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Let K be a division ring with a non-discrete topology T with respect
to which both the additive group K+ and the multiplicative group K*
of K are locally compact topological groups.1 If m is Haar measure for
K+ and a e K, the function mr{E) = m(aE) is clearly an invariant Borel
measure for K+. Hence there exists a real number φ(a) such that
mf{E)—φ(a)m(E) for all Borel subsets E of i£+. The real-valued function
φ on K (which is essentially the Radon-Nikodym derivative of m with
respect to left-invariant Haar measure on J5Γ*) evidently has the first
two of the following three properties.

(1) φ(a)^0 ; φ(a) = 0 if and only if α=0.
(2) φ(ab)=φ(a)φ(b).
(3) There exists M>0 such that φ(α)^l implies φ(l+α)g;Λf.
We shall show that φ satisfies (3) also, i. e., is a valuation for K,

and that the topology Tφ for K defined by φ coincides with Γ.2 The
classification of JBΓ then follows from known results.

LEMMA 1. φ is continuous.

Proof, Let ε be a positive number and let E be a compact set of
positive measure. By the regularity of Haar measure we may choose
an open set U containing E such that m(U)—m(E)<em(E). Choose a
neighborhood F of 1 with V= V'1 and V E c U. Then for x in F,
φ(a?) = m(xE)lm(E) g m(U)lm(E)<l + e since or1 6 F, φ(α) = (φ^"1))"1 >
(1+ε)"1. Hence 1—e<φ(x)<l + ε and the continuity of φ on JKΓ* follows,2*
Now choose an open set U with m(U)<em(E) and a neighborhood F of
0 with V-Ec: U. Then for a in F, φ(a)=rφE)l<mJ(E)^m(U)l7n{E)<ε
and φ is continuous at 0.

LEMMA 2. &={α e JKΓ: φ(α)^l} is compact.
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1 Continuity of the inverse multiplicative operation need not be assumed; cf. the con-
cluding remark. The continuity of multiplication implies that α-» —α=(—1). a is conti-
nuous.

2 This idea was suggested by some work of Tate, [12].
2*Cf. Halmos [3, £60.6, p. 265].
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Proof. Let C be a compact neighborhood of 0 and choose a neigh-
borhood V of 0 such that F C c C Let c& e FπCsuch that 0<φ(α)<
1. If anS cz C holds for no n — 1, 2, , we select for each n an sn e S
such that ansn $ C. Since φ(αfc) -> 0 and all the a70 lie in the compact
set C, α* -> 0 and hence aksn e C for sufficiently large k. We may there-
fore choose kn^n such that aknsn 0 C but akn+1sn e C. Then the sequ-
ence {a*n8n} of elements of the compact set a~ιC has a cluster point c
in α"^. Hence φ(aknsn)—φ(aYnφ(sn)^φ(a)kn has φ(c) as a cluster point
by the continuity of φ; thus φ(c) = 0 and c=0, which contradicts αfcwsTO 0
C. It follows that S is a subset of the compact set a~nC for some n
and so, being closed by virtue of the continuity of φ, is compact.

COROLLARY, φ is a valuation.

Proof. φ(l+S), the continuous image of the compact set 1+S, is
bounded.

LEMMA 3. TΦ=T.

Proof. Let V e T-{φ}, a e Fand Bn={b e K: φ(b-a)<2~n}. Sup-
pose we can choose bn e Bn with bnφ V for each w = l, 2, . But then
the points 6W—α, all of which lie in the compact set S, have a cluster
point c in £ which must be 0 since φ(c) — 0. Hence bn->a contrary to
our assumption and it follows that T a Tφ. Since the opposite inclusion
is an immediate consequence of the continuity of φ, the proof is comp-
lete.

If K is connected3, it is the real, complex or quaternion field
(Pontrjagin [10]) in particular, φ is archimedean. Conversely, if φ is
archimedean, the theorem of Ostrowski [8, p. 278] asserts that the cen-
ter of K is either the real or complex field and so K, not being totally
disconnected, is connected.5

If K is totally disconnected, φ is non-archimedean (and conversely,
according to the above) and results due to van Dantzig [2], Hasse [4],
Hasse and Schmidt [5], Jacobson and Taussky [6] and Jacobson [7] as-
sert that K is of one of the following three types 4

( i ) the completion of an algebraic number field at a finite prime,
(iί) the completion of an algebraic function field in one variable

3 K is either connected or totally disconnected: if the component C of 0 contains ag
0 then ba-iC is a connected set containing 0 and b 6 K.

4 Otobe [9] shows that a-^a,-1 need not be assumed to be continuous; cf. our final
remark in this connection.

5 Alternatively, if K is connected, it is not difficult to show that φ is archemedian;
then K is a vector space over the reals (Ostrowski) with φ as a norm, hence is the
real, complex or quaternion field (Arens [1] Tornheim [13]), proving Pontrjagin's theorem.
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over a finite field H,
(iii) a division ring D obtained from a field F of type (ii) by rede-

fining x. α —ασ. x, a e ίf, σ a fixed non-trivial automorphism of
i?, the elements of D and F being regarded as power series
Σΐ-n a>iχi m a n indeterminate x over H with coefficients in H.

REMARK. Continuity of a -+ a'1 need not be assumed, for it appears
in the connected case only in the proof that K is not compact in the
proof of the Pontrjagin theorem [11, p. 173, Theorem 45.]. If K were
compact, φ(a)=m(aK)lm(K)<^l for all a e K. But, as in the proof of
the continuity of Φ at 0 in Lemma 1, we can find a e K such that 0<
φ(α)<l then φ(a~ι)>l and it follows that K is not compact. If K is
totally disconnected we have only to apply to T, K* the following un-
published theorem of A. M. Gleason : Let G be a group with a totally
disconneted topology T under which the group operation is continuous
from GxG to G. Then T, G is a topological group.
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