GENERALIZED WALSH TRANSFORM

R.G SELFRIDGE

Introduction. The Walsh functions were first defined by Walsh [6] as a
completion of the Rademacher functions in the interval (0,1). As originally
defined ¢, (x) took on the values +1. The generalization of Chrestenson [1]

permits ¢ (x) to have the values e2mnila

for some integer «, and also leads
to a complete orthonormal system over [0,1], Fine [2] considers the original
Walsh function, but with arbitrary subscript, attained by consideration of certain
dyadic groups. This paper combines these two generalizations by starting with
the Walsh functions as defined by Chrestenson and then using a subsidiary

result of Fine to define a Walsh function (/ly(x) for arbitrary subscript.

With ¢ (x) one can define a Walsh-Fourier transform for functions in L,(0,
©), 1 <p < 2. Many of the ordinary Fourier transform theorems carry over,
with certain modifications. For 1 < p < 2 the transform is defined as a limit
in the appropriate mean, with a Plancherel theorem holding for p = 2. Since the
proofs carry over from ordinary transforms, or from the L; theory only a few
theorems are stated for these cases with only brief proofs. The case of L, re-

quires considerably more preparation.

Section one is devoted to definitions and obtaining certain varied but very
necessary results, such as the evaluation of definite integrals of i (x) over
specified intervals, which are used constantly throughout the paper. Walshr
Fourier series are introduced, and some of the sufficient conditions for con-
vergence of such a series to the generating function are listed but not proved,

since the proofs are available in Chrestenson’s paper [11].

Section two covers certain basic results for L, transforms and associated
kernals. A Riemann-Lebesgue theorem follows simply from results of section
one, as do sufficient conditions for the convergence to f(x) of the inverse

transform of the transform of f (x). The function Pg(x@y) is defined as
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and is considered in some detail. With this function it is possible to show that
f(y)= lim foo Pg(x@y)f (x)dx,
Boroo”®

under fairly general conditions.

Section three is devoted almost entirely to C, 1 summability of transforms. If
f(x) € L, and has a transform F (y) then one has

)= tim [P A=V F&o) TTay
proe 0

provided f (y) is locally essentially bounded at x and
h
[Hir G —rG1de=oth),
0

It is not possible to remove completely the requirement of local essential
boundedness, so that it cannot be said that the inverse transform is C,1 sum-
mable almost everywhere to f (x). Again one has that if x has a finite expansion
in powers of ¢ then the conditions need only be right-hand conditions.

Finally section four considers transforms of functions in Lp, 1 <p < 2.
For p =2 one has a Plancherel theorem, and for all p, 1 < p < 2 one has, if
f(x) € Lp, then the transform F(y) € Lp/p.1 and

d 00 d 00 _
F(x)=2;/; £ ()P, (y)dy, f(x)=5/; F(y) Py (y)dy.

One also has C, 1 summability of the inverse transform yielding f (x) for almost

every x at which f (y) is locally essentially bounded.

1. Definitions and lemmas. Throughout this paper « is taken to be a fixed,
but arbitrary integer greater than one. For such an & each x > 0 has an ex-
pansion x =Z?=N x; 7Y, 0 < x; < ¢, that is unique if xy #0 and, in case of

choice, a finite expansion. Under these conditions one has:

DeFINITION 1. Degree of x =D(x) =~ N, where x =Z:‘°=N x; 07 xy #0.
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For convenience in what follows it will be supposed that, by addition of
dummy coefficients if necessary, x = Z?.__M x;0% M < 0, so that D(x) is not

necessarily —M.

In all that follows the use of a subscript on a variable will mean the cor-
responding coefficient of the t-expansion. All intervals will be closed on the
left and open on the right unless otherwise stated, and any number that has a
finite c-expansion will be called an t-adic rational.

27i/a

Now if w=e one defines in sucession:

DEFINITION 2. (a) ¢ (x) ="
(b) ¢,(x) =g (a"%) n >0
(¢) In=3 0 yma’, g (x)=TIL (¢,(x)"
(d) ¢y(x)=l/l[y](x)¢[x](y), [x] = greatest integer in x.

Since the addition of an integer will not change x; it is easy to see that
#,(%) has period one, and hence ¢ (x) has period o Further one has that
¢, (x) = ™' and Y (%) = o, 2 =Z?’=0 n_;% 4 so that Y (x) is of period
one.

¢,(x) compares with the original Rademacher function, and for the case
o =2 the t,l/n(x) reduce to the ordinary Walsh functions. For ot > 2 the com-
pleteness and orthonormality of i (x) over [0, 1] have been shown by Chresten-
son [1].

Since k; =0, i > 0, if k is an integer, it is clear that l,/ln(k) = 1. Thus Defi-
nition 2d) extending the i (x) to arbitrary subscript is consistent with Defi-

nition 2c ). Further, by symmetry, one has l//y(x) = ¢x(y).

Before defining transforms for functions there are a number of preliminary

steps and additional terminology that can be used to advantage.

LeEmMma 1, [If

R
]
™Mz

]
X070 y = 2 )’,-C*",
i==M

i==N

then

M+1

¢y(x)=¢x(y)=wzr z = Z XiYqi.i®

t=-N
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Proof. From Definitions (2a, b, c) it is easy to see that l/l[ ](x) = 0" where
p= Z:i,”:o Y.;%;+y» and similarly for l/l[x](y). Combining the two yields the
result.

