THE FREE LATTICE GENERATED BY
A SET OF CHAINS

HowarD L. ROLF

1. Introduction. P.M. Whitman [4] defined an ordering of the set
of lattice polynomials generated by a set of unrelated elements. R. P.
Dilworth [3] generalized this ordering to apply to the case of lattice
polynomials generated by an arbitrary partly ordered set P. Dilworth
proved that this ordering gives a lattice isomorphic to the free lattice,
FL(P), which is generated by P and which preserves bounds of pairs
of elements of P. R.A. Dean [2] considered the ordering of lattice
polynomials which preserves order of pairs of elements in P and which
leads to the completely free lattice CF(P). He shows that CF(P) and
FL(P) are identical in the case in which P is a set of unrelated chains.

This article is a further study of FL(P) where P is a set of un-
related chains. An arbitrary element of P will be denoted by p or q.
The set of chains consisting of

A <A< e <y 5 O << v v e <y 5 o) U <y < e <5

where a,, and a,, are unrelated when ik, will be denoted by #n,+n,+
cee +zn,m_

DEFINITION 1. Lattice polynomials over P are defined inductively
as follows.

(1) The elements p, q, ---, of P are lattice polynomials over P.

(2) If A and B are lattice polynomials over P, then so are AUB
and ANB.

DEFINITION 2. The rank, r(A), of a lattice polynomial A is defined
inductively as follows.

(1) 7(A)=0 if and only if A is in P.
(2) r(AuB)=r(ANB)=r(A)+r(B)+1.

DEFINITION 3. The dual polynomial, A’, of a polynomial A of
FL(n,+n,+ --- +n,) is defined inductively as follows.

(1) If A=a,,, then 4A’'=a,(n,—75+1).
(2) If A=A,UA,, then A'=A/NA..
(3) If A=A,NA, then A'=A]U A..
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From Definition 2, Lemma 1, and Lemma 2 of [2], and the fact that
FL(P) and CF(P) are identical in the case under consideration, we have
the following theorem.

THEOREM 1. Let P be a partly ordered set consisting of a set of un-
related chains. In FL(P), each relation A=B is one of six types. These
types and necessary and sufficient conditions which apply to each case are
the following.

(A) p=q if and only if p=q in P.

(B) p=B.,NB, if and only if p=B, or p=B,.

(C) AUA,=p if and only if A=p or A,=p.

(D) Az=B,UB, if and only if A=B, and A=B,.

(E) ANA,=B if and only of A,7=B and A,=B.

(F) AUA=B.NB, if and only if A,=B,NB, or A, =B,NB, or
A UA,=B, or A,UA,=B,.

2. FL(2+2). Let a,<a, and b,<b, be the generators of FL(2+2).
The notation of the elements of FL(2+2) is defined in the following
recursive manner.

Ai=a,, B=b,
and, for n>1,

A=a,N (@ UBy), B,=b,N(biUA,) .
C,=a,UB, .
D,=bUA4, .
P,=A,UB,.
Q.=C,ND, .
M,=a,Ub, .
M,=(@,Nb)Ua, UD, .
Vi=b.N({(a,Nb)Ua,Uby) .
V.=(a,Nb)U (b,N(a, UDy)) .
Vs=b,N(a,Ub,) .
W.,=a,N({(a,Nb)Ua,Ub,) .
W,=(a.Nb;)U (2N (a;Ub)) .
Wi=a,N(a,Ub) .
These elements and their dual elements are all the elements of
FL(2+2). This is shown by considering the N and U tables of the

above elements and their dual elements. Since the generators of F1(2+2)
are among these elements and their duals, in order to show that these
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are all the elements of FL(2+2) it is sufficient to show that this set is
closed under U and N. Actually, it is sufficient to show the set con-
sisting of the above elements and their duals is closed under U (or N).
This follows from the fact that

the intersection of two elements,
ANB, can be expressed as AN B=
AYNBY=A'UB'), the latter
being found from the U table.
The diagram of FL(2+42) as shown

in Figure 1 is obtained from the
relations found in the U (N) table.
Rather than give the entire U
table, the diagram of FL(242)

is given and a typical element,
A,;UB,, of the U table is con-
sidered. The other parts of the

U table are obtained in a similar
manner. First, we consider the
following theorem.

THEOREM 2. In FL(2+2) we
have A;>A,> «++, Bi>B,> « -+,
C>C,> «-+, and D, >D,> --- .

