AN EXTENSION OF WEYL’S ASYMPTOTIC LAW FOR EIGENVALUES

F. H. BRowNELL

1. Introduction. Let 0 be a bounded, open, connected subset of the plane
E, whose boundary B =D - D is a simple closed curve whose curvature exists

everywhere and is continuous with respect to arc length; consider the eigen-
values A = A, > 0 of the problem

(1.1) V% + Au=0 on D, u=0 on B,

where u(x) is to be continuous over I and have continuous second partials
over D, V? being the Laplacian. It has long been known (see [7, bibli-
ography 1) that in this situation, with 0 < A, < A,4+; repeated according to
multiplicity, the asymptotic distribution of A, is given by Weyl’s law

1, (D)

(1.2) N()= 3 1=
A<t

t+o(t), t—+w,

where p, (D) is the two dimensional Lebesgue measure of D. This can be ob-

tained by Tauberian theorems from the estimate

x 1 1, (D)1 C
(1.3) > -2 —Iﬂ+-+0(w‘5/4), ©w— + o,
=1 MlA+ @) 4 ©w  w

(see Carleman [2] for the Ej; analogue). By domain comparison methods [3,

p. 3861 Courant has shown that o(¢) in (1.2) can be replaced by O(y/t Int).

In a recent paper [ 6, p. 177, equation 16 ] Pleijel replaces the estimate (1.3)
by the very much stronger

(1.4)

—_ =t ——

Z)\n()\,,+w) Ry 3 ® 8 ¥/

n=1

> 1 (D) o € 1B 1 1
(=)
over ® > 1 in case the curve B is very smooth (that is, it has an infinitely
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differentiable parametric representation), where C is an unknown real con-
stant and [(B) is the total length of B. Pleijel’s estimate (1.4) follows easily
from a deep investigation jointly with M. T. Ganelius on the compensating part
of the Green function, as yet unpublished. This investigation uses integral
equations over the boundary B, while estimates like (1.3) come from a simple
application of the maximum principle over D to the modified Green function.
Pleijel suggests it should be possible to sharpen (1.2) by using his methods to

investigate the analogue of (1.4) over complex w.

It is the purpose of this paper to show that from (1.4) alone we can replace
(1.2) by

p, (D) 1(B)
t -

tl/2+0(lnt), t—+0,
T 4

(1.5) N(t) =

in a certain sense. Precisely our result (2.13) is that with

t_
w 4

(D)
F(t)=N(t)—[#2 l(B)z'”]

we have

2 2
20 |, ol 5 u2) Yoo
2|

over all real y > e and all p > 0 for some ¥ < + . Moreover, if N(¢) has an

72 p2 1
< | Mex +—]{lnu
< p 3 2p2

ordinary asymptotic series in powers of ¢, it must be consistent with (1.5). We
discuss briefly the possibility of sharpening (1.5) by replacing averaged 0
estimates by ordinary ones. We also note the utility of our consistency result
in proving false a conjecture of Minakshisundaram [5, p.331, no. 2] about the

asymptotic behavior of N(¢).

Clearly our theorems will apply to give results like (1.5) for a wide variety
of more general problems than (1.1) for which estimates like (1.4) obtain; in

particular such results hold for (1.1) in 3-space Ej.

2. Results and proofs. The difficulty arising in trying to get an asymptotic
series like (1.5), with 0 replaced by an ordinary O or o, is that Tauberian
theorems yielding such results seem to require essential nonnegative condi-
tions after subtracting all but the last term of the series, It is quite clear that

N(t) does not satisfy such a condition. For this reason we use an indirect
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Abelian type argument [4, p.224] to get averaged error estimates of the 0 type.
The two first theorems here establish the significance of these averaged
error estimates, which despite the resemblance to Gaussian summability seem
to be little used for asymptotic series, Cramér [ 1, p.819 and p.823, (3)] has
used Caesaro-1 type averaged error estimates on lattice point problems, but

such processes do not appear strong enough for use here.

Throughout the paper all integrals are to be understood in the Lebesgue or
Lebesgue-Stieltjes sense, and for the following two theorems it is understood
that F(t) is to be real valued of bounded variation over every finite interval
of [0, ), with positive b a continuity point of F(¢). Also |dF (¢)| stands for
dVE(t) where Vg (t) is the total variation of F over [ b, ¢].