DEFiINITION 3. If

00 . o0
x = Z xia-ts y= z yi“-l=

i==N i==M
then z =x @y is defined as
o0
z= D z;a*, where z; =x; +y; (mod a),
i=-T

provided that z; # &« ~ 1 for i > K, and T = max (M, N).
Similarly z =x © y is defined as

Z =

™Mz

z;07t where z; = x; ~y, (mod ).

i=-T

Clearly for each x, z=x@y or z=xOy is defined for almost every y.
The following lemmas then follow quite simply from L.emma 1 and Definition 3.

LEMMA 2. (a) l//y(OL”x)=(/lx(O("y) —o <n<ow
(b) l//y(x) ¢y(z) = l//y(x @ z) each x, a.e.z.
(¢) l//y(x)x/ly(z)=g//y(x@z)=(//y(z@x), each x, a.e, z.

The last identity of Llemma 2 can be written in a slightly different form,

which is useful in case of integration with respect to y.
LEMMA 3. If 0 <y < B then there is a q such that gby(x) l/ly(z) = l/ly(q).

Proof. It is only necessary to define g in case x (© z is undefined. Take
n such that B < «", and define ¢, =x, - z; (mod &) for i < n, and then set
=2 . qiot'i. Clearly this definition will suffice.

DEFINITION 4. (a) Dn(t)=2?;é ¢.(¢)

(b) Cp(t)=1,0<t<b,=00b <t
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Lemma 4. (a) D () = aC \(1e}), where (e} =~ (] Dy(s) = Dp(ie})
(b) D,,(t)=Dp(ocNt)DaN(t)+¢PQN(t)Dq(t)
where n=pa¥ +q, 0 <q <al,
(c) |D(e)| < a/2{tl

Proof. (a) Let ¢, be the first non-zero coefficient in the expansion of ¢.
If n > N then by Lemma 1 ¢,(¢) =1 and D_,(¢) = oalN. If n < N, consider the
range pa” <k < (p+1) &™ In this range one has

N
U () =% 2= kb, or 4(e) =A™ with g, £0.

i=n-1

Thus one has

(pt1)an-1 (pt1)ar-1 a-1

()_ A kl-ntn_A n-1 tok 0
T ow= X Atredart 3o
k=pan k=pan k=0

Now summing on p yields the desired result. The second part is immediate

since l/lk(t) = lﬁk({tn

(b) Since ¢ < & one has n =pO(N@ g and

aN 1 p-1 aN.1

Z‘/’k(‘)‘ Z ACR Z ¥ (). “2 Z Y pan ()

k=palN

aN.1

g-1
+2¢f aN4i (t)—z Yoo v (8) Z l/l(t)+'/l OB
=0

-1

P
=3 y (N Dy(t) = Dp(aNe)D (£)Dg(2).
> Y la t)DaN(t)w,bpaN(t) q(8) =Dy (0"t) aN(t)+!/lpaN t) Dyt

(¢) Let D({¢})=N. Then

D,(¢t) =Dp(aNt)DaN(t) + t//paN(t)Dq(t) = l/lPaN(t)Dq(t).

Now |Dg(¢) | < aN/2 < 0/2{t}, since Dq(t)=Dq(t)—DaN(t).

(R+1)an-1

1.0 COROLLARY. (a) D(R+l)an(x)—DRan(x)= k?R_: ¥ (x)=4C _(1x}).
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Sanr.1
(b) 2o l//k(x)l//k(y) =0, unless [ax] =[uy ],
k=Ram
Sak-1
or z l/lk(x)l/lk(y)=AC1([C{"x]@[Otny]).
Ramn=fk

(¢) IfD({x}) =N then Dan(x)=0 for n > N.

Corresponding to L.emma 4 there are equivalent results with respect to the
integral of l//y(x).

DEFINITION 5. Pp(t) = fob Y, (x) dx.
LeEmMA 5. (a) Pp(t) = a"Pba_n(oc”t)
(b) Py(x) =P([x]) = Cy(x)
() P (x)=0a"C ()
(d) Pb(t)=Cl(t)D[b](t)+¢[b](t)P{b;(t)-

Proof. (a) This follows immediately by change of variable of integration.

(b) Pl(x)=f0l (/l%(y)dy=f0l l//[x](y) sb[y](x)dy:Cl([x]) by

orthonormality,

() P (x)=a"Py(ame) = &"Cy(a"x) = a"C__ ().
(@) 24y dy = (L) £y, () dy.
Now
fb g,y )dy = bzl [ w1y - bzf ‘/Ik(z)/k+1 P () dy =Dy () G,
0 bl < p
and
I By =)0 [ pady = v [ g (dy

=’(,-'/[b](t)P{b}([t]).
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2.0 CorROLLARY. "(a) Pgs(y) =C,(y)Ds(y), Psan(y) =O(”Ca_n(y)Dg((x"y)

(b) P, (y)~P an(y) = OL"Ca.n(y)(Ds(Ot"y) ~ Dg(ay))

San R
(R+1)an —_

(c) l//x(t)l/ly(t)dt=0unless [a™x]=[a"]
Ran

@ [0 0m =Gl P)

(e) |Pp(t)| <a/2¢, and if t > 1, | Pp(t) |

Only the last part of this corollary needs proof. Take n such that «™ <
t <a'™ <1, and R so that |[Ra™™ = b| < «™/2. Then PRa_n(t) =0 and

|Pp(e)| = < a2 < o/2t.

*
4/;20.-11 l/ly t)dy

LEMMA 6. If0 < a < " then

_/;anf(x)dx =./;anf(a®x)dx= /;anf(a Ox)dx.