Proof. The proof of this
theorem is similar to the proof,
in §4 of [2], that FL(2+2) con-
tains four infinite chains. In [2]
the symbols, 4,, B,, C,, and D,
represent the same elements as
Aty Dyyoyy, By, and C,,, respec-
tively, of this paper. Thus we ““?*2 i
conclude from the results of [2] Fig.
that A, >A,>A4;> ---, B,>B,>B;> -, C,>C>C;> +++, and D >
D,>D,> .-, The conclusion of this theorem follows in a similar
manner.

We now show that

Pi’ 'L::? ’
AiUB}: D,;, 'I/<J s
[er .7<?’ .

A;UB,=P, by definition. Since B,;=b,, it follows by (D) of Theorem
1 that A,UB,=bUA,=D;,. Now consider the relation
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blUAiZAiqu:(bzm(blUAJ—l))UAt ’ 7/<.7 .

Since 4,=A4,,, n<m we have bUA,=b,UA,_,, i<j. Hence by (F) of
Theorem 1, b,U A,=B,. Since b, U A;=A4,, it follows by (D) of Theorem
1 that b,U4,=2B,UA. This completes the proof that D,=bUA;=
B,U A4, 1<J.

It follows in a similar manner that A,UB,=C,, j<q.

3. Order-convergence.

DEFINITION 4. In a lattice, {b;,} is said to order-converge to b if
sequences {u;} and {v;} exist such that

V2 Vi1 2051 S U 2 U,

for all 4, and lub {u;} =glb {v,} =b.

As seen from Figure 1, or as can be shown directly using Theorem
1, it is clear that A,=W, for each n, B,=V, for each n, C,=M, and
D,=M, for each n. Thus we conclude that W, is a lower bound to
the set {4,}, V. is a lower bound to the set {B,}, and M, is a lower
bound to each of the sets {C,} and {D,}.

THEOREM 3. In FL(2+2) W, s glb {4,}, V, is glb {B,}, and M, is
glb {C,} and glb {D,}.

Proof. Since each of W,, V,, and M, is a lower bound to the in-
dicated sets, in order to prove the theorem it is sufficient to prove the
following four statements.

(1) If A,=K for each n, then W= K.

(2) If B,=K for each n, then V=K.

(3) If C,=K for each n, then M,=K.

(4) If D,=K for each n, then M,=K.

The proof is as follows. Let 7(K)=0. If A,=K for each n, then
K=a,. In this case W,=K. Similarly if B,=K for each n, then K=b,
and hence V,>K. If C,=K for each n, then K=a, or K=b,. In either
case M,>K. Similarly if D,=K for each n, then M,= K.

Proceeding by induction, we assume, when r(K)<k, that the four
conditions (1), (2), (3), and (4) each hold. We now consider the cases
when 7(K)=k and K=K, NK, or K=K, UK,. First, let K=K NK. If
A,=K for each %, then @,>K and a,UB,..=K for each n>1. The
latter is true if and only if one of the following holds.

(a) =K NK,,

(b) B,.zKNK,,
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(¢) CiuzK,

(d) C,..=K,.

If (a) holds, then W, =K NK, We now show that if (a) does not
hold, then one of (b), (c), or (d) must hold for each n>1. Since B, >
B,.., if B,2K NK, then B,2K,NK,, n>m. Otherwise B,,>B,=K NK,
implies B,>K NK, Similarly C, 2K implies C,2K when n>m. Thus
if (b), (¢), and (d) fail to hold for some n=q, 7, or k, respectively, then
(b), (e), and (d) fail to hold for m=max (¢, 7, k). This result with the
assumption that (a) is false contradicts the fact that a,UB,., =K NK,
for each n>1. Thus one of (b), (¢), or (d) holds for each »>1 if (a)
fails to hold. If (b) is true, then ,=K N K, This, with a,=K NK,,
implies W,= K, N K,. By the induction hypothesis, (c) or (d) implies M,= I
or K,, thus M,=K, NK, This, with a,=K,NK,, implies W,=K, N K,.

Thus we conclude that A4,=K NK, for each n and »(K,NK,)=k
imply W, =K, NK,. Similarly K=K,UK, and 4,=>K,U K, for each n im-
ply W.=K,UK,. It is shown in a similar manner that D,>=K for each
n implies M,=>K; B,=K for each n implies V,;=K ; and C,=K for each
n implies M,=K where r(K)=Fk in each case. Thus, by induction, the
proof of the theorem is complete.

COROLLARY. In FL(2+2) the sequence {A,} order-converges to Wi,
{Ba} order-converges to Vi, {C,} and {D,} each order-converge to M,.

