CURVATURE IN HILBERT GEOMETRIES

PAuL KELLY AND ERNST STRAUS

For every pair of points, p and ¢, interior to a simple, closed,
convex curve C in the Euclidean plane, the line é=px ¢ cuts C in a pair
of points # and v. If C has at most one segment then the Hilbert
distance from p to ¢, defined by

sv-fos(2 - 1)

is a proper metric (where up denotes the Euclidean distance from u to
p), and is invariant under projective transformations. The geometry
induced on the interior of C is a Hilbert geometry, and the Hilbert lines
are carried by Euclidean lines [2].

We shall be concerned here with curvature at a point defined in
a qualitative rather than a quantitative sense (cf. [1, p 237]).

DEFINITION 1. The curvature at p is positive or megative if there
exists a neighborhood U of p such that for every «, ¥y in U we have

2 Mz, y) =M, y) ,
respectively
2 MzZ, 9 <Mz, y),

where Z, y are the Hilbert midpoints respectively of the segments from
p to z and p to y. If there is neither positive nor negative curvature
at a point then the curvature is indeterminate at that point. This
qualitative curvature is clearly a projective invariant.

In order to state our result we need one more concept.

DEFINITION 2. A point p is a projective center of C if there exists
a projective transformation, =, of the plane so that =p is the affine
center of nC.

A projective center is characterized by the following. Let & be
a line through p, and let &nC={u, v}, and let p; be the harmonic con-
jugate of p with respect to » and ». Finally, let L, be the locus of
all p;. Then p is a projective center if and only if L, is a straight line.

Conic sections are characterized by the fact that every point in their
interior is a projective center [3]. We can now state our main result,
which solves a problem of H. Busemann [1, Problem 34, p. 406].

THEOREM. If p is a point of determinate curvature then it is
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a projective center of C. In particular, if the curvature s determinate
everywhere then C is an ellipse and the Hilbert geometry is hyperbolic.
We first establish some lemmas.

LEMMA 1. For any point p, wnterior to C, there ewists a line 7
(possibly the line at infinity) which intersects L, in at least two points
and does not intersect C.

Proof. There is at least one chord of C which is bisected by p.
If & is the line of such a chord then &, intersects L, at ¢, on the line
at infinity. If L, has a second point at infinity then the line at infinity
satisfies the lemma. If L, has only one point at infinity then L, is
a connected curve. It cannot lie within the strip formed by the two
supporting lines of C which are parallel to &, for then it would intersect
C. There is therefore a point ¢, of L, outside this strip and the line
N=q, X q, satisfies the lemma.

COROLLARY. For every p in the interior of C there exists a projective
transformation, =, so that nC is a closed, convex curve, and so that wp
is the midpoint of two mutually perpendicular chords of nC whose end-
points are points of differentiability of =C.

Proof. Since all but a denumerable set of points of C are points of
differentiability, we may choose the line » of Lemma 1 so that ynL,
contains p; and p;, and so that C is differentiable at its points of
intersection with & and &. Now let 7, be a projective transformation
which maps 7 into the line at infinity, and let z, be an affine transfor-
mation which maps =, & and 7, &, into perpendicular lines. Then 7=
has the required properties.

LEMMA 2. If a chord of C, of (Euclidean) length 2k, has p for its
midpoint and if q is a meighboring point on the chord at (Euclidean)
distance ds from p, then dS=(2[k)ds+O(ds®), where dS=h(p, q).

Proof. If the endpoints of the chord are » and », and the order
of the points on the chords is u, p, ¢, v, then, by definition,

as=tog("IR)( ) <lon(FLEN L L)

-ou{1s %)-1of1= %)
- 52+ 23]
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- % ds+O(ds’) .

LEMMA 3. Let (r, 0) be polar coordinates whose pole p is an tnterior
point of C at which the curvature is determinate. If C is differentiable
at the ends of two perpendicular chords which bisect each other at p,
then C satisfies the *‘ one-sided >’ differential relations

d <csc 20 ) _d <cscm20 )l
. ao\ o 8 do\ > Jrn)*
() d <9§920;> _d (,,Csc 2,0>
dao r? 6y dafd r? (B0 +m)~
for all 4,.