Proof. 1f E is a measurable subset of the interval [0, «") set TE = (a@
x:x €E). Now if E is any interval k&P < x < (k+1)aP, then with the exception
of a denumerable set of x, TE is an interval [toP, (t+1)aP) and T°'E is an
interval [roP, (r+1)aP). Thus u(E)=p(T'E)=pu(TE). Further, since
a < o if E is in [0, ®") so are TE and T-'E. Now any open set may be ex-
pressed as a denumerable sum of non-overlapping such intervals, and thus by the
standard argument for any open set E in [0, &), p(E) = p(TE) = p(T"'E),
Finally one has, with the exception of a denumerable set (x:f(a @ %) <
¢)=T"(x:f(x) < c¢) and the first part of the lemma is proved. Clearly the

second part follows identically.

(R+1)an (S+1)an
3.0 COROLLARY. f f(x)dx=f fla@x)dx, 0 <a <",
s

Ramn anl

Now for any function on L (0,1) one can develop a Walsh-Fourier series in
terms of ) (x). The properties of such expansions have been studied by Paley
(4], Walsh [6] and Fine [2] for o = 2, and by Chrestenson [1] for & > 2. One
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has then, a Walsh-Fourier series, or W.F.S, given by

o0

fx)~ 2 e ¥, (x), where cn=./lf(x)§/ln(x)—dx.
o

n=0

In a similar fashion one has the complex conjugate W.F.S.

flx)~ Z en Y, (x) where ¢, ='/;lf(x) Y (x)dx.

n=o0

It is clear that most of the criteria that imply convergence of the W.F.S, will

imply convergence of the complex conjugate W.F.S. In particular one has the
following, taken from (1) and (2),
4.0, The W.F.S, for f (y) converges to f (x) if
(1) f(y) is B.V. in a neighbourhood of x and x is a point of continuity,
(2) (f(x)~f(y))/(x~y) is integrable over an interval including x.

Note also, that if x is an G-adic rational then these conditions need only be

right-hand conditions. One extra result is
(3) The oth partial sum of the W.F.S, converges a.e. to f (x) as n — .

Notice that by a simple re-definition of f (x), these conditions, which are
given for the interval [0,1), hold for any interval [[x],[x]+1), and that one
has

LEmMA 7. f(x) ~ lim /lf(x@ z)D,(z)dz,
0

n-— o

1
f(x)~ lim /(; flx @z)D,(z)dz.

n— 0

Proof. One has

f(x)~ lim [l

n— oo [x]

f(y)Da(x ©y)dy,

and by 3.0, for z =x @ y,

[x]+1

[] f(y)Dp(x @)’)d)’i/o'l f(x ©z)D,(z)dz.



GENERALIZED WALSH TRANSFORMS 459

For the second part the proof is repeated but with the complex conjugate W.F.S,

hnd Ran
5.0 COROLLARY. CRan(x)= kgo gbk(x)/; ¥ (y)dy

™ s

; PRa"(k) ¥, (x) 0 < Ro™ < 1.

n
o

Note that by 2.0a the sum is actually finite.

2. L-transforms.

DEFiNITION 6. (a) T(f)=F(y) =/.°° f(x)l/ly(x)dx, the Walsh-Fourier
0

transform.

(b) T-Y(f) =F(y) =/:° f(x)t//y(x)dx, the inverse Walsh-

Fourier transform.

THEOREM 1. If f(x) € L, then

yliinw /;m f(x) l//y(x)a’x =0.

Proof. This is an immediate consequence of the fact that by 2.0b it is
true for characteristic functions with ¢-adic rational end points.

6.0 COROLLARY. Let F(y)=T(f) for f(y) €L, s(x,B) the ([Bl-1)st
partial sum of the complex conjugate W.F.S. for f (y) over [[x], [x]1+1), and

S(x, B) =/f¢x<‘y“)p<y)dy.

Then limg_, o S(x, B) = s (x, B) = 0, uniformly in x.

Proof. Notice that if x #¢ then t © x > 1. Using 2.0 one has
) B — 00
s )= [T rwa [FET uay = [T rpste @0a

=./;mf(t)dt{C1(t@x)D[[8](t @x)+1/1[5](t @x)P[B]([t OxD}
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[x]+1 B

“Jy TP t/Jx(y)dy/; £, (y)de

e+ [L T [T wa.

Now by Theorem 1 the last term goes to zero independently of x.

6.1 COROLLARY. Using the notation of 6.0, S(x, 8) — f(x) as B — w if
f (y) satisfies any condition for convergence of the complex conjugate W.F.S.

to f (x).

LEMMA 7. If F(y) = T(CRa‘"(x))' then for B > «”,

o0 —_ B R
T-Y(F) =CRa'"(x) =/; F(y) l/lx(y)dy=./o. PRa_n(y) l/lx(y)dy.

Proof. One has

FO) = [7C g, ) dx =P (5) =a™C_ (5 Dala™y),

that F(y) € L, and in fact F(y) =0 fory > «”. Hence

T"(F)=/an¢ P _(y)dy = o™ g/“"wyw (™ )dy
o x Ra-n = Jo x k

R-1

R-1
=" kgo Pan(ka-n Ox)= k_zo Ca_n(koc'" Ox)= CRa-n(x)’

where Lemma 5 has been used extensively.