Proof. In the case of {4,} we let u,= W, and v,=A4,. Then each
of the conditions of Definition 4 is satisified where lub {«,} =glb {v,} = W..
Thus {A,} order-converges to W,. The other conclusions of the corollary
follow in like manner.

We may generalize these results in the following manner. Let
W+ 0,4+ <+ +n, be a set of chains in which two chains each have two
or more elements. From each of these two chains take the least ele-
ments, a,, a, and a,, a,. If we replace a, with a, and b, with a,,,
r=1,2, in A4,, B,, C,, D,, W,, V,, and M,, the resulting elements will
be mutually related in the same manner as 4,, B,, C,, D,, W,, V,, and
M, since the set ay, @y, a;, @, is isomorphic to 2+2.

If we substitute a;, and a,, in A,, B,, etc. as indicated above, and
if we designate the resulting elements by the same symbols as the
symbols from which they are obtained, we obtain the following theorem.

THEOREM 4. In FL(n,+n,+ <+« +n,), where n,=2 and n,=2 for some
unequal i, §, the set {A,} order-converges to W,; {B,} order-converges to
Vi {C,} and {D,} each order-converge to M..

4. FL(4+1). The notation for the elements of FL(4+1) is defined
recursively in the following manner.
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A =a;,, B=a,Ub, A=a;N(w,UB), B,=(a,Ub)Nay,
and for n>2,

A,=a;(a:UB,-1) , B,=BN((a;Nd)UA,-,) .
Co=(a;ND)U A, .
D,=a,UB, .
F,=A,UB, .
Gu=A4,UBp.; .
H=a,nD, and, for n>1, H,=C,.,ND, .
E,=a, and, for n>1, E,=C,..ND,_, .
S,=A,UH, .
7.=D,NG,.
P,=a,NF, and, for n>1, P,=C,_,NF, .
Q=B,UE, .
Vi=a;N((a;N (@, Ud) Ua,U(a;ND)) .
V,=(a;N (a2, U b)) U (a; N (a,U (a, N b)) .
Vi=a;N(a,U(a,Nd)) .
W=(a,Ub)N((asN(a,Ub)Ua.U(a,Nb)) .
W,=(a;N(a,Ubd))U(a,Ud)N(a,U(a,ND))) .
Ws=(a,Ub)N(a,U (a,Nb)).
My=a,U(a,NDd) .
M,=(a;N(a,Ud)Ua,U(a,Nd) .
b.

As in the case of FL(2+2), that these elements and their dual
elements are all the elements of FL(4+1) follows from the fact that
they include the generators of FL(4+1) and are closed under U and N.
The relations between the elements of FL(4+41) as shown by the dia-
gram in Figure 2 are proved similar to the way the relations of the
elements of FL(2+2) are proved. The following results are stated
without proof since the proofs are similar to the proofs of the cor-
responding statements regarding FL(2-+2).

THEOREM 5. FL(4+1) contains the infinite chains A, >A,> ---,
B,>B,> ..., C,;>C,> --., and D,;>D,> ---.

THEOREM 6. In FL(4+1), {A4,} order-converges to V,, {B,} order-
converges to Wi, {C,} and {D,} each order-converge to M.,.

Theorem 6 can be generalized in the same manner as was the
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corollary to Theorem 3. Let n,+n,+ .-+ +n, be a set of two or more
chains in which one chain contains four or more elements. From the
chain containing four elements, take the four least elements a,;, ., @,
and a,. From another chain,
take the least element a,. If
we substitute a,. for a,, r=
1,2,8,4, and a, for b in A4,,
B, C,, D, M, W, and V,,
and if we designate the re-
sulting elements by the same
symbols as the symbols from
which they are obtained then
we get the following corollary
in the same way as Theorem
4 was obtained.

COROLLARY. In FL(n,+
n,+ ¢+ - +n,), where n,=4 for
some i and m=2, {A,} order-
converges to Vi, {B,} order-
converges to W, {C,} and {D,}
each order-converge to M,.

5. FL(14+141) as a sub-
lattice of FL(n,+n,), n,=3 and
n,=2, or n,.=5 and n,>1.
From Theorem 4 and Theorem
6 of [2] we have the following
theorem.

FL(4+1)
THEOREM 7. Let U be a Fig. 2

subset of FL(n;+n,+ +++ +n,)

and let U= {u,} be isomorphic to n,+n,+ -+ n,. Let u,=u, if and
only if i=p and j=q. FL(U) is isomorphic to FL(n,+n,+ -+ +n,) if
and only if U u,;=u, implies i=a and j=b for some v, j, and dually.

THEOREM 8. FL(n,+n,), m.=3 and n,=2, contains a sublattice iso-
morphic to FL(1+141).

