( f ) , restricts the class of quadruples assumed to be imbeddable in

euclidean space even more than does the weak euclidean four-point property,

and consequently is a weaker assumption. We shall refer to it as the feeble

euclidean four-point property,

3. Equivalence in \M\ of the feeble and the weak euclidean four-point

properties. We prove in this section that in complete, metrically convex and

externally convex metric spaces, the feeble euclidean four-point property im-

plies (and hence is equivalent to) the weak euclidean four-point property.

Some elementary consequences of the feeble property in such a space are first

set down.

I. Middle-elements are unique; for if p, r GM(p ^ r ) and qΛ% q2 are middle-

elements of p, r then

where the "primed" points are in E2 and " « " denotes the congruence relation.

But then ςr' and q^ are middle-points of p\ r' and consequently

II. Each two distinct elements are joined by exactly one metric segment.

Since M is complete, metrically convex and metric, each two of its distinct

points are joined by at least one metric segment. If p, r G M ( p ^ r ) and Sp Γ*

S* r are two segments with end-elements p, r, suppose qr* belongs to the second
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segment and not to the first. Then p ψ q* £ r9 and traversing S* from 7* to p

a first point p* of S r is encountered. Similarly, traversing S* from 9* to r a

first point r* of S r is obtained. The sub-segments S * r5|CJ S** * have only

their end-elements in common, but each obviously contains a middle-element of

p*, r*, contrary to I.

III. Segments admit unique prolongations. Since M is externally convex,

each segment may be prolonged beyond its end-elements. But if S admits

two prolongations beyond q9 then clearly elements r, r* of different prolongations

exist (r^r*) such that q is a middle-element of p*, r as well as a middle-

element of p* f r* for some element p* of S . The congruent imbedding in E2 of

p*, 7, r, r* shows this to be impossible.

IV. Each two distinct elements of M are on exactly one metric line. Since

U is metric, complete, metrically convex and externally convex, each two of

its distinct points p9 q are on at least one metric line L{p9q) [2, p. 56], It

follows at once from II and III that L (p9q) is unique.

THEOREM 3.1. If p is a point and L a metric line of M9 then L + (p) is

congruentlγ imbeddable in E2,

Proof, lip eL then

L + (p) = L ~ E1 C E2 9

by the definition of a metric line. Suppose p $.Ly select points ro* 7Ί on L with

r o r i = l, and let p%r^rf

χ be points of E2 such that p9ro9rι ^ p\r^9r^ Let

L ' denote the straight line of E2 determined by rQ', r[> and consider the one-to-

one correspondence

Γ: p',

where the congruence of the two lines is the unique extension of the congruence
ro> rι ~ Γ

0 '*Γi ' ^ e s n a H show that Γ is a congruence.

If ry denotes the unique middle-point of r0, Γi, and r^ ^ Γ ί r ^ ) , then r^ is

the middle-point of r^9r^ By the feeble euclidean four-point property

with the "barred" points in E2> and since p', r<^ r ί ~ P» Γo> Γι» a m o t i o n °̂  ^2

exists that carries p9rQ9rι into p\τ'^r[> respectively. This motion evidently
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sends ry into ry9 and we have

that i s , pry2 = p'rί/2-

If r^ denotes the middle-point of r^, rγ, and r£ = Γ(r%), the feeble four-

point property, applied to the quadruple p, r^, r^, r t gives pr^ = p'τy. Con-

tinuing in this manner, we obtain pri/2n = v'τΊ/2n f°Γ e a c n dyadically rational

fraction i/2n. Since the points r^2n are dense in s e g [ r o , r i ] , continuity of

the metric (and continuity of the congruence L (rQ9 r{ ) « L'(r' r ' ) ) yields

p% = p'%', # ' = Γ ( Λ ) , for every x G seg[r ( ) ί r 1 ].

Let r2 be a point of L such that rL is the middle-point of rQ9 r 2 . The feeble

four-point property gives (in the manner employed above) p, rQ$ rχ9r2^p\ r j , τ'ι$ r^,

where r^ = Γ ( r 2 ), and consequently pr2 = p'r^. Then from p9τι$r2 « p\τ^9r2 we

obtain p # = p / % ' , Λ; G s e g t r ^ r2 ] in the same manner as described above for

seg ir Q $ r ί ]• It is clear that a continuation of the procedure establishes px = p ' % '

for every % of L and A; ' = Γ (x ).

THEOREM 3.2. In a complete^ metrically convex and externally convex

metric space M9 the feeble and the weak euclidean four-point properties are

equivalent.

Proof, The weak property obviously implies the feeble one in any metric

space . Suppose M has the feeble property, and p, qt r, s Gίί (pairwise d i s t inct )

with q9 r, s congruent with a triple of Ei Then the line L(q,r) contains s ,

and L{q9r) + ( p ) is congruently imbeddable in E2 Hence p, q9 r$ s are imbedda-

ble in E2

4. Extension of the Jordan-von Neumann theorem. The writer has shown

[2, p. 127] that a complete, metrically convex and externally convex semimetric

space with the weak euclidean four-point property has the euclidean λ-point

property for every positive integer k. It follows easily that such a space is

generalized euclidean. Use of Theorem 3.2 now yields the following result:

THEOREM 4.1. A complete, metrically convex and externally convex metric

space with the feeble euclidean four-point property is generalized euclidean.

This is the desired extension of the Jordan-von Neumann theorem for real

normed linear spaces. For if L is such a space, and L satisfies the Jordan-

von Neumann condition (**), then the Banach space that arises by completing
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L in the Hausdorff manner is a complete, metrically convex and externally con-

vex metric space with the feeble euclidean four-point property. According to

Theorem 4.1, it is generalized euclidean and so an inner product is definable

in it. Hence an inner product is definable in L, and the Jordan-von Neumann

theorem for real normed linear spaces is obtained. Thus the metric essence

of (**) determines the euclidean character of L by use of the purely metric

features of the space, without regard, for example, for its very special proper-

ties due to linearity.

5. Concluding remarks. Condition (*) of Fre'chet is equivalent to Wilson's

euclidean four-point condition [2,. p. 106] and consequently his theorem of 1935

had already been proved in more general form by Wilson in 1932.

A semimetric space is ptolemaic provided for any four of its elements p,

q9 r9 s9 the three products pq rs9 ps qr9 pr qs of "opposite" distances satis-

fy the triangle inequality. Schoenberg [10] showed that in a real linear semi-

normed ptolemaic space, the semi-norm satisfies the triangle inequality (and

so is actually a norm) and an inner product is definable which is related to

the norm in the usual way.

Schoenberg's ptoiemaic condition which (as a norm postulate in L has the

form

1 1 / 1 1 I I * - A l l + l l « l l I I W I I > 11*11 l l / - * l l ( / . * . * G L )

is not extensible to the class {M}. For if three pairwise distinct rays of E2f

with a common initial point, be metrized convexly (that is , if p9 q are points

of different rays, then pq = e (p, o) + e {o9 q)9 where e ( , ) denotes euclidean

distance and o is the common point of the rays, while pq = e{p9q) if p, q belong

to the same ray) the resulting space is easily shown to be metric, complete,

convex and externally convex, and ptolemaic. But it is not, of course, general-

ized euclidean. It would be interesting to know whether or not this "tripod"

is present in every such example.
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