TueorEM 1. If
[T R <ie
for some ry > 0, if

w(s) =j;°° S dF (¢),

which must exist and be analytic in s over Rls] > ry, also has an analytic

continuation without singularities throughout Rls1 > 0, and if

M
[ (r+iv) | _<_--—1 ehlv|
r

over 0 <r < ro and all real v for some M; < + 0 and h > 0, then over all real
u>eandp > 0we have

00 2 1
(2.1) |/b - P2/2) n W/t g (4) < (2M1 exp (1 + %hz + ——))lnu.

2p?

In view of (2.1) it becomes convenient to define F(t)=5(f(t)) over
t > b for some nonnegative f (¢) defined over ¢t > k& > 0 if for each p > O there
exists some M, < + o such that the left side of (2.1) exists and is < M, f (u)

for all u > k. With this definition we can restate the conclusion of Theorem 1 as

F(¢)=0(nt)
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over ¢ > b with k =e. Note that in (2.1) M, — + 0 as either p — 0* or
p — + w, so that (2.1) becomes meaningless then. The significance of the

result (2.1) is greatly increased by the following consistency theorem.

THEOREM 2. If

./;wt"oldF(t)l <+

for some rq > 0, if
F(¢)=0(Int)

over t > b, and if

F(t)=cytt +0(Y)

as t — + w for some ry > 0, then ¢y =0,

Proof of Theorem 1. Let
2
f,(y) =exp (— % y? —Z}’)

for p > 0 and any complex z; thus

1 z
wydy——exp(—;— (v+;) )
p

Now
i [T 1aF @] 2 7 Ve ()
shows
Ve(t) =0(:°);
thus

g(z,0) =fy°:1nb f(w—y)e ™ dF ()
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exists as an entire function of z over all real w and all complex z. The Fubini

theorem also shows g(z, w) € L;(-w, ) over w with

1 00 ) 1 1 z\?
(2.2) I g(z,w)e'wwdw=—exp(-—(v+—))l/l(z +iv)
V2r i P 2p* i

over Rz +iv]=R[z]> ry, v being real. But the right side of (2.2) is in

L{(- o, o) over v since
|9(s) | gfb“ AR (), = Ris,

and thus the Fourier transform inverse yields

(2.3) f: , flo=y)e®Y dF (e¥) = g(z, w)
y=In

1 foo (v +2/i)? . d
= f exp | — v+z21 l,ll(z+iv)e””"—2
\/f:‘2—7—7 e 2p P

for R[z] > ro. The given estimate on ¥ (s) actually makes the far right side
of (2.3) exist and be analytic in z throughout R{z] > 0, and thus by analytic
continuation (2.3) holds there also. Thus with z =r we have for every positive

r and p and for every real w the estimate
\

2
(2.4) ij=1nb exp (~52—(w—y)2 ._rw)dF(eJ/)

1 00 - 2+ 2 Ml d
«— | exp(”_L>_ehlvl i

V2m °T% 2P2 r P

Ml 2 }lz 2 1 ) d
= — exp<r_ + p ){ / e~ hv/p - ph)? e
0

2p? 2 \V2n P

2 2 wtp?
. 1 fo e-‘/z(v/p +Ph)2 ﬁls _lexp(_r_z +h p )o

Vot P

Multiplying (2.4) by e"® and letting r = 1/w > 0 we note for @ > 1 that
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2
1
rw+r——lnr=1+ +lnw§_1+—+lnw,
2P2 2P2w2 2p2

thus with y =In¢ and w =lnu > 1 we get the estimate (2.1) as desired.

Proof of Theorem 2. As before we have

|F()| < |F(b) |+ Ve(t)=0(:"),

so that we can integrate by parts in the left side of (2.1) and obtain from
F(t)=0(lnt) over ¢t > b the estimate

(2.5) Ipzf“’ F(e9) (w-y) @0 24| < \F(b)| + My 0
y=Inbd
over @ > k > 0. Now we are given
F()=citt+f(e)e

over t > b with lim;_, 4o f(£)=0. Thus multiplying (2.5) by e '*, letting
y = ® — x, and taking @ — + 0 we get
2

. w-In b pe o,
0= Llim cl‘/‘ xexp(—rlx-— —2—x )dx

w— + 0 0

-ln b 2
+/w " f(e®™)x exp (—rlx - %xz)dx}.

Defining f (¢) = 0 for ¢ < b we obtain

2

(2.6) 0=c1./‘°‘7 xexp(—rlx-—%xz)dx
2
: e We=x P 2
+ lim [f f(e“™)x exp(—-rlx——-x )dx]
wWw— 4 00 =00 2

f(t) being bounded over all real ¢ since lim;_, o f(z)=0, and thus also

limy,_, 4o f (e“7*) = 0, dominated convergence applied to (2.6) yields
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O=c1f xexp(-rlx—-;xz\)dx.

