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1. Introduction. Let D be a bounded, open, connected subset of the plane

E2 whose boundary B = D — D is a simple closed curve whose curvature exists

everywhere and is continuous with respect to arc length; consider the eigen-

values λ - λn > 0 of the problem

(1.1) V 2

α + λ u = 0 on D, u = 0 on B,

where u(x) is to be continuous over ϋ and have continuous second partials

over D, ^ being the Laplacian. It has long been known (see [7, bibli-

ography]) that in this situation, with 0 < λ^ < λ^+i repeated according to

multiplicity, the asymptotic distribution of λn is given by Weyl's law

μ2(D)
( 1 . 2 ) / V U ) = T 1 = — t + o ( t ) , t—» + oo,

where μ 2 ( D ) is the two dimensional Lebesgue measure of D. This can be ob-

tained by Tauberian theorems from the estimate

~ 1 μ a ( D ) lnω C

d 3 ) Σ TTT ,=~Λ + - + O ( ω - 5 / 4 ) , ω - ^ + co,
n=ι An(λn + ω) 4 77 ω ω

(see Carleman [ 2 ] for the E3 analogue). By domain comparison methods [3,

p. 386 ] Courant has shown that o(t) in (1.2) can be replaced by O(\Jt l n ί ) .

In a recent paper [6, p. 177, equation 16] Pleijel replaces the estimate (1.3)

by the very much stronger

(14) y l n ω , c nB) 1 ! o l 1 )

over ω >̂  1 in case the curve B is very smooth (that is, it has an infinitely
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dίfferentiable parametric representation), where C is an unknown real con-

stant and KB) is the total length of S. Pleijel's estimate (1.4) follows easily

from a deep investigation jointly with M. T. Ganelius on the compensating part

of the Green function, as yet unpublished. This investigation uses integral

equations over the boundary B, while estimates like (1.3) come from a simple

application of the maximum principle over D to the modified Green function.

Pleijel suggests it should be possible to sharpen (1.2) by using his methods to

investigate the analogue of (1.4) over complex ω.

It is the purpose of this paper to show that from (1.4) alone we can replace

(1.2) by

(1.5) ΛK)
4 77

in a certain sense. Precisely our result (2.13) is that with

KB)
1 4ιr 4π J

have

over all real u >_ e and all p > 0 for some M < + oo. Moreover, if Nit) has an

ordinary asymptotic series in powers of ί, it must be consistent with (1.5). We

discuss briefly the possibility of sharpening (1.5) by replacing averaged 0

estimates by ordinary ones. We also note the utility of our consistency result

in proving false a conjecture of Minakshisundaram [5, p. 331, no. 2] about the

asymptotic behavior of Nit).

Clearly our theorems will apply to give results like (1.5) for a wide variety

of more general problems than (1.1) for which estimates like (1.4) obtain; in

particular such results hold for (1.1) in 3-space £3 .

2. Results and proofs. The difficulty arising in trying to get an asymptotic

series like (1.5), with 0 replaced by an ordinary 0 or o, is that Tauberian

theorems yielding such results seem to require essential nonnegative condi-

tions after subtracting all but the last term of the series. It is quite clear that

Nit) does not satisfy such a condition. For this reason we use an indirect
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Abelian type argument [4, p, 224] to get averaged error estimates of the 0 type.

The two first theorems here establish the significance of these averaged

error estimates, which despite the resemblance to Gaussian summability seem

to be little used for asymptotic series. Crame'r [ 1 , p. 819 and p. 823, ( 3 ) ] has

used Caesaro-1 type averaged error estimates on lattice point problems, but

such processes do not appear strong enough for use here.

Throughout the paper all integrals are to be understood in the Lebesgue or

Lebesgue-Stieltjes sense, and for the following two theorems it is understood

that Fit) is to be real valued of bounded variation over every finite interval

of [0, oo), with positive b a continuity point of Fit). Also \dF it) | stands for

dVpit) where Vpit) is the total variation of F over [bf t].