Proof. We first introduce Cartesian coordinates, with origin p, so
that the y-axis intersects C at points of second order differentiability,
and so that the axes do not coincide with the two given chords bisected
by p. The curve C is then given by an ‘‘upper” arec y=y(x) and
a ‘“lower” arc y=—yyx). Let the bisected chords lie on the lines
& : y=ax and &,: y=(1/a)x respectively. Let b,=(dz, @ dx) and ¢,=(2 dz,
2a dz) on &, and b,=(dz, —(1/a) dz) and ¢,=(2dxz, —(2/a) dz) on &,, where
dz is positive and chosen so that b, b,, ¢, and c, lie inside C. Assume
that p is a point of negative curvature. Then.

(2) 2 Wmi, m,) = ey, ¢).

where m,; is the Hilbert midpoint of the segment from p to ¢;.

To show that A(m,, b)=0(da’), we define dS,=n(p, ¢,) and ds,=pc,.
With 2k representing the Euclidean length of the chord on &, it follows
from Lemma 2 that dS,=(2/k) ds,+0(ds;®), and hence that

(3) h(p, my) = é_ S, = % ds,+0(ds?) .

Also, from Lemma 2 and the relation ds,—=2 pb,, it follows that

(4) I(p, b)= %pb1+0[<pb1)3]: ;1‘ (ds)+O0(ds) .

Since h(m,, b)) = |h(p, m,) —h(p, b)|, equations (3) and (4) imply that i(m,, b,)
—0(ds;?). But ds,—da(l+a)"=0(dx), hence hm,, b)=0(da?). Similarly,
h(m,, b,)=0(dz?®), and therefore

(5) h(my, b))+ h(m,, b))=0(da’) .

From the triangle inequality,
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(6) h(my, m,) =h(b, b,) —h(m,, b)) —h{m,, b,) .
This, together with (5), yields

(7) h(m,, m,)=h(b,, b,) —O(da’) ,

and from (1) and (7) we obtain

(8) 2 h(b,, b,)<h(c, ¢,)+0(dx?) .

We now wish to calculate the distances in (8). First, we have

(9) h(by, by)=h[(dz, a d), (dax,— 'i’dm)]
y(dx)-+ 1 dx
‘ a | ydw)+ade
y(do)—ade  y (da)— 1 da
R a

dx adr
“og1+ B Tiog[14 0de ]
a yy(dw) yudx)

—log[ 1 10 Jtoe1- ]

Using the Maclaurin expansion of the logarithms, and collocting first
and second degree terms, we obtain

=log

(10) (b, b)=def a+ %)[% (fm) o (;x)]
H 5 ( e ~ am [HOE

Because both of the functions y,(x) and y.(x) are convex and have second
derivatives at =0, they can be represented in the form

(11) y(d) =y;(0) +4i(0)dx+O(da?) , i=1,2,
and hence
,,,f];,, :,,,];,7 _ ’U;(O) d O(dz>
(12) wdz) w0 o) FHOE)
1 L +0(dx) .

yidz)  yX0)
The substitution of (12) in (10) gives
(13) (b, bz)=dx<a+}—>[~1—~ ——yl‘f@—Jr% _ vdw ]
a Y Y1 Y, Ys

2 (o LY = B)rown,
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where y,=v,(0). Hence
(14) 20,b)=2do(ar L) Lo T vide _widy
Y Y R Y,

n dzﬂi(a 1 )( yl — —ylg'x‘-{—O(dxg) :

By the substitution of 2 dx for dx we obtain

(15) h(esne) =2 daf a+ ;)[; + yl _ z,yyifd_aq B Zrygjgdx
tda(a— LY 2Jl ylfﬂ—}-O(d:c?) ,

Substituting this and (14) in (8) we have

(16) 2dw<a+~1 )[ L1 _yide_yde
a /Ly Y: Y Yz
dx 1 1 1
== )
<2 dm(a_|_ _1_)[ 1,1 2yde_2yde
a Y Y2 Y Y
Ly o1 g
e D) 1o
By dividing both sides of this inequality by 2da(a+1/a), and then rear-
ranging the terms, we obtain

am dx(—ii——l— zﬁ) —2(a- ;ﬁ)(yla - yl) <0(dar) .