THEOREM 2. If f(x) €L, F(y)=T(f), and F(y) €L, then
F)= [T FG) 550y = THE).
Proof. Take T > a”, for b = Ra™™, Then one has

b ) %) T —
f0f<y>dy=/o CRa_n(y)f(y)dy=/; f(y)dyfo Po(t)y, (e)ds
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T b T —— b foo —
[Forada= [ [T @ wdy = [ [T 55 F@ .

Now by continuity the equality holds for all b, and the result follows im-
mediately.

Note that if F(y) € L one still has
Rac=n Ra=n fam _____
/ f(y)dy-——f f S F(0) dedy.
0 0 0
DEFINITION 7. ](a,b,x)=/a P,(t ©=x)dt.
V]

Lemma 8. (a) J(ag,b,%) =(1-Cp,1,,(a))(1~Ci(b))

+Ci(a @x)f[a] D[b](t Ox)dt + Cl(b)./[llj] ',bx(y)D[a](y)dy

+$[:](x)P{a}([b])P{b}([a O %]

(b) lim J(a,b,x)=1

a— 0

(¢) |J(ab,x)| < a?/2+1

Proof. (a) J(a,b,x) = /(')[a] f;[b] +_/£Z] f;[b] +J;[a]./;]

a b
dydt.
+/£a]f[b] l//y(t@x) ydt

By 20 PR(t © x) = C;(t © x)Dr(t © x). Thus, using 3.0, one gets
lal flb] [a]
./:) . slly(t@x)dydt:./o. C,(¢ @x)D[b](t@x)dt

= C[a](ac)/;l Dipp(e)de = Cro1(x) (1= Cu(5)) = (1-C, 14, (@) (1-C1(5)).

One also has

f[:] fo[b] ‘/’y(t@x)dydt =f[:] Cl(‘@x)D[b](t@x)dt
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=C,(a @x)f[:] D[b](t © x)dt and /;[a]f[:] gby(t@x)dydt

O [ —
- [ B ey =, 8 BT ()dy.

Finally

a b a b
f[a]f[b] y e @) dyds =f[a] ‘/’[b](t@")dt/[b] Ylro.)(r)dy

= ¥, () P (L6 1) Py (la © 2 1)

(b) By 2.0e the second and fourth terms of the equality just proved go to
zero as a — . For b > 1 the result is immediate. For b < 1 the first term

of the equality vanishes and for the last term one has

b —
lim /0 x/ly(x)D[a](y)dy"’l/lx(z)

a-— o0
evaluated at z = 0, by LLemma 7a and the first condition of 4.0.

(¢) From part (a) if a™ < b < a’*" < 1, one only need consider

b
j; l//y(x)D[a](y)dy.

This is evaluated in two pieces. For the first one has

[ = [1 e 00 BT ()

1 ——
=0 /(; l/ly(x)D[a](y) Dan(y)dy

which is bounded by 1, For the second piece, using Lemma 4c.
”an lﬁy(x)D[a](y)dy‘ < fan a/20™ dy < (% - «)/2.
a® "

Thus for 5 < 1 one has |J(a,b,x)| < «*/2~a/2+ 1. In a similar fashion

one can show the remaining inequality for b > 1.
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7.0 COROLLARY. If b > 1 then
](R,b,x)rxl—c[x]ﬂ(R).

7.1 COROLLARY. Ifa,b > x+1, B > 1, then

(e, ) ~1(b )<a2(1 )
|J(a, B, %) ~ s By x ‘——4_18. [a@x] +[bex].

P’roof. One has

J(a, Byx) ~T(b,B,x)

=P @ P (1BD P4y (La @ x]) = Py (1D Py 4y (1 O 1))
and 2.0e yields the result.
7.2 COROLLARY.
If B>1 then |I(a,Byx)=1(b,Bx)| <B+1
If B<1 then |Ila,Byx)=J(bBx)| <B+d.
Proof. Let a*, b* be the integers nearest a and b, Then
I(a, B x) =T (b, Byx) =1 (a, B,x) = J (a* B,x) +1 (5% Bx) = J (b, B,x)
+J (a*, Byx) =] (b*, B, x)

Now the first two pairs are each bounded by /2. The last pair is bounded by
1 for 8 > 1(7.0) and by o for B < 1, this being shown by a proof similar to
that for Lemma 8c, with o™ < B < a!*™,

LEMMA 9. If g(x) is integrable over any finite range and both real and
imaginary parts tend monotonically to zero as x — o from some point xq on,

then one has the existence of the following as limits,

(1) [0“’ §(0)y (0)ds

@ [T rac0y)a

(3) L”gm[t]pﬁ(t@y)dt B> 1,
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and if B > x¢ the bounds
41g(B)|

y

(2) /l;wg(t)Pp(t@y)dtl <41g(B)| (B+

W | [7stou 0] <

20%|g(B)|

A7 s B>y

(3) /;m g(t)[t]PB(t@y)dzl <

Proof. After splitting the integrals into real and imaginary parts and using
the second mean value theorem, then the existence of the first integral and its

bound follow from 2.0e and of the second integral and its bound from 7.2,

For the third case note that since 8 > 1, one has, by 7.0, for k > y + 1,
k+1
-/k (1Pt ©y)dt =k(J(k +1,B,y) =T (k, B,y)) =0.

Thus for a, b > dy it is easy to show that

| [PLe1Ps(:@Qy)de| < o
2[8] '

The existence and bound of the third integral follow immediately.