But

for r; > 0, so that ¢; = 0 follows.

To apply these two theorems we use a standard contour integral transforma-
tion on Pleijel’s estimate (1.4). The contour C,, p > 0, in the z plane is de-
fined to be first along the negative real axis from — «c to — p, then around the
circle z = peie from 0= -7 to 0 =7, then back along the axis to — . On this
contour we define

(z)(;s'l =|z |s-1 ei(s'l)e, z=|z [eie,

with 6 =~7, —7 < 6 < 7, 0= 7 on the three parts respectively. The well known
results are formulated in the following two lemmas (Carleman [2]), and we

sketch the proofs for the sake of completeness.

LEMMA 3. If0 < A, < Ap+1, ap real, if

hod |anl

> —< + o,
and if

> 1

Z -—2 <+ 0,

n=1 )\n
then

h(z) =
5;"1 M (A, =2)

converges absolutely and is analytic in all complex z except for simple poles

at each A,. Moreover, for 0 < p < Ay the function
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1 dz
—_— / h(z)
2w Cp

(2)5!

exists and is analytic in s over R[s1 > 2,

Z ap X°°

n=1
converges absolutely and uniformly over Rls1 > 2, and over R[s] > 2 we ob-
tain

1 d
(2.7) Z,a,,.\;f=——/c' hz) —.

n=t 2mi Je, (z)5!

LEMMA 4. [If the assumptions of Lemma 3 are satisfied and if

k mp+lplnw 1
(2.8) pew)= L o(5)
. N

holds over @ > 1 with 0 <rj, <rp.y <+e+<ry <2 then

g(s)= 2 a, xS
k=1

has an analytic extension into Rls] > 0 except for poles at s

(2.0) () (e) k l sin n(rp—-l) 1
2.9 = +
818 :2:1 i i (s=rp)?
sin 7(r,-1) 1
+ [mp + I, cos n(rp—-l)]
n s—rp

with gk(s) analytic in s throughout R[s1 > 0, and
v

M,
ng(r+iv)| < —ce
r

over 0 < r < 2 and all real v for some My < + .
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We remark that r; < 2 is no real restriction in (2.8), since the assumptions
of Lemma 3 imply limg, _, 4 oo h(~=@) = 0. In demonstrating l.emma 3, the stated

analyticity of h(z) is clear as well as

|h(2)] g(ji;fl | v ) (i lanl)

n=1 n

SO

1 dz
g(s) = E—/C h(z)

TG ()3

exists and is analytic in s over R[s] > 2. To show

gls)=2" a, A

n=1

there for (2.7), let C,, be the vertical line contour from x,, — i to x,, + i for
x;m  with A <%, <A, so that using the estimate on A(z) to shift from

Cp to Cp, we obtain

dz

S=

- 1
(2.10) g(s) - Za])\ 27” Lmh(z)

for R[s1 > 2, A(z) having the residue

at A,

To pass from (2,10) to (2.7), note that

[ lim sup )\Z (A, - )\n_l)/]‘ =+ o0,

n— oo

since otherwise

A=Ay = E(/\—)\
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would be bounded by

Thus there exists a sequence n,, such that

Pm < Bm+rs Ap=Agey > 0, and A2(A, = X5 ) — + 0 as m— + @ for n=n,.

We choose
%y, ={max (A, + Ap01)/2, (X, =1)}

for n = n,,, so that

An
— <1+ — —>1
Xm Xm

and

M\ 2 1
=xm+2x;(——) R ——— =0(xfn).
Xm )\;(An—)\n_l)

Xm 2xm

<——xm  —
Ay =% Ap = Apey

With z =xp, + it and s =r +iv, r > 2, clearly

[h(2)]| < "

|1~ (xp +it)/A, |

and

1 | < exp (7|v|/2)

z5°1 - Izlr-l

with L (v) = M exp (7|v|/2) make
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h(z)

over |[t| <A, —x,,

|<( )2_r(’\n) L(v)
S \Xn ';;

s=1

. Ap—2xp,

_’\n_) L,(j)

h(z)

over Ay =%y < |2]| <xp,

zs-l

< (xp)% T (

Xm

and

h(z)

A
lg_(-l)L(v) ' over x,, < |t].

|tlr-l

zs-l

Thus integrating over these respective parts of C,,, and using

Xm
ln( )=O(Inxm),

n~%m

the right side of (2.10) — 0 as m — + ® and (2.7) follows.