Division of both sides of (17) by dz yields a new inequality whose right
gide is O(dr) but whose left side is independent of dx. From this it
follows that

I Lt

Consider now a reflection in the y-axis taking C into a curve C which
is divided by the wx-axis into an “‘ upper’’ arc z=z,(x) and a ‘‘ lower”’
arc 2= —z,(x). With the lines 2=(1/a) and z= —ax playing the roles of
¢ and &, and with b, ¢, b,, ¢, defined respectively by (dz, (1/a) dz), (2 dz,
(2/a) dx), (dx,—a dzx), and (2 dx,—2a dx), a repetition of the former argu-
ment leads to

(19) A @(é_—a)(fl;— ,12,,)§o .

2 27 2 2 2

Since z,=y, and z;=—y, (19) is also
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I (o Ferel

Combining the opposite inequalities (18) and (20), we obtain

(21) yi_f—,yé_;l*(a_;lﬁ)(,,l, _;1 >~_—O .
¥y 2 a/Nyl Y

Since (21) is an equality, it is clear that the same result would have
been obtained if all preceding inequalities has been reversed. In other
words (21) holds if p is a point of determinate curvature.

To express (21) in polar coordinates, let the polar axis be &, and let
0, designate the angle between the polar axis and the upper half-line
of the y-axis. The angles of inclination to the z-axis of the tangent
lines to C at (0, ) and (0, %,) are «, and «, respectively and the clock-
wise angles from the radius vectors to the tangent lines at these points
are w; and w, From the standard relationships between polar and
Cartesian coordinates, it follows that

(22) 7:(0)=tan o, = —cot a)l——[ 1 dr ]0
r do
, 1 dr
(0)= —tan a,=cot 2_[” 77777 ]o
4:(0) an a,=cot w T +7

Also, by definition, a=cotf, so % (a— 1 ):cot 260,. Substituting this and
@
(22) in (21) we obtain

(@) [-:3 gﬂ “{rls Z%Z] ~eo 20")[ 7(0) 2(50117?)1:0’

and hence

1 dr 1 1 dr
24 . == =20 :
(24) l:r3 dg + cot 20] [7"3 dé + 7 2 }Ooﬂc

Multiplying both sides of (24) by 2 esc26,=2 csc2(6,+r) we have

d (csc20)| _ d (csc20)

(25) aé |6 do

go+m

Since (25) involves only first derivatives, it holds for all 6, for which
r is differentiable at both 6, and 6,+r. Since the one-sided derivative
exists everywhere, we get the desired relations in (1), for all 4, from
the semi-continuity of the one sided derivative.

Proof of the Theorem. According to the corollary of Lemma 1 there
is always a projective transformation such that, after the transformation,
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p satisfies the conditions of Lemma 3. From (1) we obtain
(26) S" d( csc 20 .>:S"‘”‘ d( esc 20 )
0 P2 Bg+m r? ’

where the integrals are Stieltjes intergrals and the interval (d,, 8) does
not contain a multiple of #/2. Hence

1 1 .
(27) 7‘2(0) = 7«‘2(5;{_—%)——{—]{31 sin26, ]Cj:constant
where (j—l)ggﬁgjg,(j:Lz’ 3,4) .

Since r is differentiable at the points for which 6=0,7/2, 7,37/2, we
obtain from (27), upon differentiation at these points, the relations
k,=k,=k,=k, On the other hand, if we replace 6 by 04+= in (27) we
obtain the relations k= —#k;, and k,=—k, In other words, k,=0 and
r(@)=r(0@+=). Since this shows p to be a metric center, it was initially
a projective center.

The last statement in the theorem is well known (see [3] and e.g.
[2, p.164]).

If a Hilbert metric is defined in the interior of an n-dimensional,
convex surface S, the definitions for curvature and projective centers
are unchanged. The metric for the space induces, on any plane through
an interior point p, a two-dimensional Hilbert geometry. If p is a point
of determinate curvature, it is a two-dimensional projective center for
every plane through it. Since the L, locus for every plane section is
a line, it is easily seen that the total L, locus must be a plane and
hence that p is a projective center of S. If curvature is determinate
everywhere then S is an ellipsoid and the geometry is hyperbolic.

It seems probable that a Hilbert geometry can contain no points
of positive curvature.
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