THEOREM 3. If f(x) is integrable over any finite range, and satisfies any
condition producing convergence of the complex conjugate W.F.S. to f (y) then

fly)= lim '/;mf(x)PB(x@y)dx,

B0
provided
f(x)
1) ——
(1) 1+x€L
or
(2) f(%) is B.V. in a, 0 for some a > 0 and lim f(x)=0
x xooo L%

or
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1
(3) —fxf(y)dy is B.V. in a, @ for some a > 0 and has limit 0 as x— .
x J1

Proof. One has

fob F(P(c© y)de =/OB b, (x)dx fo” £y (0)ds

and if b > y + 1 this has limit f(y) as 8 — o by 6.1, It remains only to show
that any of the three conditions implies

/;mf(t)PB(t@y)dt——)O

as b and B — . For Condition 1 one has by 2.0

|/:°f(t)Pﬁ(t@y)dt| < [T U010/ @y and [+ ceL.

For Condition 2 f(x)/[x] is the difference of functions tending to zero
monotonically and the last bound of Lemma 9 suffices. Finally for Condition 3

let

1 rx
g(x)=—f f(y)dy x>0>0,
x J1

and one has xg’(x) +g(x)=f(x). Now xg’(x) satisfies Condition 1 and
g (x) Condition 2.

Working with the available inequalities it is possible to prove several theo-
rems of the following type, but with weaker conditions on f (x) and g(x). The

proof of the following is immediate with a change of order of integration.

THEOREM 4. Iff(x), g(x) €L, T(f)=F(y), T(g)=G(y), then

/w f(x)G(x)dx =f°° F(x)g(x)dx.
0 0

3. The purpose of this section is to build up to the following theorem.

THEOREM 5. If f(x) €L and T(f) = F(y), then
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f) = tim 7= wV/BF () ) da

L— 00 0
provided

(1) f(y) is locally essentially bounded at x (essentially bounded in a
neighborhood of x)

(2) fo" f(xs8)=f(x)|demo(h)  h—>0.

Further if x is an G-adic rational Conditions 1 and 2 need only be right
hand conditions.

Theorem 5 is the best possible in the sense that Condition (2) holds almost
everywhere and (1) cannot be completely removed, This follows from the fol-

lowing,

THEOREM 6. There is a function f(x) € L satisfying (2) but not (1) of
Theorem 5 for which the result of Theorem 5 does not hold.

LeEmMA 10, If f(y) € L, then for each x

lim /'B (1-Tul/B)F(u) !,bx(u)du—f(x)
B—oo 0

~ lim [x]+l(f(y)—f(x))dyf[ﬁ](1—[u]/B)x//—(u)¢(u)du.
B—oo [x] 0 x ¥

Proof. For-each 8 > 1 one has

B — [x] [x]+1 o0
f0<1-[u1/ﬁ)p<u>¢x<u>du=|j; [ +f[x]“}f<y)dy

« SO LB T Wi =147 4.

Since y < [x], by 2.0
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[x] B [
1=f0 f(ymyfo (1-[u]/B) ¥, () du

(] (el K
=f0 f(y)dyl > - [T v, W

< —
£ -1B1/B) | o l//x(u)\by(u)du}

[x (=)
=0+f0 ]f(y)Pﬁ(y Ox)(1 —-[B]/B)dy:O(l/B)/; Fly)dy =0(1/B).

In a similar fashion K = 0(1/8) and

[x] +1

B JR—
o i 7O -01/8) 5T 4, () da

[x]+1 (6]t —
=)o dy | > (1—lc/ﬁ’)s//k(x)lﬁk(y)+(1—-[B]/ﬁ)¢lﬁ(x)¢/ﬁ(y)
x k=0

Ll — [LIn
- X a-wp [ w6 otp = 10wp).
k=0 x

Thus the proof of Theorem 5 reduces to showing

. 1 (8]
8.0 ﬁljlwﬂ f(t)dtj; (1=Tul/B) g,(u)du =0,

where f (¢) is redefined appropriately and f(0) is assumed to be zero. In the
sections to follow it should be remembered that usually 0 < ¢ < 1,

n-1

DEFINITION 8. L,(¢) = 3~ k ¢ (¢)

k=0

6]
o8 =7 (1-121/8) y,0)da

1 k
R0 == 5 Do),

n=1



468 R.G. SELFRIDGE

Lemma 11, (a) ¢(B,¢) =P[ﬁ](t) —L[ﬁ](t)/ﬁ

(b) #(LB1,¢) =F[ﬁ](t).

(8]t
Proof. ¢(/8,t)=j;[B] vode- T we [ gwds
k=0

= P[5(6) = L1 (0)/B

[5]-1
=Dy () -8 {(T81-1) T

(Bl-1
-z ([31_1_k>¢k<t)]
k=0
[Al-1 k-1
=g -8 {(Tp1- Dy (0) - p> %1//].(6)]
_1-[B1+8 ekt

T U+ VB T D) =)
k=0

—

where the last equality holds only if 8 is an integer.

For the purposes of what follows the useful part of this lemma is only the
very simple first part. However it is of interest to point out that Fk(t) is the
Fejer kernal for the W.F.S, and that C, 1 summability of the transform will thus
imply C, 1 summability of the W.F.S, (see [1]). However the converse is not
immediately true, since C,1 summability of the W.F.S, will only imply C,1
summability of the transform for integral B. To proceed from summability for
integral 3 to that for all 8 seems to require precisely the conditions of Theorem
5. At the same time, restricting C, 1 summability of the transforms to integral
B will not ease the problem, because the present method of proof works equally
well in both cases, and no change has been found as yet that alleviates the

problem even for integral S.