T H E O R E M 1. //

[°° i r ° \ d F i t ) \ < + o o
J b

for some r0 > 0, if

φ(s)= f° fs dF(t),

which must exist and be analytic in s over H[s] > ΓQ, also has an analytic

continuation without singularities throughout R [s ] > 0, and if

over 0 < r <^ro and all real v for some Mi < + oo and h > 0, then over all real

u >_ e and p > 0 we have

(2.1) I Γ β-<pV»> (In <•/«»» dF{t) < l2Mt exp ( l + Plh* + —
\Jb \ \ 2 2p

In v i e w of ( 2 . 1 ) i t b e c o m e s c o n v e n i e n t t o de f ine Fit) = 0 if it)) over

t >^ b for s o m e n o n n e g a t i v e f it) d e f i n e d over t >^ k > 0 if for e a c h p > 0 t h e r e

e x i s t s s o m e Mp < + oo s u c h t h a t the left s i d e of ( 2 . 1 ) e x i s t s and i s <_Up f iu)

for a l l u >_k. With t h i s d e f i n i t i o n we c a n r e s t a t e t h e c o n c l u s i o n of T h e o r e m 1 a s

Fit) =
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over t >_ b with k = e. Note that in (2.1) Up —> + 00 as either p —» 0 + or

p—»+oo, so that (2.1) becomes meaningless then. The significance of the

result (2.1) is greatly increased by the following consistency theorem.

THEOREM 2. //

f t'r°\dF(t)\ < + o o
b

for some r0 > 0, if

over t >_ b, and if

as t —> + ex) for some rλ > 0, then C\ — 0.

Proof of Theorem 1. Let

4 ( y ) = exp \~ — y2 ~zy]

for p > 0 and any complex z; thus

v
Now

M> [Tt'r° \dF(t)\ >r'Γ°VF(r)

Jb

shows

VF(t)=O(tr°);

thus

Jy=ln b z
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exists as an entire function of z over all real ω and all complex z The Fubini

theorem also shows g(z9 ω) G Lt(-00,00) over ω with

(2.2) f°° ( ( \= -exV( (v + - \ )ψ(z+iυ)
P \ 2p2 \ i l l2πJ'°° P \ 2p

over H[z+iv]-H[z]>_ro9 v being real. But the right side of (2 .2) is in

L]i— oo, oo) over v since

fr \dF(t)\,
b

and thus the Fourier transform inverse yields

( 2 . 3 ) [ ° ° f ( ω ~
J=\ b
[ f (
y=\n b

1 Γ~ I (v + z / ί ) 2 \ , , ,„,, dv

= exp \φ (2 +iv)eιvω —

v^J-~ \ 2p2 j P
2P

for R [ z ] >, r 0 . T h e g i v e n e s t i m a t e on φ{s) a c t u a l l y m a k e s t h e far r i g h t s i d e

of ( 2 . 3 ) e x i s t a n d be a n a l y t i c in z t h r o u g h o u t R [ z ] > 0, and t h u s by a n a l y t i c

c o n t i n u a t i o n ( 2 . 3 ) h o l d s t h e r e a l s o . T h u s wi th z = r w e h a v e for e v e r y p o s i t i v e

r and p a n d for e v e r y r e a l ω the e s t i m a t e

I Γ°° / P2

(2.4) exp - — ( ω - -

I Jr=ln6 \ 2

2p2

Multiplying (2.4) by e r α )and letting r = 1/ω > 0 we note for ω >̂  1 that
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r2 1 1
rω H — In r = 1 + + In ω < 1 + + In ω,

2p2 2p2ω2 ~ 2p2

thus with y = In t and ω — \nu >^ 1 we get the estimate (2.1) as desired.