Passing to Lemma 4, from the estimate (2.8) it is clear that

1
gls) = — h(z)
2mi Co (z)i-l

extends analytically from R[s] > 2 to Rls] > r;. Also for r; < Rls] <2,
Cp can be shifted to Co yielding

1 d i -1) f=
(211)  g(s) = — [ a(o) 2 _Snrls )/ h(-w)
2mi JCy (z)s-l g 0 @St
Now here
sin 7(s = 1) sinn(s-—l)[ 1 dcu]
f ( w) —3_-1 =7:2T h(—1)+‘/(; h (‘“(L)) ws-2 ’

which is analytic in s over R[s] < 3, having a removable singularity at s = 2.
Also

sin ﬂ(s—l)/’oo o2 dw _ sin 7(s = 1) nd
m 1 WS (s =r)
sin 7(s =1) fe ) dw sin m(s = 1)
———-—/ o *1ln w =
m 1 @S™! a(s —r)?
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with principal parts

sin w(r=1) sin 7(r = 1) cos m(r-1)
—_———— an +
77(3"7') 77(8—")2 S ~T

respectively at s =r. Thus (2.9) clearly follows from (2.8) and (2.11). Also
from

. 7|v] o 1 do
|sin 7(s ~1)| < 2e and f —_— —=
i

1 o 1

~ ) o

the stated estimate for gk(s) follows.

We combine Lemma 4 with our two previous theorems to obtain the following

result.

THEOREM 5. If the assumptions of Lemma 4 are satisfied with

lp sin(ﬂrp)=0

in (2.8), then

H(t) = Z ay,
A<t

satisfies

T .
tP sin @ rp
- mp

rp w

~1lp cos ﬂrp)] + 5(lnt),

(2.12) H(z)={z

p=1

over t > b where 0 < b < Ay. Furthermore, if H(t) has an ordinary asymptotic
series in powers of t as t — + w, such a series must coincide term for term
as far as it goes with the terms of (2.12).

Proof. Let

p=1 Tp 4

ke sinnrp
F(t)=H(¢) - Z-—(—mp —lpcosnrp)l,

and note that
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00 tl’ o0 br-s
f ¢S d(—)=/ S dp = —
b r b s=r

for R[{s1 > rand b > 0. Also with 0 < b < A, we have

o0

./; 5 dH () = 37 ap S

n=1

for R[s] > 2. Thus from Lemma 4 we see that

¢(s>=/b°° S dF (1)

has an analytic continuation without singularities into R[s] > 0 by the can-
cellation of principal parts at each r, =s. Also the conditions of Theorem 1
are satisfied with ro =2 and & = 7; thus (2.1) yields (2.12). Theorem 2 gives

the consistency statement obviously.

To apply this theorem to our problem (1.1), we remark that the desired

condition

> 1
Z — <+

n=t A

B

follows from Green’s function being in L,(D x D), and thus a Hilbert-Schmidt
kernel. Thus Pleijel’s estimate (1.4) yields (2.12) with

p, (D)
k=2,r1=1,ml=C, ll'_"

, sin(wr) =0, cos(mr;)=-1,

47

1(B)

rp==,my=——, l=0, sin(7ry;)=1,

N =

and we can state the following,.

COROLLARY 6. Let the open, bounded, connected set D in the plane E,
have its boundary B an infinitely differentiable Jordan curve so that Pleijel’s
estimate (1.4) holds for the problem (1.1). Then over t > A{/2 we have

k(D) y(B)
(2.13) Ny = 3 le—— o -

t%+5(lnt),
A. <t 477 4'77
n_-
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and as in Theorem 5 any ordinary asymptotic series for N(¢) must be consistent
vith (2.13).

If we consider the real valued eigenfunction u,(x) of problem (1.1), in

place of (1.4) Pleijel gets [6, equation 6 and second equation of p.177] over
x€Dand w > 1

oy, (x))? 1l ho C(x) 1 Ko(2r(x)\/;)

(2.14) —— e
;An()‘n‘*‘“) dr o ) 27 ®
o-24r (XOVw
+0 -——-——w3/2 ,

A > 0, r(x) the distance from x €D to B, the O symbol being uniform over
x €D as well as o > 1. Now K¢(r), the modified Bessel function of the second