LEMMA 12 LAan(t) = DA(oc"t)Lan(z) + oaz"Ca.n(t)LA(oa”t).
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Aaml

A-1 al-1
Proof. 3"k (e)= 3" 2 (k+Roa™ ¢ 4p n(2)
k=0 R=0 k=0

anl.1 anl.1 A-1

A
= > R“n‘/’Ran(t) 2 )+ 3 ki (e) 3 wplal)
R=0 k=0 k=0 R=0

=a"Ly (oc"t)Dan(t) + Lan(z)DA(a“z).

LEMMA 13. Let

D(ﬁ):N,t=txoc'A+t20('5+y,0 <t <& 0<t; <, 0< y<oc"8.
Then

(1) |#(Bt)| < B < al
(2) IfA <N then | (B, t)| < a?
(3) IfA < B <N then |¢(B,1)| < ad*B-N,

Proof. (1) is clear from the definition of ¢(f3,¢). For (2) take Q an integer
such that |8 - Qa”?| < «“/2. Then

B
Qa

(B, t) = P (1-[1/B) ¢, (u)du-1/B LQaA(t) +PQaA(t).

Now the integral is clearly bounded by

(B-Qu)Y/B < a/4p, P ,(2) =0,

and LOaA(t) = Do o(At)LaA (¢) which is bounded by Qu?4/2.

For Case (3) define Q and R,

|B-0Qa?| < at/2, |Qu? —-RuB| < aB/2.
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Then

oA
¢(B,t)={/0 +/Qﬂ }(1-—[u]/ﬁ)l/'t(u)du+PRQB(t)—1/BLRaB(t).

RaB a4
Now
L..g) =DR(aPe)L p(o), and L p(e) =L , p ,(e)=D g (@%)L , (o).
But

D g @) =af4C ;  (att)=0.

Thus the last two terms of the equality are zero, and again the second of the
integrals is bounded by 24/4p. Finally the first integral is given by

I/BILQaA(t)—l/B LRaB(t)I :1/'8‘LaA(t)(DQ(C{At)_DRaB_A(OLAt))|
<1/Ba%4/2 10 -RuB4| < a4*B/2B < aA*B-N/2,

LEmMA 14, If0 < g(t) <1, g(t) =0(1) as t — 0, and g(t) is monotone

increasing with t, then

1
lim f 2(2) (B, 0)ds =0
B— o0 0

Proof. Let N =D () and define the following intervals,

«N
Iyy,, 0<Lt<a
. <A -A -N
IA,N+1 the o — 1 intervals Rot™ <t < Ro™ + &
I, g the o~ 1intervals Ra™4 + a8 <t < Ra4 + a*-B.
’

Now the integral [)' g(¢)¢(B,¢)dt is to be evaluated over these intervals

and then summed, using the results of the previous lemma frequently.

Since g(t) = 0(1), we have
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a-N a-N
I/ g()p (B, t)dt 5/ gt ar =0(1).
0 0

Now for ¥ < 4 one has

f1 e B(B,0)de

A,B

1-M
<gla )/IA’B (608, 0) | dt

< g(a"M)caA*B‘N/I‘ dt < glaM)gA*B-Ng-B (o~ 1)2 < g(at-M)g 4-N*2,
A,B

Thus

(-[ ¥ EN-?/, )gmqs(ﬁ,t)dt‘

A,N+1 B=A+1 'A,B

< gla™My (@A N*2 L (N = )N 2) = g(a™M) (N -4 + 1)a4-N*2

and summing over 4 from M to N yields

N
g M) = (N-4 +1)a?N*2 < Rg(a'¥)
A=M

where R is independent of M and N for sufficiently large M and N.

For the remaining intervals where 4 < M, an identical argument yields

M
/ g(t)d(B,t)de] < g(1) Z(N-A+1)QA-N+2 < g(1)NaM-N*e,
aM<e A=1

Adding these results yields



472 R. G. SELFRIDGE

I/;lg(t)¢>(ﬁ,t)dt| < g()NaM-N*3 4 5(1) + Rg(atM)y,

and the proof is completed by choosing first M and then N sufficiently large.

1

9.0 COROLLARY. lim / b (B, t)dt =0 0<p<l
B — o0 P

9.1 CorROLLARY. lim /l f()d(B,t)dt =0, f(e)eL(p,l).
ﬁ_.oo P

This corollary is an immediate result of 9.0 and a well known theorem (cf.
[31p.231).

DEFINITION 9. A set £ is of metric density % at x if

|En (a,b)|

=k, wherea < x <b.
a-b—o |(a’b)| ’ - -

To allow for o-adic rationals this density can be restricted to only right-
hand intervals, Thus if x is an c-adic rational it is to be understood that only
intervals (x, b) are used.

LemmA 15, If f(t) €L and

fo" f(xs0) = [ (x) |de =0 (h),

then there exist g(t) such that 0 < g(¢) < 1, g(¢) monotone decreasing to
zero as t —0 and E =(x+t: |f(x+¢) = f(x)]| > g(¢)) has metric density
zero at x.