Proof. In FL(n,+n,) let u,=a,, us=a;N(a,Ub,), and uy=a,U (asNb,).
In order to show that the sublattice generated by u,, u.,, and u, is
isomorphic to FL(1+1+1) it is sufficient to show, by Theorem 7, that
the u, are unrelated and that w, Uw, 2 u, and u,,Zu,Nu, when ¢, j,
and %k are all different.



592 HOWARD L. ROLF

A direct application of Theorem 1 shows u,;2u, and u, Z2u,; when
1+#4, thus the u, form an unrelated set. A straightforward application
of Theorem 1 also shows that w,Uwu, Zu, and u;Zu, Nu,, when 4, j,
and k are all different. Hence FL(u,;, %, %s) is isomorphic to FL(1+1+1).

THEOREM 9. FL(n,+n), n=5 and n,=1, contains a sublattice iso-
morphic to FL(1+141).

Progf. A proof similar to the proof of Theorem 8 shows that the
sublattice of FL(n,+mn,) generated by wu,=a; u,=a,N(a,U(a;Nd)), and
n=a,U (a,N(a,Ud)) is isomorphic to FL(1+141).

6. FL(n,+n,+ --- +n,) as a sublattice of FL(1+1+1). In FL(1+
1+1), with generators x;,, «,, @;, define u,=;,, and for n=1,

U =21 U (23N (2, U (2, N (@5 U (22N %, -1)))))

Whitman has shown [5, p. 112] that w,<u,<u,< --- (In his notation
U =1g;41)-

THEOREM 10. The free lattice generated by 3m unrelated elements,
FLA+14 --- +1), contains a sublattice isomorphic to FL(n,+n,+ ---
+ 7).

Proof. Denote the generators of FL(1+1+ --- +1) by a, a,, ++-,
2, and choose m sets of elements of FL(n,+n,+ «-+ +mn,) in the fol-
lowing manner. For each 4, i=1,2, .-+, m, let u,=x5_,, and for j=>1,

Uiy =Py U (@3 N (@35-1 U (@5-2N (25U (msi—l Nu, 1—1))))) .

We note that the polynomials of each set u,,, 7 fixed and j=0,1, 2,---, n,,
are the same, except for the subscripts of the z’s, ag the polynomials
u, defined immediately before this theorem. Since the z’s are unrelated,
the reasoning that led to the conclusion u,<u,<u,< --- applies to the
u;;. We then conclude that u,<u,<u,< .-+, i=1,2, -, m.

Since @y, Zxs5p-, and 2,2 x;,-, When 1£Dp, U, ZU,. Similarly u,,Zu,,
when 4#p. Thus u,; is unrelated to u,, when ¢#p. Letting U denote
the set of polynomials u,,, ¢=1,2,.--,m and 5=1,2,---,n, for each
1, we see that U is isomorphic to n,+mn,+ -+ +n,. By means of Theo-
rem 7, we shall show that the sublattice generated by U is isomorphie
to FL(n,+n,4 <+ +n,).

If u,=Nwu,y, then it is necessary that one of the following holds.

(1) @sa=Nuyy,

(2) 23N (#@0-1U (@302 N (30 U (@3a-1 NUgp-1)))) = Ny

(3) uum=u,; for some 4, j.
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Condition (1) is true if and only if x,,_,=some u;,. Since j#0, this is
false ; hence (1) cannot hold. Similarly (2) is false since w;,2some u,,.
Hence (3) must hold, but this is true if and only if a=7 and b=j.
Thus %4,= Nu;; implies a=4 and b=3.

If Uu;;=ug, then it is necessary that

U5 Z @36 N (T3g-1 U (T3g-2 N (@36 U (X3a-1 N Ug5-1)))) -

This is true if and only if one of the following holds.
(a) Uuy=wy,,
(b)) Uy =201 U (T30-5 N (@36 U (@30-1 N Ua—1))) 5
(c) some ;=2 N (T30-1 U (Fsa-2 N (X0 U (T30-1 N Ugp-1)))) -
Conditions (a) and (b) are false, respectively, since neither u;,>x;, nor
Uy =xs-, 18 ever true. Thus (¢) must hold. If ¢=a and j<b, since
Uqy=Tyq-o, it follows that (¢) must be false, otherwise it implies u,,=u,,

when j<b contrary to the known relationship u,>u,,, 7<b. If a+7,
(¢) implies at least one of the following.