Proof of Theorem 2. As before we have

\ F ( t ) \ < \ F ( b ) \ + VF(t) = O ( t r ° ) ,

so that we can integrate by parts in the left side of (2.1) and obtain from

F ( t) = 0 (In t) over t > b the estimate

(2.5) p
ly'lnb

over ω >_ k > 0. Now we are given

C l ί Γ l + / ( ί ) ί Γ l

over ί >̂  b with l i m ^ + o o / ( ί ) = 0 Thus multiplying (2.5) by e ι , letting

y = ω — Λ;, and taking ω —> + oo we get

f Γω-lnfe / p2 \
0 = lim j cι I Λ expj-ΓiA; — x \

α>—+ oo I J-°° \ 2 /

2 \
\dx

Defining f ( t) = 0 for t < b we obtain

(2.6) 0 = C l /"°° * e x p ί - Γ i * x2\dx
J \ 2 /

lim J Γ " /•(βω"a:) ίKe+ Ii

fit) being bounded over all real t since lim^_>+Oo / ( ί ) = 0 , and thus also

limω_» + o o / ( eω"x) = 0 , dominated convergence applied to (2.6) yields
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= Ci I x expl ~rγ% x )dx.
J -βo \ 2 /

But

< 0

for rι > 0, so that c^ = 0 follows.

To apply these two theorems we use a standard contour integral transforma-

tion on Pleijel's estimate (1.4). The contour Cp, p >_ 0, in the z plane is de-

fined to be first along the negative real axis from — oc to — p, then around the

circle z = peι from θ = - π to θ = 77, then back along the axis to -en. On this

contour we define

with θ ~ — π9 — π < θ < π, θ = π on the three parts respectively. The well known

results are formulated in the following two lemmas (Carleman [2]) , and we

sketch the proofs for the sake of completeness.

LEMMA 3. IfO< λn < λ n + l f an real, if

n

and if

λ 2

then

converges absolutely and is analytic in all complex z except for simple poles

at each λn. Moreover, for 0 < p < λι the function
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l r dz
_ / h(z)
2τ7i Jcp (z)Sml

exists and is analytic in s over ft [s ] > 2,

2 * an An

converges absolutely and uniformly over ft[s] ^ 2, and over R [ s ] > 2 we ob-

tain

(2.7) r - / h(z)
(z) S - l

LEMMA 4. //ίAe assumptions of Lemma 3 are satisfied and if

(2.8) Λ(~ω)= ς w p

ω V . ' P

l n ω + Q ( ί )
over ω >̂  1 with 0 < r^ < rjc.ι < < rγ < 2, then

an analytic extension into ft [s ] > 0 e#cepί /or poZes at rp,

(2.9)
in ίr(rD — 1) 1s i n

s i n
+ ton

(s-rp)2

cos 7r(r p -l)

analytic in s throughout ft [s ] > 0, aτιcf

Λ )\ 77^

over 0 < r <̂  2 ancί all real v for some M2 < + ω .
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We remark that TΊ < 2 is no real restriction in (2.8), since the assumptions

of Lemma 3 imply \Ίmω _ + oo h ( - ω ) = 0 . In demonstrating Lemma 3, the stated

analyticity of h (z) is clear as well as

; l/ \ n = 1

SO

g ( s ) = _ L / h(z) J t
2 π ί CP (z)

exists and is analytic in s over R [s ] > 2. To show

there for (2.7), let Cm be the vertical line contour from xm — ΪOO to xm + ico for

%m with λnml < xm < λnf so that using the estimate on h ( z ) to shift from

Cp to Cm we obtain

(2.10) g(s)~ T a, λ : s = — f h{z) —

for R [ s ] > 2, h(z) having the residue

at λ.

To pass from (2 .10) to ( 2 . 7 ) , note that

t lim sup λ2

n ( λn - λnm i )f] = + <

since otherwise
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would be bounded by

which contradicts λ π —» + oo and therefore contradicts

n ι n

Thus there exists a sequence nm such that

nm < Λm +19 λn — λn_ i > 0, and λ^ ( λn - λn. t ) —> + oo as m —» + oo for

We choose

for n = nm, so that

K 1
_ ^ 1 + > i

and

< Λ̂m + — = *m + 2 * J

n

With z = xm + it and s = r + ίvf r > 2, clearly

and

I 1 I e x p U | t ; | / 2 )

with L (v) = M exp ( π \ v |/2) make
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k(z)
.s-1

\ L(v)
over \t\ < λ n - xm ,

\h(z) < (χm)2'r L(v)
o v e r λ n - x m <\t\ <xm9

and

\h(z)
s-i

K \ L(v)I K \ L(v)
over χm < \t I.