Proof. Set E,=(x+t: |f(x+t)—f(x)| > 2"). Clearly E, must have
metric density zero at x. Now let

p(Ep b)) =p(E,n(x~h, x+k)) or
plEp b)) = p(Ep 0 (x,% + )

if x is an O-adic rational. Since E, has density zero at x, for each n there
is an h, such that p(E,, k) < |k|2°", |k| < hy. Clearly it is possible to take
hy, a power of ¢ and h,+; < Ay,

Now define g(h)=2" if hp+, < |h| < hpy g(h) =1 if |h| > hy. Since
hn — 0 as n —w, g(h) satisfies the requirements of the lemma, and it
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remains to show that £ has metric density zero at x.

Let [ be any interval including x (right-hand only if x is an ¢-adic rational )
andset F=InE, A, =Fn(x+h: o™ < h <a'™"), u(4,) = ay,.

For each n there is an m such that A4, < &' < hy, so that by the con-
struction of g(h), a, < a'2™ = o(n)a™, where o(n) is monotone decreasing
to zero as n —> .

Hence

o(n)a™ <a(d) 30 am=ola™).
n=A

™

[>9]
Z ap <
n=A

Ul
S

n

Thus for a™4™! < |h] < a4, u(F, k) =o(a®) =0(k), and F, and hence E,
is of metric density zero at x.

Proof of Theorem 5. The problem has been reduced to considering

fo‘ Fly) B(B,y)dy.

Let I be the neighbourhood of 0 in which f (y) is essentially bounded, the bound
assumed to be 1. By Lemma 15 one has g(t¢) such that E = (¢: |f (¢)| > g(¢))
is of metric density zero at zero. Let f (y) =f,(y) +f,(y) + f,(y) where

fly) yel-E f(y) y€lnk
fx(g)‘: fQ(}’)=I
0 y€C(I-FE) 0 y€C(InE)
fly) yedl
fily) =
0 y €1,

The proof reduces to showing

1
tim [ 1,0 $(B,y)dy =0,
B—-»oo 0

For ; =1 this follows at once from l.emma 14, and for ;=3 from 9.1, For the case
i=2 define E, =(«™,0' ™), 4, =In EnE, and pu(4,) =a,. If D(B) =N one

has

<

1 N a*n
|_/; f,(y) ¢(B,y)dy > 14' #(B,y)dy +./0. If,() (B, y) |dy
n=t n
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@1-N N
<o [0+ [ 188 Ly
Now since fé‘ |f (y)|dy =0(h) one has

al-N
[ 100y =0 (D)

as N — . Since /n E has metric density zero at zero Z:=B a, < k(B)OL'B,
where 4 (B) is taken monotone decreasing to zero. Hence k(n)u™” is strictly
decreasing and for each N there is an unique T such that E(TaT < a-N <
E(T-1)a'T. Now for any R, T < R < N, one has ag < k(R)a® < k(T)u R,

and hence

N N
> /A |6 (Byy) ldy <k(T) 3 aRaR=(N-T+1)k(T).

R=T “R R=T

For R < T a procedure similar to that of Lemma 14 will yield

T-1 Te1
Z / |¢(6’7)|d752 (N =R +1)gR*t-N
R=1 "R R=1

< ala=-12{aT**"N o (N=T+ DTN (6-1) + O(N)aN 3.

Thus
LH106)6B) 1dy =0 (1) 4 (0= TIE(TY 4 4™ L BN =T+ D™,

Now by choice of T one has £(T) < a7V < k(T=1) or
E(TY(N-T) <k(T)log (1/k(T))/log .

Hence one has in succession

lim k(T)(N=T)=0, lim a’N=o0,

Toox T — o0

lim (N=T+DaT¥ lim (N=T+1Dak(T-1)=0.

T o0 T - o0
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Finally as 8 — w0, so does N, and hence T —» w0, so that
1
fo f,(y) ¢(B,y)dy =0(1) as B — .

10.0 CorOLLARY. If f(y) is integrable over any finite interval, then for

almost every x at which f (y) is locally essentially bounded we have

R
f(x)= lim lim _/0. f(y) ¢(B,y ©x)dy

B—00 R-—o0

[x]+1
lim fly) ¢(By @x)dy.

B — 00 [x]

Proof. For [y]1#[x], one has
(sl k+1 —_—
o (By Ox)= Z/ (1-%/B) l//x(u)',[l(u)du=0.
k=0 “k Y

Thus the inner limit exists, and now changing the order of integration completes

the proof since the requirements of Theorem 5 are satisfied.

Proof of Theorem 6. Define f(x) = o™ if a™ <x < «™ + o 2™/m,
f(x)=0 elsewhere, and f(0) =0. Clearly f(x) € L and fg’ f(x)dx =o(h).
Now consider the sequence 8= aN, for N even. Now if t =¢,0°4 +t,0°B + ¥y

as before, then for 4 < B < N

(B t)=-1/B ng(t)='—O(.-NLaB(t)DaN_B(O(Bt)
=—a "Dy _gaP)D (a*)L ,(¢) =0,
and for 4 <N < B,

~aNgatalN4, o) = L (1) =DaN-A(aAt)LaA(t) +C 4 (OL . (a%)a?4

N- VA N-A
=aVic , yUadeDL () =oAL, ()

MDA L () +C () Ly (ahte) 2472
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*! (a.A'lt)
- O(N'AOLZA'Z La(O(A'l ¢) = aN+A'2 z kl//k ,
k=0

and thus for 4 < N < B, ¢ (oM, ) = a?-2B, .