(1) @5-2=@30 N (@01 U (@02 N (@30 U (@30-1 N2Uap-1))))

(2) =@ N (X30-1 U @30-2 N (@30 U (T30-1 N Uas-1))))

(3) wuy=wy,,

(4) =501 -
Since i#a, each of these four conditions is false. Thus 7+a contradicts
(c). We then conclude that if (c) is true, ¢=a and j=b. Furthermore,
we conclude that Nu;;>wu, implies that i=a and j=b for some 7, 7, and
dually. By Theorem 7, it follows that the sublattice generated by U
is isomorphic to FL(n,+n,+ -« +n,).

CoroLLARY 1. FL(1+41+41) contains a sublattice isomorphic to
FL(n,4+n,+ «-+ +n,).

Proof. FL(1+1+1) contains a sublattice isomorphic to FL(M), where
M is a set of 3m unrelated elements, [5, Theorem 6], and FL(M) in
turn contains a sublattice isomorphic to FL(n,+n,+ «-+ +n,).

COROLLARY 2. FL(m,;+m,), m;=3 and m,=2, or m=5 and m,=1,
contains a sublattice isomorphic to FL(n +n,+ -+ +n,,).

Proof. By Theorems 8 and 9, FL(m,+m, contains a sublattice
isomorphic to FL(1+141). In turn, Corollary 1 implies that FL(1+141)
contains a sublattice isomorphic to FL(n,+n,+ -+ +n,,).

We note that the reasoning in the proof of Theorem 10 is valid if
m is any cardinal number and each chain contains a finite or countable
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number of elements. In the corollaries to Theorem 10 m must be
countable since FL(1+1+1) contains only a countable number of elements.

7. Order-convergence in FL(n,+n,+ --- +n,). By Theorem 4 and
the corollary to Theorem 6, we see that FL(#,+n,+ --- +n,), where
n;=2 and n,=2 for some distinet 4, j, or some n,=4 and m=2, containg
an infinite subset that order-converges. We now show that in case
m=8 there exists an infinite subset that order-converges. We summarize
this in the following theorem and prove the case m=3 immediately
following.

THEOREM 11. FL(n,+n+ «+- +n,), where n,=2 and n,=2 for some
distinct © and j; or some n,=4 and m=2; or m=3, contains an infinite
subset that order-converges.

Proof. Denote the least elements of three different chains of
FL(n,4+n+ «+- +n,) by =, x,, x; and define

Ug=2, ,

U=, U (23N (2, U (@ N (23U (@, N s-1))))) s n=1,
V=12, ,

V=2 U (@ N (@ U (2N (@ U (@1 05-1)))) nzl.

As mentioned previously, Whitman has shown u,<wu, <u,< +-- [5]. Similar-
ly v,<v, <0< #v -
We now define the following elements in FL(n,+n,+ -« n,).

an:(xlu(xlnxs))nun ] ?’L=1, 2 .
bnz(wﬁu(xlmxz))nvn ’ 'ﬂ:1, 2 .

A, =a,, B,=b,, and, for n>1,

A,=a,N (e, UB._), B,=b,N(b,UA,_).
C,=a,UB, .
D,=bUA, .
Wi=a,N((@.Nb)Ua,Ub) .
Vi=b,N((a.Nb)Ua,Ub,) .
M,=(a,Nb,)Ua,Ub, .
These elements correspond to the elements of FL(2+2) designated
by the same symbols. By means of Theorem 1, in a rather tedious but

straightforward manner, it is shown that the above elements are related
in the same manner as their corresponding elements in FL(2+2). Thus
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A>A,> - >W,,
B, >B,> -+ >V,
C>C> -+ >M,,
D,>D,> -+ >M,.

A proof similar to the proof of Theorem 3, although more tedious,
shows that W,=glb {4,}, Vi=glb {B,}, and M,=glb {C,} and {D,}. The
first step of the induction is vacuously true. If A,=K for each n where
r(K)=0, then it is necessary that @,=2K. In turn this implies x,U
(@,Nw;)=K and u,=>K. Since K is an element of n,+n,+ -+ +n,, it
follows from these two relations and Theorem 1, that at least two of
x, «, w; must be =K. Since each x, is from a different unrelated
chain, this is false. Hence 4,>K, for each » and r(K)=0, vacuously
implies W,=K. Similarly, statements (2), (3), and (4) at the beginning
of the proof of Theorem 3 are vacuously true when 7(K)=0. The
remainder of the proof is similar to the proof of Theorem 3.

We have answered, in the affirmative, the question posed by
Whitman [5], ‘‘Does some infinite set in FL(1+1+ --- +1) order-
converge ?’> Theorem 11 states that each infinite free lattice generated
by a set of chains contains an infinite subset that order-converges.
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