Thus integrating over these respective parts of Cm, and using

the right side of (2 .10) —> 0 as m —> + oo and ( 2 . 7 ) follows.

P a s s i n g to Lemma 4, from the estimate ( 2 . 8 ) it is clear that

dz
h(z)

e x t e n d s a n a l y t i c a l l y f r o m R [ s ] > 2 t o R [ s ] > r i A l s o f o r rι < R [ s ] < 2 ,

C ^ c a n b e s h i f t e d t o C o y i e l d i n g

(2.11) g U ) =

Now here

sin 77 ( s - 1)

77

h(z)
dz sin π(s - 1) /*oo dcύ

/ h(-ω) .
Jo „ s-i

ω

ω s i n τ 7 ( s - l )
=

s-ι _ τ r ( s - 2 )
j A ( - l ) + / h (-ω) ,

which is analytic in s over R [ s ] < 3, having a removable singularity at s - 2.

Also

in 77 ( s — 1 )s i n Γ-2
in 77 ( s - 1 )sin

ω
s -1 77 ( s - r )

and

s i n 77(s — 1 )

/

oo c?ω s i n 77 ( s •
ω In ω =

ωs-ι π { s - r

c?ω s i n π(s - 1 )
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with principal parts

sin 77 (r - 1)

π(s - r )

s i n 7 7 - ( r - l ) c o s τ r ( r - l )
and +

π(s-r)2 s-r

respectively at s =r. Thus (2.9) clearly follows from (2.8) and (2.11). Also

from

i n 7 7 ( 5 - 1 ) 1 < 2eπ\v\ a n ds in
/

oo 1 day 1

2 r-1 Γ
ω ω

the stated estimate for g^is ) follows.

We combine Lemma 4 with our two previous theorems to obtain the following

result.

THEOREM 5. If the assumptions of Lemma 4 are satisfied with

lp sin (πrp) = 0

in (2.8), then

- Σ an

satisfies

( 2 . 1 2 ) H(t) = \ •' — lp c o s π rp) J + O ( l n ί ) ,

over t >_b where 0 < b < λ 1 # Furthermore, if H(t) has an ordinary asymptotic

series in powers of t as t—» + oo, such a series must coincide term for term

as far as it goes with the terms o / ( 2 . 1 2 ) .

Proof. Let

F{t)=H(t)~ -
= l ' P

p lp COS TΓΓp) I ,
77 / I

and note that
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ir-s

t'-'-i dt = —
s ~r

for R [s ] > r and b > 0. Also with 0 < b < λu we have

Γ
7 1 = 1

for K [s ] >_2. Thus from Lemma 4 we see that

t's dF(t)
b

has an analytic continuation without singularities into R [ s ] > 0 by the can-

cellation of principal parts at each rp = s. Also the conditions of Theorem 1

are satisfied with r0 = 2 and h = π; thus (2.1) yields (2.12). Theorem 2 gives

the consistency statement obviously.

To apply this theorem to our problem (1.1), we remark that the desired

condition

follows from Green's function being in L2(D x D), and thus a Hilbert-Schmidt

kernel. Thus Pleijel's estimate (1.4) yields (2.12) with

2

k = 2, r! = 1, mi = C, lχ = , sin ( πr±) - 0, cos ( nr±) = - 1,
4 π

1 Z ( B ) . .
ro — — 9 rrio — , lo — 0> s i n v ^ Γ 2 ) = 1 >

2 8

and we can state the following.

COROLLARY 6. Let the open, bounded, connected set D in the plane E2

have its boundary B an infinitely differentiable Jordan curve so that Pleijel's

estimate (1.4) holds for the problem (1.1). Then over t >_ λj2 we have

2

(2.13) /VU)= Y, 1 = t
λn<t *π
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and as in Theorem 5 any ordinary asymptotic series for N ( t ) must be consistent

joith (2.13).