Now take 4 > (N-4)/2, so that for N > Ny a-24/4 < oV, By the con-
struction of f(x) each interval where f(x) # 0 is entirely within an interval
where ¢(B,t) = «4°?B;. Again consider intervals «™ <t < a'*™ As in the
proof of Theorem 5

fa-Nf(t)qb(,B,t)dt:o(l), as N — o0,
0

and

N

> [ rosgodn

n=(N-4)/2 "n

N N
< X «a"Bia™?wt/n =Bt 3 1/n.
n=(N-4)/2 n=(N-4)/2

For the remaining sets one has

(N-6)/2 (N-6)/2
‘Z; f()(Be)de| < 3 "By a2 o' N < o® max |By |.

Now a quite simple computation shows max 4 |B4 | < «|B; |. Hence one has
fol f(t)# (B, t)dt split into three pieces, the first of which is 0(1), the second
tends to B; 2 log 1/2, and the third is bounded by |B, |« *. Hence the con-

clusion of Theorem 5 cannot hold.
The problem of showing that Theorem 5 holds almost everywhere, or of con-

structing a counter-example has not yet been solved.

4. L, transforms. To a great extent the results of L transforms for 1 <p <2
can be proved similar to the proofs used, for example, by Titchmarsh [5]. For
this reason the proofs will not be given, or given only briefly.

LEmMA 16, For any finite set of & i =0,1,+++,n, and any N > 0,

[
0

Z: a; ¢fx(i0{-N)
i=0

2 n
dx = aN z lai|2v
i=0
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LEMMA 17. For any finite set of a;, i=0,1,+++,n, and any N > 0, and
1< p < 2

[
0

THEOREM 7. If f(x) €L, 1 < p < 2, then there is a function F(y) € L,
such that

n

Z a; l/Jx(lO(

=0

q/p
dx <o (Z | a; |p) , where ¢ =p/(p-=1).

F(y) =Liam. (q)/ F) g () and ([Pl < £ 1l,.

B —o00

Proof. Let

F(x,a) =/0.af(y)l/lx(y)dy

and n =[aNa). It is not difficult to show that over any finite interval F(x,a)

may be approximated uniformly by

n-1

(k+1)a-N
> ax ¥, (ko) where ak=f Ty,
k=0 ka'N

and hence, using Lemma 16 or 17

fOD |F(x,a) |9 dx 5_(/0 |f(y)|de)q/".

From this Theorem 7 is almost immediate.

THEOREM 8. If f(x) € Ly,

T,(f) = F(y) = Lim. (2)/ )y, () dx,

B -

then

f(x) = Lim. (z)fOB F(y) ) dy and ||F]l, = IIf Il,-

Proof. From Lemia 16 one has gU):Tz(F) and ||g ||, < HEI, <111,
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Now take p an c-adic rational, and take the limits in the following along se-

quences of integers, which is possible since the limits exist,

fo"g<x>dx= % 4z i, OB b (Pdy Lim. /ocfuwy(t)dz

B 5> C — 00

lim /;pdx lim A'Cf(t)thB¢x(y)¢t(y)dy

B— o0 C oo

[pl+1 B —
im [P [P p 0w [* 35 u0ay

B — o

ol
lim LP dx /OB t//x(y)dy./;p]ﬂf(t) v (e)de =/;pf(t)dt,

B—;oo

1]

where the last step is justified by Theorem 2 after defining a new f (¢). Now
continuity of the integrals yields the desired result.

THEOREM 9. Iff(x) €Ly, 1 <p < 2and Tp(f) = F(y), then
F(x) df”()P()d i [ =2 T FOEG
x—;l-;ofyxyyan fx—z;/; y) Py (y)dy.

Proof. The existence of the integrals follows since Py(y) €L, for n > L.
Then the first result follows from

x . x B )
" F()dy = lim /0 dy/; f(t)l/ly(t)dt=/; F(P, (2)dr.

B s>

For the second result set

G(x)=./:o F(y) P (y)dy.

It is simple to show that G(x) is continuous. Then for an «-adic rational x =
ko™

/;“ F(y)?’ZT?)dy=f0“" F(y)dyfo" oL

x an B x
[ a lim/; ¢y<t)dy/0 f(u)¢y(u)du=/; () du,

0 B - o0



GENERALIZED WALSH TRANSFORMS 479

and again continuity of both sides finishes the proof.

LeMma 18. If f(x), g(x) €L, 1 <p <2 and F(y)=Ty(f), G(y) =
T,(g) then

f"" F(x)g(x)ds =/'°°f(x)c(x)dx.
0 0
LEmMMA 19, If p =2 in Lemma 18, then

fo F(x)ET;)d“fo“ f(x)g(x)dx.

THEOREM 10, If f(x) €Ly, 1 <p <2, F(y) =T, (f), and f (%) satisfies
any condition producing convergence of the complex conjugate W.F.S. to f (y),
then

. B ———
fly)= lim fo F(x)l//y(x)dx.

B s

Proof. Let g(x,y)=y, (y)if x < B,=0if 8 < x. Then G(ty)=T,(g(x,y))
=P3 (¢t ©7y), and by Lemma 18

f”F(x)g(x,y)dx=[°° F()G (s, y) ds
0 0

ﬁ 00
=/0 F(xwy(x)dx:fo F()Ps (t ©y)de.

Now since f (y)/(1+y) € L, Theorem 3 completes the proof.

TeEoREM 1L If f(x) €L, 1 <p <2, F(y)=T,(f), then for almost
every x at which f (y) is locally essentially bounded

fG)= tim [°Q-Ll/BYFG) T du
0

B -

Proof. Theorem 5 combines with a method similar to that of Theorem 10 to

yield the desired proof.
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