Kolr) f (1+0 ))

as r—» + [8, p.374). Thus for each fixed x € D, with r(x) > 0, we have

kind and zero order, has

over w > 1

(2.15) Z ———— R — — p

‘un(x)‘z 1 lhhe C(x) 1
+Ox( ),
M, +0) 4 o ® o

where the symbol Ox now depends on x € D. It is also easy to see that at each
X #y with X, y € D we have over v > 1

o0 un(x)un(Y) C(x,y) 1
(2.16) oo ¥ "'y( )

n=1 @

and indeed much better estimates than O(1/w?) hold in (2.15) and (2.16).
Also

= up(x) |2
D, — <+
n=1 Ai

is known at each x € D; thus Theorem 5 yields the following.
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COROLLARY 7. Let D be as in Corollary 6, so that (2.15) and (2.16) hold
at each X £y with X,y € D. Then over t > Ay/2

1 ~ ~
(217) 37 lup(x)|P=— t4+0Une), 2 up(x)uy(y) =0(Ine),
Ap< it 4 A<t

with consistency of these series with ordinary asymptotic series, if any, as in

Theorem 5.

3. Discussion of results. It is quite clear that O(In¢) in (2.17) can be
replaced by much stronger estimates in the 0 sense, say 0(1/t) since much
more than O(1/w?) holds in (2.15) and (2.16). In (2.13) additional terms
enter if a stronger 0 type error estimate is required. These are due to additional
terms entering Pleijel’s equation (1.4), one of them involving the mean square

curvature of B, if O0(1/w?) is replaced by a stronger estimate.

A much more difficult and interesting question is the extent to which the
averaged O estimates in our results may be replaced by ordinary O estimates
for the problem (1.1). It is clear that by improving the O(enlvl) estimate on

the analytic continuation of
2 NS, s=r+iv,
n=t
we can replace the Gauss kernel
2
P 2)
expl— — (w—y)
P( ) Y

in our definition of O by less well behaved ones. We could get ordinary O esti-
mates if we could use the characteristic function kernel x|_, l](w—y), but
since its Fourier transform is essentially v™! sin v, the analogue of the proof of

Theorem 1 would then seem to require stronger conditions on

2 A
n=1
than can be expected to hold.

It is known from the refined results of geometric number theory [1, p.823]
that M (x), defined as the number of integer lattice points (m,n) in the plane

satisfying m? + n® < %, satisfies
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M(x)=mx+0(x'3),
Since
2

/\=(n2+m2)%, n>0, m>0
b

for the eigenvalues of (1.1) with D a square of side b, the eigenfunctions being

products of sine functions, we clearly see that

2 > 2 4‘b
N(t)=1 M(b—f) -(4[bw ]+1) Y t— —\t +0Y?)
4 2 4

" g s 4n

for square D, 4[b6\/t/7]+ 1 being the number of lattice points on the axes.
This asymptotic result for N(¢) agrees with (2.13), although the corners of a
square prevent it from satisfying the smooth boundary conditions required in
Corollary 6. By carelessly dropping the \/¢ term in going from M(x) to N(t),
Minakshisundaram [5, p.331, no. 2] is led to the conjecture that domain com-
parison methods [3, p. 386 ] should yield

(D)

N(t) = t+ 03

T

for general domains D. Clearly the consistency statement of Corollary 6 makes

such asymptotic behavior impossible for N(¢).

REFERENCES

1. H. Bohr and H. Cramer, Die neuere Entwicklung der analytischen Zahlentheorie,
Encykl. der Math. Wiss., 2, part 3, no. 8.

2. T. Carleman, Propriétés asymptotics des fonctions fondamentales des mem-
branes vibrantes, Forhand. 8th Skand. Mat. Kongress, (1934), 34-44,

3. R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, Springer,
Berlin, 1931.

4. G. Doetsch, Laplace transforms, Springer, Berlin.

5. S. Minakshisundaram, Lattice point and eigenvalue problems, Symposium on

Spectral Theory, Stillwater, Okla., (1951), 325-332.

6. A, Pleijel, Sur les wvaleurs et les fonctions propres des membranes vibrantes,
Comm. Sem. Math. Univ. Lund (Medd. Lunds Univ. Mat. Sem.), suppl. (Riesz) vol.,
(1952), 173-179.



AN EXTENSION OF WEYL’S ASYMPTOTIC LAW FOR EIGENVALUES 499

7. H. Weyl, Ramifications of the eigenvalue problem, Bull. Amer. Math. Soc., 56
(1950), 115-139,

8. E.T. Whittaker and G. N. Watson, 4 course of modern analysis, Cambridge, 1946.

UNIVERSITY OF WASHINGTON AND
INSTITUTE FOR ADVANCED STUDY