If we consider the real valued eigenfunction un(x) of problem (1.1), in

place of (1.4) Pleijel gets [6, equation 6 and second equation of p. 177] over

X G D and ω > 1

- \un(x)\2 1 lnω C(x) 1
(2.14) V — — = + ' +

Tί λπ(λπ + ω) 4π ω ω 2π

/ - 2 Λ r ( x ) V u Γ \

•°h?H
/4 > 0, r ( x ) the distance from x G D to β, the 0 symbol being uniform over

x G D as well as ω > 1, Now K 0 ( Γ )> t n e modified Bessel function of the second

kind and zero order, has

as r — » +00 [ 8 , p . 374] . Thus for each fixed x G D , with r ( x ) > 0, we have

over ω >^ 1

, r N M ) | 2 1 lnω C(x)
(2.15) ^ ΓΠ "ϊ β 1 + + K

^ ί λ n (λ π + ω) 4τr ω ω \ω

1\

ω

2}

where the symbol 0χ now depends on x G D. It is also easy to see that at each

x ^ y with x, y G D we have over ω >_ 1

~ ^(xWy) C(x,y)

(2.16) Σ T T T x- — — +0 x ,
/ 1 \

, y _ ,
\ω2/

and indeed much better estimates than O(l/ω 2 ) hold in (2.15) and (2.16).

Also

+ c o

π=ι λ2

n

is known at each x G D; thus Theorem 5 yields the following.
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COROLLARY 7. Let D be as in Corollary 6, so that (2.15) and (2.16) hold

at each x ^ y with x, y £ Z). Then over t >_ λχ/2

( 2 . 1 7 ) £ K ( x ) | 2 = — ί + O ( l n ί ) , Σ, unix)uniy)=Oilnt),
4

λn<t -*π λn<t

with consistency of these series with ordinary asymptotic series, if any, as in

Theorem 5.

3. Discussion of results. It is quite clear that O ( l n ί ) in (2.17) can be

replaced by much stronger estimates in the 0 sense, say O ( l / ί ) , since much

more than Oil/ω2) holds in (2.15) and (2.16). In (2.13) additional terms

enter if a stronger 0 type error estimate is required. These are due to additional

terms entering PleijeΓs equation (1.4), one of them involving the mean square

curvature of B, if 0 ( 1/ω2) is replaced by a stronger estimate.

A much more difficult and interesting question is the extent to which the

averaged 0 estimates in our results may be replaced by ordinary 0 estimates

for the problem (1.1). It is clear that by improving the Oieπ\v\) estimate on

the analytic continuation of

oo

Λ^ , s = r + ιv,

we can replace the Gauss kernel

I p2( A

in our definition of 0 by less well behaved ones. We could get ordinary 0 esti-

mates if we could use the characteristic function kernel X[_t ^ ( ω - y ) , but

since its Fourier transform is essentially v~l sin v, the analogue of the proof of

Theorem 1 would then seem to require stronger conditions on

£-^ n

than can be expected to hold.

It is known from the refined results of geometric number theory [1, p. 823]

that Mix), defined as the number of integer lattice points im,n) in the plane

satisfying m2 + n2 <, x, satisfies
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πx + O(xι/3).

Since

λ = U 2 + m 2 ) — , n > 0, m > 0

for the eigenvalues of (1.1) with D a square of side 6, the eigenfunctions being

products of sine functions, we clearly see that

/ V ( t ) = - IM — -
b2 4b r- , 1 / 3 χ

= t y/T + O ( ί ι / 3 )
4π 4 7r

for square D, 4[byt/π] + l being the number of lattice points on the axes.

This asymptotic result for Nit) agrees with (2.13), although the corners of a

square prevent it from satisfying the smooth boundary conditions required in

Corollary 6. By carelessly dropping the y ί term in going from Mix) to Nit)9

Minakshisundaram [5, p. 331, no. 2] is led to the conjecture that domain com-

parison methods [ 3 , p. 386] should yield

t + Oitί/3)
4/7

for general domains D. Clearly the consistency statement of Corollary 6 makes

such asymptotic behavior impossible for Nit).
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